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Abstract
In this paper we evaluate the accuracy of warping of neuro-images using brain deformation
predicted by means of a patient-specific biomechanical model against registration using a
BSpline-based free form deformation algorithm. Unlike the Bspline algorithm, biomechanics-
based registration does not require an intra-operative MR image which is very expensive and
cumbersome to acquire. Only sparse intra-operative data on the brain surface is sufficient to
compute deformation for the whole brain. In this contribution the deformation fields obtained
from both methods are qualitatively compared and overlaps of Canny edges extracted from the
images are examined. We define an edge based Hausdorff distance metric to quantitatively
evaluate the accuracy of registration for these two algorithms. The qualitative and quantitative
evaluations indicate that our biomechanics-based registration algorithm, despite using much less
input data, has at least as high registration accuracy as that of the BSpline algorithm.
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1. INTRODUCTION
A novel partnership between surgeons and machines, made possible by advances in
computing and engineering technology, could overcome many of the limitations of
traditional surgery. By extending the surgeons’ ability to plan and carry out surgical
interventions more accurately and with less trauma, Computer-Integrated Surgery (CIS)
systems could help to improve clinical outcomes and the efficiency of health care delivery.
CIS systems could have a similar impact on surgery to that long since realized in Computer-
Integrated Manufacturing (CIM).30

Corresponding Author: Name: Winthrop Professor Karol Miller, Address: School of Mechanical and Chemical Engineering, The
University of Western Australia (M050), 35 Stirling Highway, Crawley-Perth WA 6009, Australia, Phone: (+61 8) 6488 8545, Fax:
(+61 8) 6488 1024, karol.miller@uwa.edu.au.

NIH Public Access
Author Manuscript
Ann Biomed Eng. Author manuscript; available in PMC 2014 November 01.

Published in final edited form as:
Ann Biomed Eng. 2013 November ; 41(11): 2409–2425. doi:10.1007/s10439-013-0838-y.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our overall objective is to significantly improve the efficacy and efficiency of image-guided
neurosurgery for brain tumors by incorporating realistic computation of brain deformations,
based on a fully non-linear biomechanical model, in a system to enhance intra-operative
visualization, navigation and monitoring. The system will create an augmented reality
visualization of the intra-operative configuration of the patient’s brain merged with high
resolution pre-operative imaging data, including functional magnetic resonance imaging and
diffusion tensor imaging, in order to better localize the tumor and critical healthy tissues.

In this paper we are especially interested in image-guided surgery of cerebral gliomas.
Neurosurgical resection is the primary therapeutic intervention in their treatment.2 Near-total
surgical removal is difficult due to the uncertainty in visual distinction of gliomatous tissue
from adjacent healthy brain tissue. More complete tumor removal can be achieved through
image-guided neurosurgery that uses intra-operative MRIs for improved visualization.46 The
efficiency of intra-operative visualization and monitoring can be significantly improved by
fusing high resolution pre-operative imaging data with the intra-operative configuration of
the patient’s brain. This can be achieved by updating the pre-operative image to the current
intra-operative configuration of the brain through registration. However, brain shift occurs
during craniotomy (due to several factors including the loss of cerebrospinal fluid (CSF),
changing pressure balances due to the impact of physiological factors and the effect of
anesthetics, and mechanical effects such as the impact of gravity on the brain tissue) and
hence should be accounted for while registering the images.

Intra-operative MRI scanners are very expensive and often cumbersome. Hardware
limitations of these scanners make it infeasible to achieve frequent whole brain imaging
during surgery. The pre-operative MRI must be updated frequently during the course of the
surgical intervention as the brain is changing. An alternative approach is to acquire very
rapid sparse intra-operative data and predict the deformation for the whole brain. To achieve
this we developed a suite of algorithms based on brain tissue biomechanics for real-time
estimation of the whole brain deformation from sparse intra-operative data.18, 20, 21

The aim of this paper is to demonstrate that our new algorithms, due to their utilization of
fundamental physics of brain deformation, and their efficient realization in software, should
enable at least as accurate registration of high quality pre-operative images onto the intra-
operative position of the brain, as is now possible with intra-operative MRI and state-of-the-
art non-rigid registration algorithm. We compare the accuracy of registration results
obtained from two algorithms – (1) biomechanics-based Total Lagrangian Explicit
Dynamics (TLED) suite of algorithms18, 20, 21, that uses only the intra-operative position of
the exposed surface of the brain; and (2) BSpline-based free form deformation (FFD)
algorithm37 as implemented in 3D Slicer (www.slicer.org), that uses an intra-operative MRI
as a target image. We present results for thirteen neurosurgery cases†, sourced from a large
retrospective database of glioma patients available at the Children’s Hospital in Boston.
These cases were documented with carefully acquired T1-weighted MRIs (resolution of
0.86×0.86×2.5 mm3) on a 0.5 T interventional scanner, and they represent different
situations which may occur during surgery as characterized by tumors located in different
parts of the brain. The intra-operative deformations for these thirteen cases ranged between
3 mm to 10 mm.

The accuracy of these algorithms is compared qualitatively by viewing and exploring the
calculated deformation fields and overlap of edges detected from MRI images. In addition,
the registration error for each algorithm is also estimated quantitatively by means of a novel
edge-based Hausdorff distance measure.6

†IRB approval was acquired for the use of the anonymised retrospective image database for this study.
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2. MATERIALS AND METHODS
2.1. Non-rigid pre-operative to intra-operative registration using the BSpline algorithm

Free form deformation (FFD) is a powerful tool for modeling 3D deformable objects and
widely used in image morphing25 and scattered data interpolation.26, 38 The basic idea of
FFD is to deform an object by manipulating the underlying grid of control points.37 In order
to smoothly propagate the user-specified values at the control points throughout the domain
of the image, a BSpline based FFD algorithm was proposed by Lee et al.26 The BSpline
algorithm was later adapted by Rueckert et al.37 for non-rigid registration of medical
images. Since then the BSpline algorithm has become one of the most widely used non-rigid
registration algorithm for medical images.22-24, 36-39

Let us denote the domain of the image volume as Ω = {(x, y, z) | x ∈ [0, X), y ∈ [0,Y), z ∈ [0,
Z)}. Let also denote Φ as a nx × ny × nz discrete grid of control points with uniform spacing
δ, overlaid on the domain Ω. If φi,j,k is a control point on the lattice Φ at location (i, j, k),
where {i, j, k} ∈ {[−1, nx +1], [−1, ny +1], [−1, nz +1]}, then, the deformation at any point
(x, y, z) within Ω can be written as a 3D tensor product of the 1D cubic BSplines:37

(1)

where [x] represents the highest integer lower than x, , ,

, , , , and Bl represents the lth basis
function of the BSpline,

(2)

The registration parameters are determined by optimizing a cost function consisting of a
similarity criterion (for example mutual information), which measures the degree of
alignment between the fixed and moving image, and a regularization term to obtain a
smooth transformation,37

(3)

where λ is a weighting parameter that defines the trade-off between the alignment of images
and the smoothness of transformation. IF and IM represent the intensities of the fixed and
moving images. Cubic BSplines have compact support, therefore a change in a control point
only affects the neighborhood of this control point. A large spacing of control points allows
modeling of global non-rigid deformations, while a finer grid of control points allows
modeling highly local deformations. The resolution of control point grid also determines the
number of degrees of freedom of the transformation, and consequently, the computational
complexity.

The basic components of an image-based registration algorithm8, used also by BSpline
based methods, are presented in Fig. 1. The moving (pre-operative) image (M) is
transformed using the chosen transformation T (in this case the displacements of control
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points) to obtain the transformed image T(M). The transformed image is then compared
with the fixed (intra-operative) image (F) based on a chosen similarity measure S. This
similarity metric is used by an optimizer to find the parameters of the transform that
minimizes the difference between the moving and fixed image. Therefore an optimization
loop is required, which changes the transform parameters to find the best agreement between
the fixed and moving image.

In this paper we choose the robust, reliable and commonly used implementation of the
BSpline algorithm in 3D Slicer (www.slicer.org). The use of this widely available
implementation (over 68000 downloads of the latest version, Slicer 4) will facilitate
evaluation of our results by other researchers. Below, the implementation of BSpline
algorithm in 3D Slicer is described briefly. A number of factors influencing the registration
results for image guided-neurosurgery are also discussed in the following subsection.

Estimation of probability densities—The most commonly used similarity measure in
multi-modal non-rigid registration is mutual information. Calculation of mutual information
between the fixed and the transformed moving image requires the values of the marginal and
joint probability densities.3 These probability densities are usually not readily known;
therefore they must be estimated from discrete image data. In 3D Slicer the probability
densities are estimated using Parzen windows.41 In this scheme, the densities are constructed
by taking limited number of intensity samples Si from the images and super-imposing a
kernel function K centered on Si.

Implementation of similarity measure—The similarity measure used in 3D Slicer
BSpline registration module is defined by Mattes et al.28 In this implementation, the joint
and marginal probability densities are estimated from a set of intensity samples drawn from
the images. A zero-order BSpline kernel is used to estimate the probability density function
(PDF) of the fixed image intensities. On the other hand, a cubic BSpline kernel is used to
estimate the moving image PDF.29

2.1.1 BSpline registration for image-guided neurosurgery—In the case of image-
guided neurosurgery where the pre-operative image is required to be registered with the
intra-operative (after craniotomy is performed) image, the Bspline registration algorithm
faces a number of challenges. First of all, the large difference in intensities between the pre-
operative and intra-operative MRI often influences the registration result. Intensity
normalization between the source and target image is required to achieve decent registration
results. Secondly, the presence of the skull in the craniotomy area of the pre-operative image
makes the registration process difficult and can induce large error in the registration. In
order to achieve good alignment the skull must be stripped from both the pre- and intra-
operative images. In addition, selecting an appropriate set of parameters (density of control
point grid, number of spatial samples and number of histogram bins) for a particular
registration case requires substantial training and experience. Without performing proper
intensity normalization and setting appropriate control point grid density, it is extremely
difficult to obtain accurate results using a purely image-based, non-rigid registration
algorithm such as BSpline. Therefore, to determine the effects of the intensity normalization
steps and control point mesh density on the registration results, we conducted a parametric
study of craniotomy-induced brain shift. The results of this parametric study are presented
below.

Effect of control point mesh density: Fig. 2 shows the effect of control point mesh density
on the registration result. In this figure the pre-operative and intra-operative contours are
overlaid on an axial slice. As the control point mesh density is increased, the alignment of
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brain contours improves, however, the alignment of ventricle contours decreases. At a 20 ×
20 × 20 control grid (Fig. 2c) the alignment of brain contours is very good, but the alignment
of ventricles is poor. This confirms a well-known fact that unlike for biomechanical
registration algorithms that use the principles of mechanics governing the organ deformation
and require parameters with clear physical (measurable) meaning, optimization of the
registration parameters of BSpline and other algorithms that rely solely on image processing
techniques is numerically challenging. The BSpline registration using 20×20×20
regularization grid version has many more parameters than the one using 10×10×10 grid and
tends to be more numerically unstable. Therefore, we used 10×10×10 grid to conduct
registration of pre- and intra-operative MRIs for thirteen neurosurgical cases using the
BSpline algorithm.

Effect of intensity normalization: In the pre-processing step the intensity of the images
was normalized through bias field correction followed by histogram equalization. The N4
algorithm43 was used for non-uniform bias field correction which assumes a Gaussian model
for the bias field and uses a multi-resolution scheme for correction. Although intensity
normalization does not affect the alignment of brain contours much, it significantly
improves the alignment of the ventricle contours (Fig. 3b).

In order to produce registration results using the BSpline algorithm we estimated the
marginal and joint probabilities using 50 histogram bins and 50000 spatial samples. Prior to
registration all pre-operative/intra-operative image pairs were normalized using histogram
equalization and N4 bias field correction. A 10×10×10 grid was used to obtain the
transform. For such low density grid it is advantageous to set regularization parameter λ to
zero.37,22

The relative performance of BSpline and biomechanics-based registration against rigid
registration – a technique that is currently available to patients, is given in Fig. 4.

2.2. Biomechanics-based prediction of deformations using only the information about the
position of the exposed brain surface

Unlike the BSpline registration algorithm, biomechanics-based registration methods do not
require an intra-operative image to update the pre-operative image (see Fig. 5). The pre-
operative image is segmented first to extract the anatomical features of interest. Based on
this segmentation (which can be acquired days before the surgery) a computational grid
(mesh) is generated. A biomechanical model is defined further by incorporating boundary
conditions (contact between the skull and the brain for example) and material properties for
each tissue types. The model is completed by defining the loading conditions that are
generally obtained from sparse intra-operative information (such as surface deformation in
the craniotomy area). Once the model is constructed, a solver (finite element or meshless) is
used to compute the transform, which is then applied to warp the pre-operative image. The
warping procedure requires the mapping of points in the moving (pre-operative) image to
the new locations in the transformed image. The intensity of the points in the transformed
image is determined by interpolating intensities of the corresponding points in the moving
image. In the following subsections the non-linear finite element modeling procedure
proposed by Joldes et al.18 and Wittek et al.48 to predict the intra-operative brain shift is
briefly described.

2.2.1. Construction of finite element mesh for patient-specific brain models—
A three dimensional (3D) surface model of each patient’s brain was created from segmented
pre-operative magnetic resonance image (MRI). Following our previous studies on
predicting craniotomy-induced deformations within the brain20, 21, 47-49, in this
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investigation, different material properties were assigned to the parenchyma, tumor and
ventricles. Accordingly, to obtain the information for building the computational grids
(finite element meshes), the parenchyma, tumor and ventricles were segmented using the
region growing algorithm implemented in 3D slicer, followed by manual correction.

The meshes were constructed using low-order elements (linear tetrahedron or hexahedron)
to meet the computation time requirement. To prevent volumetric locking the tetrahedral
elements with average nodal pressure (ANP) formulation were used.17 The meshes were
generated using IA-FEMesh7 and HyperMesh (commercial FE mesh generator by Altair of
Troy, MI, USA). A typical mesh (Case 1) is shown in Fig. 6. This mesh consists of 14,447
hexahedral elements, 13563 tetrahedral elements and 18806 nodes. Each node in the mesh
has three degrees of freedom.

2.2.2. Displacement loading—The models were loaded by prescribing displacements on
the exposed part (due to craniotomy) of the brain surface. As this requires only replacing the
brain-skull contact boundary condition with prescribed displacements, no mesh modification
is required at this stage. At first the pre-operative and intra-operative coordinate systems
were aligned by rigid registration. Then the displacements at the mesh nodes located in the
craniotomy region were estimated with the interpolation algorithm we described in a
previous publication.19

As explained in our papers34, 47, for problems where loading is prescribed as forced motion
of boundaries, the unknown deformation field within the domain depends very weakly on
the mechanical properties of the continuum. This feature is of a great advantage in
biomechanical modeling where there are always uncertainties in patient-specific properties
of tissues.33

2.2.3. Boundary conditions—The stiffness of the skull is several orders of magnitude
higher than that of the brain tissue. Therefore, in order to define the boundary conditions for
the unexposed nodes of the brain mesh, a contact interface14 was defined between the rigid
skull model and the deformable brain. The interaction was formulated as a finite sliding,
frictionless contact between the brain and the skull. The effects of assumptions regarding the
brain boundary conditions on the results of prediction of deformations within the brain have
been analyzed and discussed49, 50 before.

2.2.4. Mechanical properties of the intracranial constituents—If geometric non-
linearity is considered47, the predicted deformation field within the brain is only weakly
affected by the constitutive model of the brain tissue. Therefore, for simplicity a hyper-
elastic Neo-Hookean model was used.15 The Young’s modulus of 3000 Pa was selected for
parenchyma.31 The Young’s modulus for tumor was assigned a value two times larger than
that for the parenchyma, keeping it consistent with the experimental data of Sinkus et al.40

As the brain tissue is almost incompressible, a Poisson’s ratio of 0.49 was chosen for the
parenchyma and tumor.49 The ventricles were assigned properties of a very soft
compressible elastic solid with a Young’s modulus of 10 Pa and Poisson’s ratio of 0.1.49

2.2.5. Solution algorithm—A suite of efficient algorithms for integrating the equations
of solid mechanics and its implementation on Graphics Processing Unit for real-time
applications are described in detail by Joldes et al.18, 20 The computational efficiency of this
algorithm is achieved by using - 1) Total Lagrangian (TL) formulation32 for updating the
calculated variables; and 2) Explicit Integration in the time domain combined with mass
proportional damping. In the TL formulation, all the calculated variables (such as
displacements and strains) are referred to the original configuration of the analyzed
continuum.16 The decisive advantage of this formulation is that all derivatives with respect
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to spatial coordinates can be pre-computed. The Total Lagrangian formulation also leads to
a simplification of material law implementation as these material models can be easily
described using the deformation gradient.18

The integration of equilibrium equations in the time domain was performed using an explicit
method. When a diagonal (lumped) mass matrix is used the discretised equations are
decoupled. Therefore, no matrix inversions and iterations are required when solving
nonlinear problems. Application of explicit time integration scheme reduces the time
required to compute the brain deformations by two orders of magnitude in comparison to
implicit integration typically used in commercial finite element codes like ABAQUS.1 This
algorithm is also implemented on GPU (NVIDIA Tesla C1060 installed on a PC with Intel
Core2 Quad CPU) for real-time computation20 so that the entire model solution takes less
than four seconds on commodity hardware.

The application of the biomechanics-based approach does not require any parameter tuning,
and the results presented in Section 3 demonstrate the predictive (rather than explanatory)
power of this method.

2.3. Methods for evaluation of registration accuracy
2.3.1. Qualitative evaluation
Deformation field: The physical plausibility of the registration results are verified by
examining the computed displacement vector at voxels of the pre-operative image domain.
The deformations are computed at voxel centers only for a region of interest near the
tumour.

Overlap of edges: To obtain a qualitative assessment of the degree of alignment after
registration, one must examine the overlap of corresponding anatomical features of the intra-
operative and registered pre-operative image. For this purpose, tumors and ventricles in both
registered pre-operative and intra-operative images can be segmented and their surfaces can
be compared.48 Image segmentation is time consuming, subjective, not fully automated and
not suitable for comparing a large number of image pairs.5 Therefore in this paper Canny
edges4 are used as feature points. Edges are regarded as useful and easily recognizable
features, and they can be detected using techniques that are automated and fast. Canny edges
obtained from the intra-operative and registered pre-operative image slices are labeled in
different colors and overlaid (as shown in Section 3.1.2).

2.3.2. Quantitative evaluation
Edge-based Hausdorff distance: The Hausdorff distance is a popular measure to calculate
similarities between two images.9 It is defined based on two sets of feature points, A and B.
We begin with a definition of the traditional point-based Hausdorff distance (HD) between
two intensity images I and J. Let I and J be the binary edge images derived from I and J
respectively, and A = {a1, ⋯, an} and B = {b1, ⋯, bn} are the set of non-zero points
corresponding to the non-zero pixels on the edge images. The directed distance between
them h(A, B) is defined as the maximum distance from any of the points in the first set to
the closest point in the second one:

(4)
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(5)

The HD between the two sets H(A, B) is defined as the maximum of these two directed
distances:

(6)

Several improvements of the directed distance have been proposed.52 One of them is the
percentile Hausdorff distance, which is very useful for identifying outliers. The percentile
directed distance is defined as:

(7)

where P is the Pth percentile of .

The above definition of Hausdorff distance sets an upper-limit on the dissimilarities between
two images. It implies that the value indicated by Eq.6 generally comes from a single pair of
points. The other point pairs have a distance less than or equal to that value. Such a measure
is very useful for template based image matching. However, while measuring the
misalignments between two medical images, it is desirable to calculate the distance between
local features (in the case of brain MRI considered here, the automatically detected Canny
edges) in two images that correspond to each other. To calculate such a distance we define
the edge-based Hausdorff distance.

We define directed distance between two sets of edges as

(8)

where  and  are two sets of edges.

The quantity  in Eq. 8 is nothing but the point based Hausdorff distance between
two point sets M = {m1, ⋯, mp} and T = {t1, ⋯, tq} representing edges  and 
respectively,

(9)

Now the edge-based Hausdorff Distance is defined as

(10)

Similar to the percentile point-based Hausdorff distance, one can construct a percentile
edge-based Hausdorff distance:
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(11)

This percentile edge-based Hausdorff distance (Eq. 11) is not only useful for removing
outlier edge-pairs, but also can be interpreted in a different way. The Pth percentile
Hausdorff distance, ‘D’, between two images means that ‘P’ percent of total edge pairs have
a Hausdorff distance below D. Therefore, instead of reporting only one Hausdorff distance
value (using Eq.10), Eq.11 can be used to report Hausdorff distance values for different
percentiles. A plot of the Hausdorff distance values at different percentiles (see Section 3.2)
immediately reveals the percent of edges that have misalignments below an acceptable error.

In order to obtain these curves of Hausdorff distance values at different percentiles, each
pre-operative/intra-operative image pair was cropped into a common region-of-interest
(ROI) which encloses the tumor. These ROI sub-volumes were then super-sampled (0.5 mm
× 0.5 mm × 0.5 mm) to obtain isotropic voxels. This was done to improve the precision of
Canny edge detection4 used in the registration accuracy evaluation process. The edge-based
Hausdorff distance (HD) was used to calculate the misalignment between slices along both
axial and sagittal directions. The directed distances for all edge pairs (see Eq. 8) were
recorded and the edge-based Hausdorff distance values at different percentiles of directed
distances were plotted.

Pre-processing - Outlier Removal: Although edges are supposed to be representative of
consistent features present in two separate images, outliers are very common if the intensity
ranges of the images are different. It is often the case in multi-modal image registration.
Therefore, pre-processing of the extracted edges is required to remove outliers before the
edge-based Hausdorff distance could be calculated. We used a pre-processing step called the
“round-trip consistency” procedure6 that removes the pixels of one image that do not
correspond to the other image.

3. RESULTS
3.1. Qualitative evaluation of registration results

3.1.1. Deformation field—The deformation fields predicted by the biomechanical model
and obtained from the BSpline transform are compared in Fig. 7. These deformation fields
are three dimensional. However, for clarity, only arrows representing 2D vectors (x and y
components of displacement) are shown overlaid on undeformed pre-operative slices. Each
of these arrows represents the displacement of a voxel of the pre-operative image domain. In
general the displacement fields calculated by the BSpline registration algorithm are similar
to the predicted displacements by the biomechanical model at the outer surface of the brain,
but in the interior of the brain volume the displacement vectors differ in both magnitude and
direction. In three of the cases (cases 8, 11 and 12) the difference in the displacement fields
is smaller compared to the other cases.

3.1.2. Overlap of Canny edges—From Fig. 8 we can see that misalignment between the
edges detected from the intra-operative images and the edges from the pre-operative images
updated to the intra-operative brain geometry are much lower for the biomechanics-based
warping than for BSpline registration. The edges obtained from the images warped with
both registration algorithms have higher similarity for cases 8, 11 and 12 than the other
cases. This is due to the fact that the deformation fields predicted using the biomechanical
model and BSpline registration have higher similarity for these three cases. For instance,
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large misalignments between the edges obtained from the intra-operative image and edges
from the pre-operative image registered using BSpline algorithm can be observed for Case
2. For this case there was a large intra-operative brain shift (8mm) and the deformation field
obtained using BSpline algorithm significantly differs from deformation predicted using the
biomechanical model. This is an indication that the biomechanics-based warping may
perform more reliably than the BSpline registration algorithm if large deformations are
involved.

3.2. Quantitative evaluation of registration results
The plot of percentile edge-based Hausdorff distance (HD) versus the corresponding
percentile provides an estimation of the percentage of edges that were successfully
registered in the registration process. As the accuracy of edge detection is limited by the
image resolution, an alignment error smaller than two times the original in-plane resolution
of the intra-operative image (which is 0.86 mm for the thirteen cases considered) is difficult
to avoid.46 Hence, for the thirteen clinical cases analyzed here, we considered any edge pair
having HD value less than 1.7 mm to be successfully registered. This choice is consistent
with the fact that it is generally considered that manual neurosurgery has an accuracy of no
better than 1 mm.35, 46 It is obvious from Fig. 9 and 10 that biomechanical warping was able
to successfully register more edges than the BSpline registration for all thirteen cases.

The percentage of edges successfully registered by the two registration algorithms (i.e.
warping using the biomechanical model and the BSpline registration) for each analyzed case
is listed in Table 1. The percentage of successfully registered edges is slightly higher for
image warping using biomechanical model than that for BSpline registration (with an
exception for Case 7). It can be noted that the Hausdorff distance values in the sagittal plane
are generally higher than those in the axial plane. This is most likely caused by an
interpolation artifact (due to the poor resolution in the sagittal plane) introduced in the re-
slicing process.

For all thirteen cases, the percentile edge-based HD curves tend to rise steeply around 90th

percentile. Hence, it can be safely assumed that most edge pairs that lie between 91 and 100
percentile do not have any correspondence (possible outliers). The 90th percentile HD values
for all cases are listed in Table 2.

4. DISCUSSION
From the results presented in Section 3, it is evident that the application of intra-operative
deformation predicted a using patient-specific biomechanical model18, 20, 48 to warp pre-
operative images ensures at least as high registration accuracy as that of 3D Slicer’s BSpline
registration module. Biomechanical models are especially effective in neurosurgery cases
where intra-operative brain shift is large (Case 2 for instance). Another distinctive advantage
of using the biomechanical model is that it does not need the intra-operative image at all to
compute deformation. Only the displacement of a limited number of points on the exposed
intra-operative brain surface in the craniotomy area is required. For image warping using the
intra-operative brain deformation predicted using a patient-specific biomechanical model,
the required number of intra-operative data points is reduced by four orders of magnitude
compared to purely image-based registration, from about 106 to about 102. The most
appealing and convenient way of acquiring the current, intra-operative position of the
exposed surface of the brain, that we need to define the loading of our models, is the use of
the tracking pointer tool available within the commonly-used Medtronic’s Stealth
neuronavigation system that enables the surgeon to select (by touching) a number of points
on the brain surface (technical details are available online at http://www.na-mic.org/Wiki/
index.php/Stealthlink_Protocol) and determine their positions in the images using software
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tools implemented in 3D Slicer.42, 44, 45 Stereo-vision using cameras or laser range scanners
installed in an operating theatre are validated alternatives for capturing the displacements of
the cortical surface. The examples include the studies by Ji et al.10, 11

Intra-operative MRIs, used in this study, are not necessary for aligning the patient’s intra-
operative position with the pre-operative image. Rigid registration can be performed using
e.g. the ExacTrac system12 available in BrainLAB (BrainLAB AG, Germany,
www.brainlab.com) or Stealth neuronavigation system from Medtronic.

We chose the widely used BSpline implementation available in 3D Slicer. The purpose of
this study is to show that state-of-the-art biomechanical registration algorithms (that require
only very sparse information about the intra-operative brain geometry) can facilitate
registration accuracy similar to that provided by commonly used algorithms that rely solely
on image processing techniques (and therefore require intra-operative MRI). The choice of
the robust and commonly used implementation of BSpline algorithm in 3D Slicer fits this
purpose very well. Moreover, the use of widely available and reliable implementation
facilitates the evaluation of our results by other researchers. To strengthen the conclusions of
this work an alternative implementation and alternative algorithms for image-based
alignment should be evaluated in future work.

The construction of the finite element mesh requires segmentation of pre-operative
neuroimages. The difficulties associated with segmentation of tumors when building finite
element meshes for biomechanical models of the brain were discussed in our previous
study.48 It is worth noting, however, that the analysis of sensitivity of computed brain
deformations to the complexity of the biomechanical models used27 demonstrates that even
assigning exactly the same material properties to the tumor as to the rest of the parenchyma,
therefore avoiding tumor segmentation entirely, leads to only minimal (and for practical
purposes negligible) deterioration in the accuracy of predicted displacements.

This strongly suggests that accuracy of prediction of the intra-operative deformations within
the brain obtained using our biomechanical models are, for practical purposes, insensitive to
segmentation errors. This is reinforced by our recent results51 indicating that the accuracy of
such predictions only slightly (approximately 0.1 mm) decreases if, in the process of
building computational grids and assigning mechanical properties for the models,
segmentation is replaced with fuzzy tissue classification (that does not provide clearly
defined boundaries between different anatomical structure within the organ and tends to
introduce local tissue misclassification).

Modeling of resection is a very challenging problem of computational biomechanics due to
discontinuities and large local strains caused by tissue removal/separation. Such
discontinuities alter the topology of finite element meshes while large local strains lead to
mesh distortion and deterioration of the solution accuracy. To address these challenges, in
our recent studies13 we proposed a meshless algorithm (in which the analysed continuum/
body organ is discretised using a cloud of points) for surgical dissection simulation.

We believe that the results presented in this paper have the potential to significantly advance
the way imaging is used to guide the surgery of brain tumors. Presently, our experience has
demonstrated the great utility of intra-operative MRI in ensuring complete resection,
particularly of low grade tumors. However, this often comes at the expense of significantly
longer operating times, as well as being resource intense. For example, the decision to
acquire a new volumetric image requires expertise from technologists, radiologists, and
others. At hospitals that have at their disposal the intra-operative MRI, the ability to know
when imaging is needed, as well as the potential reduction in the number of imaging
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acquisitions promises to make intra-operative MRI a much more effective and efficient
technique.

Even more importantly, we believe that the use of comprehensive biomechanical
computations in the operating theatre may present a viable and economical alternative to
intra-operative MRI. The brain deformation modeling algorithms proposed here may lead
the way towards allowing updated representations of the brain position even without intra-
operative MRI and therefore bring the success of image-guided neurosurgery to a much
wider population of sufferers.
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FIGURE 1.
Basic components of a general image-based registration process.
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FIGURE 2.
Effect of control point mesh density on registration result: (a) Mesh Density 5 × 5 × 5, (b)
Mesh Density 10 × 10 × 10 and (c) Mesh Density 20 × 20 × 20. (d) – (f): Canny edges
extracted from intra-operative and the registered pre-operative image slices overlaid on each
other for three mesh densities. Red color represents the non-overlapping pixels of the intra-
operative slice and blue color represents the non-overlapping pixels of the pre-operative
slice. Green color represents the overlapping pixels. (g) Corresponding plots of edge-based
Hausdorff distances at different percentiles. Detailed description of methods required to
generate this plot is given in Section 2.3.2. All registration results were generated using
skull-stripped brain volumes with 50000 spatial samples to calculate joint intensity
histograms. The following color code is used for contours in (a) – (c): light blue shade –
ventricles in the intra-operative image; light blue contour – outline of parenchyma in the
intra-operative image; magenta contours – outlines of parenchyma and ventricles in the pre-
operative image before registration; white contours - outlines of parenchyma and ventricles
in the pre-operative image after registration.
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FIGURE 3.
Effect of intensity normalization on the registration result: (a) Intra-operative and warped
pre-operative contours obtained without intensity normalization overlaid on the intra-
operative slice; (b) A zoomed-in view of the contour ventricles in (a); (c) Corresponding
Canny edges extracted from intra-operative and the warped pre-operative image slices
overlaid on each other; (d) Intra-operative and warped pre-operative contours obtained with
intensity normalization overlaid on the intra-operative slice; (e) A zoomed-in view of the
contour ventricles in (d); (f) Corresponding Canny edges extracted from intra-operative and
the warped pre-operative image slices overlaid on each other; (g) Plots of edge-based
Hausdorff distances at different percentiles before and after intensity normalization. Detailed
description of methods required to generate this plot is given in Section 2.3.2. All
registration results were generated using skull-stripped brain volumes with 50000 spatial
samples to calculate joint intensity histograms. The following color code is used for
contours in (a), (b), (d) and (e): light blue shade – ventricles in the intra-operative image;
light blue contour – outline of parenchyma in the intra-operative image; magenta contours –
outlines of parenchyma and ventricles in the pre-operative image before registration; white
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contours - outlines of parenchyma and ventricles in the pre-operative image after
registration. Color code for edges: Red color represents the non-overlapping pixels of the
intra-operative slice, blue color represents the non-overlapping pixels of the pre-operative
slice and green color represents the overlapping pixels.
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FIGURE 4.
The plot of percentile edge-based Hausdorff distance between intra-operative and registered
pre-operative images against the corresponding percentile of edges for axial slices showing
relative accuracy of BSpline and biomechanics-based deformable registration methods as
compared to rigid registration. Detailed description of methods required to generate this plot
is given in Section 2.3.2.
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FIGURE 5.
Registration process based on a biomechanical model.
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FIGURE 6.
Typical example (Case 1) of a patient-specific mesh built for this study.
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FIGURE 7.
The predicted deformation fields overlaid on an axial slice of pre-operative image. An arrow
represents a 2D vector consisting of the x (R-L) and y (A-P) components of displacement at
a voxel centre. Green arrows: deformation field predicted by the biomechanical model. Red
arrows: deformation field calculated by the BSpline algorithm. The number on each image
denotes a particular neurosurgery case.
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FIGURE 8.
Canny edges extracted from intra-operative and the registered pre-operative image slices
overlaid on each other. Red colour represents the non-overlapping pixels of the intra-
operative slice and blue colour represents the non-overlapping pixels of the pre-operative
slice. Green colour represents the overlapping pixels. The number on each image denotes a
particular neurosurgery case. For each case, the left image shows edges for the
biomechanics-based warping and the right image shows edges for the BSpline-based
registration.
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FIGURE 9.
The plot of Hausdorff distance between intra-operative and registered pre-operative images
against the percentile of edges for axial slices. The horizontal line is the 1.7 mm mark.
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FIGURE 10.
The plot of Hausdorff distance between intra-operative and registered pre-operative images
against the percentile of edges for sagittal slices. The horizontal line is the 1.7 mm mark.
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Table 1

Percentage of edges successfully registered for thirteen patient specific cases.

Case Percentage of edges successfully registered

Axial Slices Sagittal Slices

Biomechanics BSpline Biomechanics BSpline

‘1’ 70 63 61 47

‘2’ 56 45 38 41

‘3’ 54 29 54 33

‘4’ 66 54 67 46

‘5’ 58 45 54 33

‘6’ 59 51 58 53

‘7’ 75 81 61 76

‘8’ 75 70 69 65

‘9’ 52 43 52 46

‘10’ 61 55 61 57

‘11’ 82 77 81 62

‘12’ 63 59 58 60

‘13’ 81 67 82 62

Average 65.54 56.85 61.23 52.38
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Table 2

90th percentile Hausdorff distance values (mm) for thirteen patient-specific cases.

Case Non-rigid registration algorithm

Axial Slices Sagittal Slices

Biomechanics BSpline Biomechanics BSpline

‘1’ 2.43 2.75 2.75 3.54

‘2’ 2.43 3.36 2.72 3.87

‘3’ 2.19 3.10 2.43 3.44

‘4’ 2.15 2.75 2.15 2.61

‘5’ 2.58 3.36 2.58 3.87

‘6’ 3.14 3.44 3.32 3.75

‘7’ 2.34 2.15 2.39 2.34

‘8’ 2.34 2.73 2.34 2.96

‘9’ 3.00 4.03 3.66 4.32

‘10’ 2.73 3.14 2.85 3.41

‘11’ 1.99 2.52 2.10 2.65

‘12’ 2.81 3.28 3.14 3.78

‘13’ 1.99 2.85 1.99 2.65

Average 2.47 3.03 2.65 3.32
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