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Abstract
Epidemiological studies suggest that height and schizophrenia risk are inversely correlated. These
findings might arise because i) height and schizophrenia share genetic variants and ii) the effects
of these shared variants are in opposite direction for the two traits. We use genome wide
association data to empirically evaluate these hypotheses. We find that variants which impact on
height and risk for schizophrenia are distributed across several genomic regions and the directions
of effect vary, some consistent and others inconsistent with the direction expected from the
phenotypic data. Moreover, signals that were in and not in accord with the phenotypic data
aggregated in distinct biological pathways.
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1. Introduction
Schizophrenia (SCZ) is a severe psychiatric disorder with largely unknown etiology and a
lifetime prevalence of 4–5 per 1000 (McGrath et al., 2008). However, the characteristics of
subjects with SCZ have been extensively studied. Clinical and epidemiological studies
dating back to the beginning of the 20th century suggest that there is a link between height
(H) and SCZ (Burchard, 1916; Gunnell et al., 2005; Kemali et al., 1976; Nopoulos et al.,
1998; Perrin et al., 2007; Zammit et al., 2007). The largest investigation, a study of 720,000
Swedish men and women, found an inverse relationship between height (H) and SCZ
(Gunnell et al., 2005). The reported hazard ratio is substantial: 0.8 for every 10cm height
increase. These findings were later confirmed by the largest study to date to look at the
relationship between risk to SCZ and H, i.e. a Swedish epidemiological study of 1.35
million males which included the males from the study described above (Zammit et al.,
2007). Coupled with the high heritability of SCZ (Sullivan et al., 2003) and H (Yang et al.,
2010), these epidemiological findings suggest that i) H and SCZ share common genetic
variants and ii) genetic variants which increase H are likely to decrease SCZ risk, i.e. the
effect of the variants on the two phenotypes is in opposite directions (i.e. discordant).
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To evaluate the discordance hypothesis for common genetic effects of H and SCZ, we need
a statistical method to assess the genetic overlap between any two phenotypes. One possible
approach is to look at the overlap of significant findings for genome-wide association
studies (GWASs) of these phenotypes. However, GWASs often fail to provide many
significant signals, even more so for psychiatric disorders (Ripke et al., 2011; Sklar et al.,
2011; Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium,
2012). Thus, because, with current sample sizes, many positive signals are likely to exhibit
p-values at only “suggestive” levels, we can increase the power to detect genetic overlap
pathways by analyzing the shared suggestive signals. The definition for suggestive signals is
subjective: it requires the p-values to fall below a reasonably small threshold. However, the
findings from pathway analyses are sensitive to the choice of p-value threshold. For
instance, in the paper describing ALIGATOR software (Holmans et al., 2009), authors noted
that increasing the p-value threshold from 10−4 to 10−2 improved the significance of
different bipolar disorder pathways. Consequently, an objective, data driven method to set
the p-value threshold for suggestive signals would be a useful tool in uncovering causal
pathways for any phenotype/overlap of phenotypes.

In this paper, we use available GWAS data to obtain the likely overlapping genetic variants/
pathways of H and SCZ. This goal is achieved by i) using a novel data driven method to
obtain suggestive signals for each phenotype, ii) establishing the existence of a statistically
significant overlap between H and SCZ suggestive signals and iii) performing pathway
analyses for these overlapping suggestive signals. We use pathway analysis results to make
inferences regarding possible SCZ etiologies.

2. Methods
To estimate the genetic overlap between H and SCZ, we use the normally distributed
summary statistics, i.e. Z-scores, from the largest meta-analyses available (see Web
Resources) for these traits (characteristics of the two meta-analyses are detailed in the
Supplementary Material, henceforth abbreviated SM). For SCZ, the meta-analyses were
performed by the Psychiatric Genetic Consortium (Ripke et al., 2011). The H meta-analysis
was performed by the GIANT consortium (Lango et al., 2010).

To obtain the genetic overlap between two phenotypes, e.g. H and SCZ, we retain SNPs
which harbor suggestive GWAS signals for both phenotypes. To objectively select the
suggestive signal SNPs for each trait, we use a novel data-driven method (Bacanu and
Kendler, 2012). This method utilizes a two-step procedure. First, an original shrinkage
method is employed to accurately estimate the means of the GWAS Z-scores (see SM).
Second, for a desirable sensitivity–specificity profile, we select as suggestive only SNPs
having an estimated (adjusted) mean (of the Z-scores) above a threshold of three. (Given
that the estimated means are obtained by shrinking the GWAS Z-scores toward zero, the
original Z-scores often have a magnitude much larger than three.) The genetic overlap of the
two phenotypes consists of SNPs which are deemed suggestive for both traits (see Table S1
for relevant characteristics of these signals).

3. Results
The number of suggestive SNPs in the overlap of the two traits was 51 when the expected
number under a random sharing was estimated to be 21.32. However, not all these overlap
SNPs are independent. It is more useful to report the number of quasi-independent signals,
e.g. similar to the “clumped” (r2 ≤ 0.25) SNPs from the PGC paper (Ripke et al., 2011).
Assuming i) 117,000 clumped SNPs, as reported in Ripke et al. (2011) and ii) the fractions
of suggestive signals for the two phenotypes being, as estimated from our data (Table S1),
0.006 (H) and 0.0029 (SCZ), the expected number of clumped SNPs under independence is
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estimated to be 2.03. The number of clumped SNPs in the overlap, as obtained using NIEHS
tag SNPs (see Web Resources), was estimated to be 9. Assuming a Poisson distribution for
the number of overlap clumped SNPs, the observed number (9) is significantly larger (p =
2.6 × 10−4) than the number expected (2.03) under the assumption of a random sharing of
suggestive signals between the two phenotypes. Thus, our results strongly suggest that most
overlap signals are likely to be true positive associations rather than chance findings. The
large fraction of the true positives makes it possible to uncover the relevant molecular
pathways via a pathway analysis, as detailed later on.

There are 6 distinct genomic regions that contain variants that impact on both phenotypes
(Table 1). For three of these regions, as predicted by the epidemiological studies, the
directions of genetic effects on the two phenotypes are discordant. These regions appear to
affect the overall functioning of individual cells or of the entire organism, e.g. transcription
regulation and immune response. Perhaps surprisingly, the other three regions show
positively correlated or concordant effects, i.e. genetic effects for H and risk for SCZ are in
the same direction. In fact, one such region (chromosome 3) exhibited the strongest
minimum signal for the two phenotypes. These concordant regions seem to change the
balance between cell proliferation and cell upkeep/maintenance.

To uncover the underlying molecular mechanisms for these overlapping signals, we used
both Grail and Ingenuity Pathway Analysis (IPA) (www.ingenuity.com) to perform separate
pathway analyses for SNPs with concordant and discordant effects on H and SCZ. Signals of
discordant effects seem to be enriched in immune and cell function pathways (Table S2 for
Grail and Fig. S1 for IPA). Overlapping SNPs with concordant effects on the two
phenotypes appear to aggregate in cell division/proliferation pathways (Table S3 and Fig.
S2).

4. Discussion
Classic epidemiological studies have found that H and SCZ risk are negatively correlated.
Based on this fact, and given the high heritability of both traits, H and SCZ are likely to
have mostly overlapping genetic causes of discordant effect. Our analyses confirmed that H
and SCZ are likely to have overlapping genetic causes. However, their overlapping genetic
regions seem to be evenly divided between those which have discordant and concordant
genetic effects.

Our analyses suggest that SNPs with discordant and concordant effects on H and SCZ
belong to distinct pathways which, in turn, might point to different etiologic paths to SCZ.
SNPs with discordant effects on SCZ and H fall into pathways affecting the organism/cell
fitness, e.g. immune system and DNA/chromatin packing. SNPs with concordant effects on
H and SCZ aggregate into pathways likely affecting the equilibrium between cell growth
and maintenance, e.g. cell proliferation and tumor suppression.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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