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Abstract
Image-guided radiotherapy (IGRT) requires fast and accurate localization of prostate in treatment
CTs, which is challenging due to low tissue contrast and large anatomical variations across
patients. On the other hand, in IGRT workflow, a series of CT images is acquired from the same
patient under treatment, which contains valuable patient-specific information yet is often
neglected by previous works. In this paper, we propose a novel learning framework, namely
incremental learning with selective memory (ILSM), to effectively learn the patient-specific
appearance characteristics from these patient-specific images. Specifically, starting with a
population-based discriminative appearance model, ILSM aims to “personalize” the model to fit
patient-specific appearance characteristics. Particularly, the model is personalized with two steps,
backward pruning that discards obsolete population-based knowledge, and forward learning that
incorporates patient-specific characteristics. By effectively combining the patient-specific
characteristics with the general population statistics, the incrementally learned appearance model
can localize the prostate of the specific patient much more accurately. Validated on a large dataset
(349 CT scans), our method achieved high localization accuracy (DSC ~ 0.87) in 4 seconds.

1 Introduction
Image Guided Radiation Therapy (IGRT) is a newly developed technology for prostate
cancer treatment. It consists of planning and treatment stages (Fig. 1(a)). In the planning
stage, a planning CT scan is acquired and radiation oncologists manually delineate the
prostate for treatment planning. In the treatment stage, to account for daily prostate motions,
a treatment CT scan is acquired at each treatment day right before the radiation therapy.
Guided by the treatment CTs, radiation oncologist adapt the treatment plan to precisely
target radiation dose to the current positions of tumors and avoid neighboring healthy
tissues. Consequently, IGRT increases the probability of tumor control and typically
shortens radiation therapy schedules. In order to effectively adapt the treatment plan, it is
critical to localize the prostate in the daily treatment images fast and accurately. Thus, an
automatic localization algorithm becomes very desirable.

However, prostate localization in treatment CT is quite challenging due to the low tissue
contrast (Fig. 1(a)), unpredicted prostate motion [1], and potential large intra-patient
anatomical variations that might happen across treatment days (pointed by red arrows in Fig.
1(a)). On the other hand, however, IGRT workflow provides a remarkable opportunity to the
algorithm - at each treatment day, a few CT scans of the same patient have already been
acquired in the planning and previous treatment stages. In addition, prostate boundaries have
also been delineated in these images. If the prostate appearance characteristics of this
specific patient can be learned from these patient-specific images, the algorithm can exploit
this information to localize the prostate much more effectively.
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To effectively exploit the patient-specific appearance characteristics, we propose to localize
prostate in daily treatment CTs using a novel learning scheme, namely incremental learning
with selective memory (ILSM), which leverages both the large number of population data
(CT scans of other patients) and the very limited number of patient-specific data. Our
learning framework starts with learning a population-based discriminative appearance
model. This model is then “personalized” according to the appearance information from CTs
of the specific patient under treatment. Instead of either preserving or discarding all
knowledge learned from population, our method selectively inherits part of population-based
knowledge that is in accordance with the current patient, and at the same time incrementally
learns the patient-specific characteristics. This is where the name “incremental learning with
selective memory” comes from. Once the population-based discriminative appearance
model is personalized, it can be used to detect distinctive anatomical landmarks in new
treatment images of the same patient for fast prostate localization.

Related Work
Costa et al. [2] proposed coupled deformable models to localize the prostate by considering
the non-overlapping constraint from bladder. Chen et al. [3] used a Bayesian framework that
integrates anatomical constraints from pelvic bones for prostate localization. Foskey et al.
[4] proposed to use large deformable registration to localize the prostate by warping the
planning image to daily treatment images. While these methods have exhibited certain
effectiveness in CT prostate localization, without fully exploiting the patient-specific
information, their performance is still limited. Recently, Liao et al. [5] proposed a feature-
based registration method by exploiting the patient-specific information and achieved
accurate prostate localization. However, it takes 3.8 minutes to localize the prostate. If the
prostate unexpectedly moves during the long localization procedure, the localization result
might become meaningless for IGRT.

2 Methodology
Overview

To localize the prostate in daily treatment images, we learn a set of local discriminative
appearance models. Specifically, these models are used as anatomy detectors to detect
distinctive prostate anatomical landmarks as shown in Fig. 1(b). The detected anatomical
landmarks are further pruned by RANSAC [9]. Finally, based on the pruned landmarks, the
prostate is localized by transforming the prostate surface delineated in the planning image
(Fig. 1 (a)) onto the treatment image space. Fig. 2 shows the flowchart of our method.

2.1 Cascade Learning for Anatomy Detection
Our prostate localization method relies on several prostate anatomical landmarks. Inspired
by Viola's face detection work [6], we adopt a learning-based detection method, which
formulates landmark detection as a classification problem. Specifically, for each image, the
voxel of the specific landmark is positive and all others are negatives. In the training stage,
we employ a cascade learning framework that aims to learn a sequence of classifiers to
gradually separate negatives from positives (Fig. 3). Compared to learning a single
classifier, cascade learning has shown better classification accuracy and runtime efficiency
[6]. Mathematically, cascade learning can be formulated as:

Input: Positive voxel set , negative voxel set , and label set 

Classifier: ,  denotes the appearance features of a voxel x.

Initial Set: 
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Objective: Optimize Ck, k = 1, 2, · · · , K, such that

where Xk = {x|x ∈ Xk–1 and Ck(x) = +1}.

The cascade classifiers Ck, k = 1, 2, · · · , K, are optimized sequentially. As shown in Eq. 1,
Ck is optimized to minimize the false positives left over by the previous k – 1 classifiers.

(1)

where ∥.∥ denotes the cardinality of a set. It is worth noting that the constraint in Eq. (1) can
be simply satisfied by adjusting the perceptron threshold of Ck [6] to make sure that all
positive training samples are correctly classified. This cascade learning framework is
general to any image feature and classifier. Extended Haar wavelets [7][8] and Adaboost
classifier are employed in our study.

Once the cascade classifiers {Ck(x)} are learned, they have incorporated the appearance
characteristics of the specific landmark. Given a testing image, the learned cascade is
applied to each voxel. The voxel with the highest classification score after going through the
cascade is considered as the detected landmark.

2.2 Incremental Learning with Selective Memory (ILSM)
Motivation

Using cascade learning, one can learn anatomy detectors from training images of different
patients (population-based learning). However, since intra-patient anatomy variations are
much less than inter-patient variations (Fig. 4), patient-specific appearance information
available in IGRT workflow should be exploited to improve the detection accuracy on the
specific patient. Unfortunately, the number of patient-specific images is often very limited,
especially in the beginning of IGRT. As a result, cascade learning using only patient-specific
data (pure patient-specific learning) often suffers from overfitting. One can also mix
population and patient-specific images for training (mixture learning). However, since
patient-specific images are the “minority” in the training samples, detectors trained by
mixed samples might not capture patient-specific characteristics well. To address this
problem, we propose a new learning scheme, ILSM, to combine the general information in
the population images with the personal information in the patient-specific images.
Specifically, population-based anatomy detector is served as an initial appearance model and
is then “personalized” by the limited patient-specific data. Specifically, ILSM consists of
backward pruning for discarding obsolete population appearance information and forward
learning for incorporating the online-learned patient-specific appearance characteristics.

Notations

 is the population-based anatomy detector (learned Sec.

2.1), which contains a cascade of classifiers.  and  are positives and negatives from
the patient-specific training images, respectively. D(x) denotes the class label of voxel x
predicted by detector D.

Backward Pruning
The general appearance model learned from population is not necessarily applicable to the
specific patient. Specifically, the anatomy landmarks in the patient-specific images
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(positives) may be classified as negatives by the population-based anatomy detectors, i.e.,

, . In order to discard parts of population appearance model that do
not fit the patient-specific characteristics, we propose backward pruning to tailor the
population-based detector. As shown in Alg. 1, in backward pruning, the cascade is pruned
from the last level until all patient-specific positives can pass through the cascade. It is
equivalent to searching for the maximum number of cascade levels that could be preserved
from the population-based anatomy detector (Eq. 2).

(2)

Forward Learning
Once the population cascade has been tailored, the remaining cascade of classifiers encodes
the population appearance information that is consistent with the patient-specific
characteristics. Yet till now no real patient-specific information has been incorporated into
the cascade. More specifically, false positives might exist in the patient-specific samples,

i.e., , , . In the forward learning stage, we will use the
remaining cascade as an initialization, and adopt forward learning to eliminate the patient-
specific false positives left over by the previously inherited population classifiers. As shown
in Alg. 2, a greedy strategy is adopted to sequentially optimize a set of additional patient-

specific classifiers .

After backward pruning and forward learning, the personalized anatomy detector includes

two groups of classifiers. While  encode patient-specific

characteristics,  contain population information applicable to this
specific patient. This information effectively remedies the limited variability from small
number of patient-specific training images.

2.3 Robust Surface Transformation
Once the population-based anatomy detectors are “personalized” by ILSM, they are used to
detect the corresponding prostate anatomical landmarks (Fig. 1(b)) in new treatment images.
To account for those erroneously detected landmarks (outliers), the relative positions of
landmarks in the planning image are served as a reference geometric model, and RANSAC
[9] algorithm is adopted to fit this model onto the detected landmarks for outlier removal
and re-prediction. Finally, based on the refined landmarks, the prostate surface delineated in
the planning image is transformed onto the treatment image space for fast localization.
Considering the fact that prostate shape changes slightly under radiotherapy as well as
computational efficiency, rigid transformation is used in our work.

3 Experimental Results
Data Description

Our experiment dataset consists of 349 prostate CTs. The prostate in each image is manually
delineated by an expert to serve as ground-truth. Each patient has 14 CT scans on average.
The typical image size of each CT scan is 512 × 512 × 60 with voxel size 1mm × 1mm ×
3mm. Five-fold cross validation is used to evaluate the algorithm performance. For each
fold, about 250 CT images are used to train the population-based detectors. τ in Alg. 2 is set
to allow at most 1 false positive in each patient-specific training image.
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Learning Approaches for Comparison
To illustrate the effectiveness of our learning framework, we first compare ILSM with other
four learning-based approaches. All of these methods localize the prostate through learning-
based anatomy detection with the same features, classifiers and cascade framework (as
described in section 2.1). Their differences lie at the training images and learning strategies,
which are shown in Table. 1. Note that for all patient-specific training images, artificial
transformations are applied to increase the variability. To emulate the real clinical setting,
for prostate localization in treatment day N + 1, we use previous N treatment images as
patient-specific training data (Fig. 1).

Table 1 compared the four learning-based approaches with ILSM on our dataset. Here,
“Acceptance Rate” denotes the ratio of images where an algorithm performs more accurate
than inter-operator variability (DSC = 0.81) [4]. These results can be accepted without
manual editing. We can see that ILSM achieves the best localization accuracy among them.
Besides, not surprisingly, by utilizing patient-specific information, all three methods (i.e.,
PPAT, MIX and IL) outperform POP. However, their performances are still inferior to
ILSM, which shows the effectiveness of ILSM.

Comparison with other CT Prostate Localization Methods
Our method can achieve localization accuracy at average DSC 0.87 and average surface
distance 2.02 mm. Table 2 shows the comparison of our method with other four state-of-the-
art methods, which employ deformable model (DM) [2][3] and registration [4][5]. Since
neither their data nor their executables are publicly available, we only cited the numbers
reported in their publications. Based on the reported performances, we achieve better
localization accuracy than Costa [2], Chen [3] and Foskey [4]. While Liao [5] is slightly
more accurate than ours, it takes much longer (228s vs. 4s) to localize the prostate. If the
prostate unexpectedly moves during localization, that algorithm has to be performed again.
Since the localization error of our method (DSC = 0.87 ± 0.06) is less than the inter-operator
variability (DSC = 0.81 ± 0.06) [4], our method in fact well satisfies both accuracy and
speed requirements of IGRT. For other applications requiring higher accuracy, our method
can be combined with sophisticated segmentation methods (e.g., deformable model [10]) for
better accuracy. The typical runtime for our method to localize the prostate is around 4
seconds (on an Intel Q6600 2.4GHz desktop with 4 GB memory). The offline training time
for incremental learning is about 30 minutes per landmark detector.

4 Conclusion
In this paper, we propose a novel learning scheme, namely incremental learning with
selective memory (ILSM), which can take both specificity and generalization into account
by leveraging population and patient-specific data. It is applied to extract the patient-specific
appearance information in IGRT for accurate prostate localization. Validated on 349 CT
images, our method can localize prostate accurately (mean DSC ~ 0.87) and fast (4
seconds).
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Fig. 1.
(a) Illustration of Image Guided Radiation Therapy. (b) Seven prostate anatomical
landmarks used in our study.
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Fig. 2.
The flowchart of our CT prostate localization method
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Fig. 3.
Illustration of cascade learning
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Fig. 4.
Inter- and intra-patient prostate shape and appearance variations
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Algorithm 1

Backward pruning algorithm

Input: D pop = {Ck
pop, k = 1, 2, ⋯ , K pop} - the population-based detector

        XP
pat

 - positive samples from the patient-specific training images

Output: Dbk - the tailored population-based detector

Init: k = Kpop, Dbk = Dpop.

while ∃ x ∈ XP
pat : D bk(x) = − 1 do

        D bk = D bk \ Ck
pop

    k = k – 1

end while

Kbk = k

return D bk = {Ck
pop, k = 1, 2, ⋯ , K bk}
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Algorithm 2

Forward learning algorithm

Input: D bk = {Ck
pop, k = 1, 2, ⋯ , K bk} - the tailored population-based detector

        XP
pat

 - positive samples from the patient-specific training images

        XN
pat

 - negative samples from the patient-specific training images

        τ - the parameter controlling the tolerance ratio of false positives

Output: Dpat - the patient-specific detector

Init: k = 1, Dpat = Dbk, X0 = {x ∣ x ∈ XN
pat ∪ XP

pat, D bk(x) = + 1}
while Xk−1 ∩ XN

pat ≥ τ do

    Train the classifier by minimizing the equation below

                        Ck
pat = arg minC {x ∣ x ∈ Xk−1 ∩ XN

pat, C(x) = + 1} s.t . ∀ x ∈ XP
pat, C(x) = + 1

        Xk = {x ∣ x ∈ Xk−1, Ck
pat(x) = + 1}, D pat = D pat ∪ Ck

pat

    k = k + 1

end while

Kpat = k – 1

return D pat = {Ck
pop, k = 1, 2, ⋯ , K bk} ∪ {Ck

pat, k = 1, 2, ⋯ , K pat}
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Table 1

Quantitative comparisons between ILSM and four learning-based methods. (POP: population-based learning;
PPAT: pure patient-specific learning; MIX: population and patient-specific mixture learning; IL: incremental
learning without backward pruning; ILSM: proposed incremental learning with selective memory.)

POP PPAT MIX IL ILSM

Training images
Population ✓ ✓ ✓ ✓

Patient-specific ✓ ✓ ✓ ✓

Learning strategies

Cascade Learning ✓ ✓ ✓ ✓ ✓

Backward Pruning ✓

Forward Learning ✓ ✓

Evaluation

Mean DSC 0.81 ± 0.10 0.84 ± 0.15 0.83 ± 0.09 0.83 ± 0.09 0.87 ± 0.06

Acceptance Rate 66% 85% 74% 77% 90%

Landmark Error 7.52mm 6.25mm 6.34mm 6.50mm 4.52mm
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Table 2

Quantitative comparison with other prostate localization methods based on DSC, sensitivity (Sen.), positive
predictive value (PPV.) and speed (seconds)

Method
DM Registration

ILSM
Costa[2] Chen[3] Foskey[4] Liao[5]

image # 16 185 65 330 349

patient # n/a 13 5 24 25

Mean DSC n/a n/a 0.84 0.90 0.87

Median Sen. 0.79 0.84 n/a 0.89 0.89

Median PPV. 0.86 0.87 n/a 0.89 0.88

Speed (sec.) n/a 60 750 228 4
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