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Abstract
Background—The human fetus is able to mount a systemic inflammatory response when
exposed to microorganisms. This stereotypic response has been termed the “fetal inflammatory
response syndrome” (FIRS), defined as an elevation of fetal plasma interleukin-6 (IL-6). FIRS is
frequently observed in patients who delivered preterm associated with intra-amniotic infection
(IAI), acute inflammatory lesions in the placenta, and a high rate of neonatal morbidity. Recently,
a novel form of fetal systemic inflammation, characterized by an elevation of fetal plasma
CXCL10, has been identified in patients with placental lesions suggestive of “maternal anti-fetal
rejection”. These lesions include chronic chorioamnionitis, plasma cell deciduitis and villitis of
unknown etiology (VUE). In addition, a seropositivity for HLA panel-reactive antibodies (PRA)
in maternal sera can also be used as an index of suspicious for “maternal anti-fetal rejection”. The
purpose of this study was to determine: 1) the frequency of pathologic evidence of “maternal anti-
fetal rejection” in term and spontaneous preterm births; 2) the fetal serum concentration of
CXCL10 in patients with and without evidence of maternal anti-fetal rejection; and 3) the fetal
blood transcriptome and proteome in pregnancy with evidence of fetal inflammatory response
associated with maternal anti-fetal rejection.

Methods—Maternal and fetal sera were obtained from normal term birth (N=150) and
spontaneous preterm births (N=150). Fetal inflammatory response associated with maternal anti-
fetal rejection was diagnosed when the patients met two or more of the following criteria: 1)
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presence of chronic placental inflammation; 2) ≥80% of maternal HLA class I panel-reactive
antibody (PRA) seropositivity; and 3) fetal serum CXCL10 concentration > 75th percentile of
normal. Maternal HLA PRA was analyzed by flow cytometry. The concentration of fetal CXCL10
and IL-6 were determined by ELISA. Transcriptome analysis was undertaken after extraction of
total RNA from white blood cells with a whole-genome DASL assay. Proteomic analysis of fetal
serum was conducted by two-dimensional difference gel electrophoresis. Differential gene
expression was considered significant when there was a p<0.01 and a fold-change >1.5.

Results—1) The frequency of placental lesions consistent with maternal anti-fetal rejection was
higher in patients with preterm delivery than in those with term delivery (56% vs. 32%; P<0.001);
2) patients with spontaneous preterm births had a higher rate of maternal HLA PRA class I
positivity than those who delivered at term (50% vs. 32%; P=0.002); 3) fetuses who were born to
mothers with positive maternal HLA PRA results had a higher median serum CXCL10
concentration than in those with negative HLA PRA results (P<0.001); 4) the median serum
CXCL10 concentration (but not IL-6) was higher in fetuses with placental lesions associated with
maternal anti-fetal rejection than in those without such lesions (P<0.001); 5) a whole-genome
DASL assay of fetal blood RNA demonstrated differential expression of 128 genes between
fetuses with and without fetal inflammatory response associated with maternal anti-fetal rejection;
and 6) comparison of the fetal serum proteome demonstrated 20 proteins whose abundance
differed between fetuses with and without fetal inflammatory response associated with maternal
anti-fetal rejection.

Conclusions—We describe systemic inflammatory response in the fetus born to mothers with
evidence of maternal anti-fetal rejection. Using high-dimensional biology techniques, the
transcriptome and proteome of this novel type of fetal inflammatory response demonstrated the
distinct profile from FIRS type I (which is associated with acute infection). This information is
crucial to gain a mechanistic understanding of the syndrome as well as to identify biomarkers for
this condition.
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Introduction
Pregnancy is a unique immunologic state in which the maternal adaptive and innate
components of the immune system support the establishment and maintenance of pregnancy,
and provide defense mechanisms against microbial pathogens.1,2 The fetus is a semi-
allograft, and active maternal immune tolerance mechanisms are fundamental for a
tolerogenic state of paternal antigens and the prevention of the rejection of the fetus. 1,3–25

The diagnosis of maternal anti-fetal rejection has been a challenge to clinical obstetrics and
surgical pathology. We have recently reported a series of studies demonstrating that
maternal anti-fetal rejection can be a mechanism of disease associated with spontaneous
preterm birth and can be diagnosed by the identification of chronic chorioamnionitis, a
lesion characterized by maternal T-cell infiltration of the chorioamniotic membranes.26–29

Other pathologic lesions reflecting maternal anti-fetal rejection included chronic deciduitis
with plasma cells and villitis of unknown etiology (VUE).30

Given the unique anatomical relationship between the mother and fetus, maternal anti-fetal
cellular rejection and antibody-mediated rejection can affect the fetus by mechanisms
operative in graft-versus-host disease (GVHD) and alloimmune reactions.27,30 Specifically,
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maternal antibodies against paternal antigens can cross the placenta to activate complement
and elicit a fetal inflammatory response.27

We have previously reported that the fetal plasma concentration of CXCL10 is higher for
cases in which the placenta has VUE.30 Therefore, we hypothesized that maternal anti-fetal
rejection is linked to a stereotypical derangement of the systemic fetal chemokine milieu,
specifically CXCL10, just as intra-amniotic infection/inflammation is associated with an
elevation of the fetal plasma concentration of IL-6.31–35 The latter condition observed in
human fetuses of patients with preterm labor and preterm prelabor rupture of membranes
(PPROM) has been termed the “fetal inflammatory response syndrome” (FIRS),31–33,36–44

and has been associated with a higher rate of adverse neonatal outcome,31–36,45–50 a short
interval to delivery, and multi-systemic involvement.32,42–44,47,51–118 We have recently
provided evidence that an elevation of amniotic fluid CXCL10 concentration during the
mid-trimester is a risk factor for preterm delivery after 32 weeks of gestation,119 while an
elevation of amniotic fluid IL-6 concentration is associated with preterm delivery before 32
weeks of gestation.119 This observation suggests that there is heterogeneity in the nature of
the intra-amniotic inflammatory response during pregnancy.119 Typically, an elevation of
amniotic fluid IL-6 is observed in cases of intra-amniotic infection associated with acute
chorioamnionitis and funisitis 33,120–126. CXCL10 is a T-cell chemokine which is elevated
in the amniotic fluid of patients with chronic chorioamnionitis.26,27,127 In this lesion,
maternal T cells invade the chorioamniotic membranes,26 presumably because of the
chemotactic gradient generated in the amniotic cavity by T-cell chemokines including
CXCL10.26,27,127

This study was conducted to determine: 1) the frequency of pathologic evidence of cellular
and humoral maternal anti-fetal rejection in term and spontaneous preterm births; 2) the fetal
plasma concentration of CXCL10 in patients with and without evidence of maternal anti-
fetal rejection; and 3) the fetal blood transcriptome and proteome in patients with fetal
inflammatory response associated with maternal anti-fetal rejection.

Materials and Methods
Patients and definitions

The patient population comprised Hispanic women who were enrolled and delivered at the
Sótero del Río Hospital, Santiago, Chile. Sera and tissue samples from the patients and their
singleton neonates were retrieved from the Bank of Biological Materials of the Sótero del
Río Hospital and the Perinatology Research Branch, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health, U. S.
Department of Health and Human Services.

Patients included women who delivered (1) with a normal pregnancy outcome at term
(N=150) and (2) before 37 completed weeks of gestation after preterm labor with intact
membranes or PPROM (N=150). Pregnancies with a fetal congenital anomaly and small-for-
gestational-age neonate were ineligible to participate. Placental tissues and fetal cord blood
samples were collected at the time of delivery. We selected maternal blood samples which
were collected within seven days before and after delivery to maintain a meaningful
temporal relationship between placental histopathologic findings and concentrations of
CXCL10 and IL-6 in maternal sera. Samples were stored at −80°C until use. All patients
provided written informed consent at the Sótero del Río Hospital. The Institutional Review
Boards of the participating institutions approved the collection and use of biological
materials and clinical data for research purposes.
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Preterm labor was defined as the presence of regular uterine contractions occurring at a
frequency of at least two every 10 minutes associated with cervical dilatation, followed by
delivery before 37 completed weeks of gestation. PPROM was diagnosed by sterile
speculum examination when pooling of amniotic fluid in the vagina occurred or when
positive nitrazine and ferning tests, conducted when necessary, were confirmed before 37
completed weeks of gestation in the absence of labor.

Placental Pathology
Placental histopathologic changes were defined according to diagnostic criteria proposed by
the Perinatal Section of the Society for Pediatric Pathology and included lesions consistent
with amniotic fluid infection, maternal vascular underperfusion, and fetal vascular thrombo-
occlusive disease.128 The diagnosis of VUE was based on histologic criteria previously
defined,30,129 and chronic chorioamnionitis was diagnosed when lymphocytic infiltration
into the chorionic trophoblast layer or chorioamniotic connective tissue was present as
previously described. 26–28,127,130,131 Chronic deciduitis with plasma cells was defined as
the presence of lymphoplasmacytic infiltration into the decidua of the basal plate.132

Chronic placental inflammation was defined upon observation of one or more findings
among chronic chorioamnionitis, VUE, and chronic deciduitis with plasma cells.

Flow Cytometry for HLA Panel-Reactive Antibodies
Flow cytometric analyses of HLA class I and class II PRA in maternal sera were conducted
using the FlowPRA®-I Screening Test and the FlowPRA®-II Screening Test (One Lambda,
Inc., Canoga Park, CA, USA), according to the manufacturer’s instructions. HLA class I or
class II microbeads were mixed with 20 μL of serum, followed by incubation for 30 min at
room temperature with gentle rotation. After the microbeads were washed 3 times with 1 mL
of FlowPRA® Wash Buffer by centrifugation at 9,000xg for 2 min, they were incubated
with 100 μL of FITC-conjugated F(ab)2 fragment of Fcγ fragment specific goat anti-human
IgG for 30 min. Thereafter, the microbeads were washed twice with 1 mL of wash buffer,
and 0.5 mL of fixing solution (PBS with 0.5% formaldehyde) was added. The FL1
fluorescence of 5,000 events was analyzed using the BD™ LSR II Flow Cytometer (BD
Biosciences, San Jose, CA, USA). A sample with panel-reactivity of 10% or more was
considered PRA-positive.133,134

Enzyme-Linked Immunosorbent Assays for IL-6 and CXCL10
Serum concentrations of IL-6 (Human IL-6 Quantikine® HS ELISA Kit, R&D Systems,
Minneapolis, MN, USA) and of CXCL10 (Human CXCL10/IP-10 Quantikine® ELISA Kit,
R&D Systems) were measured with specific immunoassays, according to the manufacturer’s
instructions.

Whole-Genome DASL Assay
To characterize the fetal blood transcriptome in patients with evidence of fetal inflammatory
response associated with maternal anti-fetal rejection, the Whole-Genome DASL® Assay
(cDNA-mediated Annealing, Selection, Extension, and Ligation: Illumina, Inc., San Diego,
CA, USA) was performed using fetal blood samples from cases with (N=9) and without
(N=15) evidence of fetal inflammatory response associated with maternal anti-fetal rejection
which was defined as the presence of two or more of the following criteria: 1) chronic
placental inflammation (villitis of unknown etiology, chronic chorioamnionitis or chronic
deciduitis with plasma cells), 2) ≥80% of maternal HLA class I PRA seropositivity; and 3)
fetal serum CXCL10 concentration > 75th percentile. Group 1 comprised cases with
evidence of fetal inflammatory response associated with maternal anti-fetal rejection, and
nine neonates (five term and four preterm births) met the criteria. In Group 2 (cases without
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evidence of fetal inflammatory response associated with maternal anti-fetal rejection), 15
neonates (seven term and eight preterm births) had no chronic placental inflammation,
negative maternal HLA class I PRA (<10% of panel-reactivity), and fetal CXCL10
concentration less than the 25th percentile.

Fetal cord blood samples were collected into PAXgene™ Blood RNA collection tubes
(PreAnalytiX GmbH, Hombrechtikon, Switzerland). Blood tubes were kept at room
temperature for 24 h and then frozen at −70°C until assay. Total blood RNA was isolated
using the PAXgene™ Blood RNA Kit (Qiagen, Valencia, CA, USA) with DNase I
treatment. The quantity and quality of RNA were evaluated by the Dropsense96®

Microplate Spectrophotometer (Trinean, Gentbrugge, Belgium) and the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), respectively.

Gene expression of whole blood RNA was measured using the Whole-Genome DASL®

Assay. One hundred nanograms of total RNA were reverse-transcribed with biotin-labeled
oligo-dT and random primers. Biotinylated cDNAs were annealed to assay-specific
oligonucleotides [DASL® Assay Pool (DAP) probe groups]. The mixtures were then bound
on streptavidin-conjugated paramagnetic particles to select the cDNA/oligo complexes. PCR
amplification was completed with fluorescently labeled primers, and the amplified PCR
products were hybridized overnight onto the BeadChips (Illumina). The intensities of
fluorescence were measured using the iScan™ System (Illumina).

Raw gene expression levels were normalized using the quantile normalization method.135 A
linear model was used to fit gene expression levels as a function of disease status (cases with
and without evidence of fetal inflammatory response associated with maternal anti-fetal
rejection), gestational age at delivery (term or preterm), and gender of the fetus. Coefficients
were calculated using moderated t-tests.136 Differential gene expression was considered
significant based upon two criteria: a) the P value of <0.01 and b) the magnitude of change
(fold-change >1.5).137 Gene Ontology analysis was conducted using an over-representation
approach previously described138 and implemented in the GOstats package.139

The DASL® Assay data used in this study were submitted to the Gene Expression Omnibus
(GEO). Interested readers can use the following link to access the data: http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=fpwjrqimaqgeehi&acc=GSE28387.

The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay
was conducted to confirm DASL® Assay results for genes of interest using the Biomark™

System (Fluidigm, South San Francisco, CA, USA) with specific TaqMan® assays (Applied
Biosystems®, Life Technologies Corporation, Foster City, CA, USA), according to the
manufacturers’ instructions (Supplemental Table I).

Two-dimensional Difference Gel Electrophoresis (2D-DIGE)
An equal amount of fetal serum samples obtained from cases with (N=10) and without
(N=10) evidence of fetal inflammatory response associated with maternal anti-fetal rejection
was pooled to compare their proteome. The presence and absence of fetal inflammatory
response associated with maternal anti-fetal rejection were defined by the same criteria used
in the Whole-Genome DASL® assay; fetal serum CXCL10 concentration for only one case
with evidence of fetal inflammatory response associated with maternal anti-fetal rejection
was higher than the 50th but less than the 75th percentile. For each sample, 5 μL of lysis
buffer [30 mM Tris-HCl (pH 8.8), 7 M urea, 2 M thiourea, 4% CHAPS] were added to 1 μL
of serum, followed by labeling with Cy3 or Cy5. The labeling reaction was stopped by
adding 1 μL of 10 mM Lysine to each pooled sample, followed by incubation on ice in the
dark for an additional 15 min. Labeled samples were then mixed with 2X sample buffer [8
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M urea, 4% CHAPS, 20 mg/mL dithiothreitol (DTT), 2% pharmalytes] and 100 μL of
DeStreak Rehydration Solution (7 M urea, 2 M thiourea, 4% CHAPS, 20 mg/mL DTT, 1%
pharmalytes; GE Healthcare Life Sciences, Piscataway, NJ, USA) for a total volume of 250
μL. The samples were mixed, spun, and then loaded into a strip holder. After isoelectric
focusing (pH 3-10), IPG strips were incubated in equilibration buffer-1 (50 mM Tris-HCl,
pH 8.8, 6 M urea, 30% glycerol, 2% SDS, 10 mg/mL DTT) for 15 min with gentle shaking,
and rinsed in equilibration buffer-2 [50 mM Tris-HCl (pH 8.8), 6 M urea, 30% glycerol, 2%
SDS, 45 mg/mL DTT] for 10 min with gentle shaking. Following electrophoresis in a 12%
SDS-polyacrylamide gel at 15°C, the gel was scanned using Typhoon Trio™ (GE Healthcare
Life Sciences). Scanned images were then analyzed by ImageQuant TL software version 6.0
(GE Healthcare Life Sciences), followed by differential in-gel analysis using DeCyder™ 2D
Software Version 6.5 (GE Healthcare Life Sciences), to obtain the fold-changes of protein
expression.

Mass Spectrometry
Twenty spots of interest were picked up by the Ettan™ Spot Picker (GE Healthcare Life
Sciences) and digested in gel with modified porcine trypsin protease (Trypsin Gold;
Promega, Madison, WI, USA). Digested tryptic peptides were desalted by Zip-tip C18
(Millipore Corporation, Billerica, MA, USA). Peptides were eluted from the ZipTips® with
0.5 μL of matrix solution (5 mg/mL of α-cyano-4-hydroxycinnamic acid in 50% acetonitrile,
0.1% trifluoroacetic acid, and 25 mM of ammonium bicarbonate) and spotted on the
MALDI plate. MALDI-TOF and TOF/TOF mass spectrometry were performed with an AB
SCIEX TOF/TOF™ 5800 System (AB SCIEX, Framingham, MA, USA). MALDI-TOF
mass spectra were acquired in the reflectron-positive ion mode, averaging 4000 laser shots
per spectrum. TOF/TOF mass spectrometry fragmentation spectra were acquired for each
sample, averaging 4000 laser shots per fragmentation spectrum on each of the 10 most
abundant ions present in each sample. Both the resulting peptide mass and the associated
fragmentation spectra were submitted to a GPS Explorer™ Workstation equipped with a
MASCOT search engine (Matrix Science Ltd., London, UK) to search the redundant
database of the National Center for Biotechnology Information (NCBI). Searches were
performed without constraining protein molecular weight or isoelectric point, with variable
carbamidomethylation of cysteine and oxidation of methionine residues, and with one
missed cleavage also allowed in the search parameters. Candidates with either a protein
score of C.I.% or Ion C.I.% >95 were considered significant.

To confirm 2D-DIGE results for proteins of interest, serum concentrations of apolipoprotein
E and apolipoprotein C-III were measured with specific immunoassays (Human
Apolipoprotein E ELISA Kit, Kamiya Biomedical Company, Seattle, WA, USA; AssayMax
Human Apolipoprotein C-III ELISA Kit, AssayPro LLC, St. Charles, MO, USA), according
to the manufacturers’ instructions.

Statistical Analysis
To obtain statistical significance for continuous variables, distributions were examined for
normality using the Kolmogorov-Smirnov test. When data were far from normality, the
Kruskal-Wallis one-way analysis of variance and the Mann-Whitney U tests were
performed. When there was normality of continuous variables, the one-way ANOVA test
and unpaired t-tests were used to compare differences. To assess the categorical variables,
proportions were compared with Fisher’s exact test or the χ2 test. Medians and inter-quartile
ranges were reported for continuous variables whereas frequencies and percentages were
calculated for categorical variables. The Jonckheere-Terpstra test was used to compare
continuous variables among multiple-ordered groups, and the linear-by-linear association
analysis was used for categorical variables. Statistical analyses were performed using the
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SPSS Version 15.0 (SPSS, Inc., Chicago, IL, USA). All P values were two-sided, with
P<0.05 considered statistically significant.

Results
Demographics of the Study Population

Table I showed the clinical characteristic and pathologic findings of the placenta and HLA
PRA positivity in patients who delivered at term as well as those who had spontaneous
preterm births. Histological evidence of maternal anti-fetal cellular rejection in the placenta
(chronic chorioamnionitis, VUE, or chronic deciduitis with plasma cells) was more common
in patients with spontaneous preterm delivery than in those who delivered at term [56%
(84/150) of spontaneous preterm and 32% (48/150) of term births; P<0.001]. Maternal HLA
class I PRA positivity was more common in spontaneous preterm births than in term
deliveries [50% (75/150) versus 32% (48/150); P=0.002].

Anti-fetal Cellular Rejection and Fetal Blood CXCL10 Concentration
The median fetal serum CXCL10 concentration was higher in cases with anti-fetal cellular
rejection than in those without cellular rejection (median 99.9 pg/mL, interquartile range
[IQR] 75.2–147.5 pg/mL versus median 77.7 pg/mL, IQR 59.6–105.4 pg/mL P<0.001),
while there was no difference in fetal serum CXCL10 concentration in the presence or
absence of acute chorioamnionitis (Fig. 1A). Differences in fetal serum CXCL10
concentration according to the presence or absence of each type of anti-fetal cellular
rejection remained significant (for chronic chorioamnionitis: median 99.0 pg/mL, IQR 75.7–
147.5 pg/mL versus median 81.2 pg/mL, IQR 62.0–115.8 pg/mL; for VUE: median 128.5
pg/mL, IQR 93.9–181.2 pg/mL versus median 80.6 pg/mL, IQR 61.7–112.2 pg/mL; for
chronic deciduitis with plasma cells: median 115.8 pg/mL, IQR 82.2–161.2 pg/mL versus
median 81.2 pg/mL, IQR 63.3–114.3 pg/mL) (P<0.01, for each). In contrast, median fetal
serum IL-6 concentrations were different between cases with and without acute
chorioamnionitis (P<0.001), while there was a tendency toward higher fetal serum IL-6
concentration in those with anti-fetal cellular rejection (P=0.06) (Fig. 1B). The fetal serum
concentration CXCL10 was correlated to the extent of the cellular rejection (aggregate
number of pathologic lesions consistent with maternal anti-fetal rejection) (P<0.001; Fig.
1C).

Antibody-mediated Rejection and Fetal Blood CXCL10 Concentration
The median fetal serum CXCL10 (but not IL-6) concentration was higher in maternal HLA
class I PRA-positive cases than in PRA-negative cases (median 111.5 pg/mL, IQR 80.3–
157.2 pg/mL versus median 76.6 pg/mL, IQR 59.5–100.1 pg/mL, P<0.001, Fig. 2A and 2B).
A similar difference was also found with HLA class II PRA positivity (median 122.5 pg/mL,
IQR 85.5–177.6 pg/mL versus median 81.1 pg/mL, IQR 62.4–113.6 pg/mL, P<0.001).
When cases were graded as negative (PRA<10%), mildly sensitized (PRA≥10% and <80%),
and highly sensitized (PRA≥80%) according to the reactivity of maternal HLA class I
PRA,134,140,141 there was a significant correlation between fetal serum CXCL10
concentration and the degree of maternal sensitization (Fig. 2C). Similar differences in fetal
serum CXCL10 concentration were also found in accord with maternal HLA class II PRA
positivity.

Whole-Genome DASL Assay of the Blood Transcriptome
To characterize the blood transcriptome in cases with fetal inflammatory response associated
with maternal anti-fetal rejection, Whole-Genome DASL® Assay was performed using fetal
blood samples from patients with evidence of fetal inflammatory response associated with

Lee et al. Page 7

Am J Reprod Immunol. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



maternal anti-fetal rejection (fetal inflammatory response associated with maternal anti-fetal
rejection: two or more parameters of cellular rejection, maternal HLA class I PRA ≥80%,
and fetal serum CXCL10 concentration >75th percentile) and those without evidence of fetal
inflammatory response associated with maternal anti-fetal rejection (no cellular rejection,
negative maternal HLA class I and class II PRA, and fetal serum CXCL10 concentration
<25th percentile) (Fig. 3A and 3B). A total of 128 genes were differentially expressed in the
WBCs of fetuses with and without evidence of fetal inflammatory response associated with
maternal anti-fetal rejection (Table II). CD34, BAALC (brain and acute leukemia,
cytoplasmic), PRTN3 (proteinase 3), AZU1 (azurocidin 1), CTSG (cathepsin G), MPO
(myeloperoxidase), and RNASE3 (ribonuclease, RNase A family, 3) were among the 98
genes whose expression was decreased in cases with evidence of fetal inflammatory
response associated with maternal anti-fetal rejection. Differential expression of these genes
was confirmed by qRT-PCR along with the decreased mRNA expression of CD66b (but not
of CD3, CD4, CD8, CD14, CD16a, CD19, CD23, CD56, CD64, and CD68) in the blood of
fetuses with evidence of fetal inflammatory response associated with maternal anti-fetal
rejection (Fig. 3C and 3D). Gene Ontology analysis of differentially expressed genes
showed enrichment of 24 biological processes such as ‘response to other organism’ and
‘killing by host of symbiont cells’ (Table III).

When we compared differentially expressed genes in cases with evidence of fetal
inflammatory response associated with maternal anti-fetal rejection (N=128) with those
found to be linked with FIRS-associated intra-amniotic infection (N=448),84 only 14 genes
(RETN, LCN2, TCN1, RNASE2, CEBPE, FOXM1, CEP55, C12orf59, CAPN3, TP53I3,
TYMS, GINS2, ID3, and FCER2) were common to both conditions, but all were inversely
correlated, demonstrating a clear difference between these two conditions (Fig. 3E).

2D-DIGE of Fetal Serum
Fig. 4A shows the 2-D electrophoresis gel with 30 spots displaying differentially expressed
proteins (more than a 1.5 fold-change) between cases with and without evidence of fetal
inflammatory response associated with maternal anti-fetal rejection. Table IV shows the list
of 20 differentially expressed proteins identified from 30 spots in the 2D-DIGE analysis of
pooled fetal serum samples from each group (cases with and without evidence of fetal
inflammatory response associated with maternal anti-fetal rejection). Serum albumin and
hemoglobin were decreased in cases with evidence of fetal inflammatory response
associated with maternal anti-fetal rejection. Interestingly, several apolipoproteins were
found to be differentially abundant between the two groups: apolipoprotein E precursor,
apolipoprotein J precursor, and apolipoprotein E3 fragment were decreased, and
apolipoprotein C-III was increased, in cases with evidence of fetal inflammatory response
associated with maternal anti-fetal rejection.

To confirm the results of proteins of interest in 2D-DIGE, serum concentrations of
apolipoprotein C-III and apolipoprotein E were measured with specific immunoassays. A
higher serum concentration of apolipoprotein C-III in cases with evidence of fetal
inflammatory response associated with maternal anti-fetal rejection than in those without it
was confirmed (fetal inflammatory response associated with maternal anti-fetal rejection:
median 63.0 μg/mL, IQR 47.4–69.9 μg/mL versus no evidence of fetal inflammatory
response associated with maternal anti-fetal rejection: median 38.1 μg/mL, IQR 29.8–53.4
μg/mL, P=0.013; Fig. 4C), while serum apolipoprotein E concentration was not significantly
different between the two groups (evidence of fetal inflammatory response associated with
maternal anti-fetal rejection: median 148.6 μg/mL, IQR 137.2–180.2 μg/mL versus no
evidence of fetal inflammatory response associated with maternal anti-fetal rejection:
median 119.9 μg/mL, IQR 111.6–165.6 μg/mL, P =0.199).
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Discussion
Principal findings of this study

1) The frequency of placental lesions consistent with maternal anti-fetal rejection was higher
in patients with spontaneous preterm delivery than in those with term delivery; 2) patients
with spontaneous preterm births had a higher rate of maternal HLA PRA class I positivity
than those who delivered at term; 3) fetuses born of pregnancies with evidence of maternal
anti-fetal rejection had a higher fetal serum CXCL10 than those without this process; and 4)
the WBC transcriptome and serum proteome were different in those with and without
evidence of fetal inflammatory response associated with maternal anti-fetal rejection,
suggesting the existence of a distinct form of a systemic inflammatory response in fetuses
that were immunologically rejected by their mothers.

The clinical significance of an elevation of CXCL10
CXCL10, a ligand for CXCR3, is chemotactic for activated T cells, macrophages, and NK
cells.142–144 Notably, CXCL10 is one of the most commonly expressed chemokines during
allograft rejection and GVHD.145–148 An elevated intra-graft CXCL10 expression is
associated with renal, lung, and cardiac allograft rejection.149–157 Additionally, an elevated
serum CXCL10 concentration before organ transplantation is predictive of poor allograft
outcome.151,153,154,158 Our study shows that maternal anti-fetal cellular rejection and
antibody-mediated rejection are associated with increased systemic fetal chemokine
CXCL10 concentration, as intra-amniotic infection is linked to an elevation of the systemic
fetal cytokine IL-6 concentration.31,33 Further, we also demonstrated that maternal anti-fetal
rejection shares common features with allograft rejection. Indeed, the current study
demonstrates that fetuses with evidence of maternal anti-fetal rejection have elements of an
inflammatory response which is quite distinct from that observed in FIRS-associated intra-
amniotic infection and acute inflammatory lesions31–33. We proposed the term “fetal
inflammatory response syndrome type II” for this condition. The bases for the proposal are
that: 1) fetal serum CXCL10 (but not IL-6) concentration is associated with anti-fetal
cellular rejection and antibody-mediated rejection, and 2) there are no overlapping changes
in the fetal blood transcriptome between fetal inflammatory response associated with
maternal anti-fetal rejection and FIRS associated intra-amniotic infection and acute
inflammatory lesions, which we will refer to henceforth as “FIRS type I”.

We conducted comprehensive analyses of the fetal blood transcriptome and proteome to
characterize fetal systemic changes associated with fetal inflammatory response associated
with maternal anti-fetal rejection, and found biologically meaningful changes. BAALC is
expressed in CD34+ hematopoietic progenitor cells from bone marrow, and it is a poor
prognostic factor in acute myeloid leukemia.159 PRTN3, AZU1, CTSG, MPO, and RNASE3
can also be expressed in CD34+ hematopoietic progenitor cells which are essential for the
function of mature neutrophils and eosinophils.160 Universal down-regulation of mRNA
expression of the genes for neutrophil granule proteins and the polymorphonuclear
leukocyte surface marker (CD66b) is consistent with earlier observations of neonatal
alloimmune neutropenia induced by maternal HLA antibodies.161,162 Overall changes in the
fetal blood transcriptome strongly suggested the presence of an alloimmune reaction in the
fetus probably caused by the deleterious effect of maternal anti-HLA antibodies which cross
the placenta and activate complement in the endothelium of the umbilical cord vein.

Among changes in the serum proteins, we found an overexpression of apolipoprotein C-III
which was confirmed by immunoassay. Apolipoprotein C-III in plasma has been shown to
be associated with coronary heart disease, atherosclerosis, and metabolic syndromes such as
obesity, hypertriglyceridemia, and type 2 diabetes.163,164 Therefore, the increase in serum
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apolipoprotein C-III in fetuses with evidence of fetal inflammatory response associated with
maternal anti-fetal rejection is intriguing, and raises the need for further studies about
potential long-term consequences of prenatal exposure to maternal immunological rejection.
Several studies have clearly indicated that an abnormal intrauterine environment can affect
lifelong fetal well-being in the form of abnormal fetal programming.165–167 Individuals
exposed to the Dutch famine during pregnancy had a higher frequency of coronary heart
disease,168 and also display an atherogenic blood lipid profile as a consequence of metabolic
stress in utero.169 Although fetal inflammatory response associated with maternal anti-fetal
rejection does not have a direct relationship to maternal nutritional intake, changes in blood
lipid profiles strongly suggest that fetal inflammatory response associated with maternal
anti-fetal rejection could alter fetal programming.

In organ transplantation, humoral antibody-mediated allograft rejection occurs by different
mechanisms from T-cell-mediated rejection.170,171 However, both cell-mediated and
antibody-mediated rejections begin with recognition as a common starting point and are
followed by: 1) CD4+ and CD8+ T cell cytotoxicity, 2) CD4+ and CD8+ derived IFN-γ
production and delayed-type hypersensitivity, and 3) complement activation or antibody-
dependent cell-mediated cytotoxicity by antibodies reactive to donor MHC molecules;171

and these three phenomena are closely related to each other. Our previous studies
demonstrated a robust association between anti-fetal cellular rejection (chronic
chorioamnionitis) and anti-fetal antibody-mediated rejection (both positive maternal HLA
PRA and C4d deposition on umbilical vein endothelium),27 and fetal HLA specificity of
maternal HLA antibodies.29 The findings in this study also support the hypothesis that anti-
fetal antibody-mediated rejection has biological consequences similar to cellular rejection,
sharing the feature of an increased CXCL10 concentration in fetal sera.

Strengths and limitations
We described a novel form of fetal systemic inflammation in the context of maternal anti-
fetal rejection. The limitations of this study include: 1) we did not define the cut-off value of
fetal serum CXCL10 concentration to predict evidence of fetal inflammatory response
associated with maternal anti-fetal rejection. This has been defined as FIRS type I with a
fetal plasma IL6 concentration above 11 pg/ml in blood obtained by cordocentesis.31,33,48

Future studies are required to identify a cut-off value and also the short- and long-term
consequences of this inflammatory process; and 2) the leukocyte counts of cord blood at the
time of delivery were not analyzed. As retrospective analysis of cord blood is impossible,
we instead compared mRNA expression levels of genes encoding cell-type-specific surface
markers of leukocytes.

Conclusions
Collectively, the findings reported herein link maternal anti-fetal rejection with a systemic
inflammatory response in the fetus. This inflammatory response is characterized with
changes in the fetal blood transcriptome and proteome which are different from FIRS type I
associated with acute inflammatory lesions of the placenta. Future studies are required to
define pragmatic diagnostic criteria as well as short- and long-term consequences of this
condition.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fetal serum CXCL10 and IL-6 concentrations according to the presence or absence of
maternal anti-fetal cellular rejection
(A) Fetal serum CXCL10 concentration was higher in cases with anti-fetal cellular rejection
(chronic placental inflammation) than in those without (P<0.001), while fetal serum
CXCL10 concentration was not different according to the presence or absence of acute
chorioamnionitis. (B) Cases with acute chorioamnionitis had higher median fetal serum IL-6
concentration than those without (P<0.001), and fetal serum IL-6 concentration tended to be
higher in cases with anti-fetal cellular rejection than in those without (P=0.06). (C) The
upward trend of blood CXCL10 concentration correlates with the extent of cellular rejection
(P<0.001 by the Jonckheere-Terpstra test). Fetal serum CXCL10 and IL-6 concentrations
were shown as median and inter-quartile ranges. *P<0.05; **P<0.01; ***P<0.001 (by the
Mann-Whitney U test for comparison between the two groups). ACA, acute
chorioamnionitis; CCA, chronic chorioamnionitis; CDP, chronic deciduitis with plasma
cells; NS, not significant; VUE, villitis of unknown etiology.

Lee et al. Page 22

Am J Reprod Immunol. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Fetal serum CXCL10 and IL-6 concentrations according to the presence or absence of
maternal HLA PRA
(A) Median fetal serum CXCL10 concentration is higher in maternal HLA class I PRA-
positive cases than in PRA-negative cases (P<0.001). Similar findings were shown between
maternal HLA class II PRA-positive and PRA-negative cases. (B) Fetal serum IL-6
concentration was not different according to maternal HLA class I or class II PRA positivity.
(C) There was a significant upward trend in fetal serum CXCL10 concentration associated
with the degree of maternal HLA sensitization (P<0.001 by the Jonckheere-Terpstra test).
Fetal serum CXCL10 and IL-6 concentrations were shown as median and inter-quartile
ranges. *P<0.05; **P<0.01; ***P<0.001 (by the Mann-Whitney U test for comparison
between the two groups). HLA, human leukocyte antigen; MS, maternal serum; NS, not
significant; PRA, panel-reactive antibodies.
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Figure 3. Transcriptome analysis of fetal blood using whole genome DASL® assay according to
the presence or absence of fetal inflammatory response associated with maternal anti-fetal
rejection
(A) An unsupervised Principal Component Analysis based on expression of all genes on the
array shows that samples of the group without fetal inflammatory response associated with
maternal anti-fetal rejection tend to have higher PC3 and PC1 coordinates than samples of
the fetal inflammatory response associated with maternal anti-fetal rejection group. (B) A
clustered heat map based on the top 200 most varying genes shows two main clusters: one
dominated by samples of the fetal inflammatory response associated with maternal anti-fetal
rejection group (left) and one dominated by samples of the group without fetal inflammatory
response associated with maternal anti-fetal rejection (right). (C) Quantitative RT-PCR
results confirm differential expression of genes of interest: mRNA expression of CD34,
BAALC (brain and acute leukemia, cytoplasmic), PRTN3 (proteinase 3), AZU1 (azurocidin
1), CTSG (cathepsin G), MPO (myeloperoxidase), and RNASE3 (ribonuclease, RNase A
family, 3) was decreased in cases with fetal inflammatory response associated with maternal
anti-fetal rejection (P<0.05, for each). (D) Quantitative RT-PCR of leukocyte marker genes
demonstrates that mRNA expression of CD66b (a marker for polymorphonuclear leukocyte)
was decreased in the blood of cases with fetal inflammatory response associated with
maternal anti-fetal rejection (P<0.01). However, there was no difference in mRNA
expression of T cell markers (CD3D, CD3E, CD4, CD8A, and CD8B), B cell markers
(CD19 and CD23), monocyte markers (CD14 and CD64), and natural killer cell or
macrophage markers (CD56 and CD68). (E) Comparison of differentially expressed genes
between fetal inflammatory response syndrome to intra-amniotic infection (FIRS) shown in
a previous study by Madsen-Bouterse et al.6 Fetal inflammatory response associated with
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maternal anti-fetal rejection cases showed only 14 genes common to both conditions –
RETN, LCN2, TCN1, RNASE2, CEBPE, FOXM1, CEP55, C12orf59, CAPN3, TP53I3,
TYMS, GINS2, ID3, and FCER2 – and all were inversely correlated. Relative mRNA
expressions were shown as median and inter-quartile ranges.
*P < 0.05; **P < 0.01; ***P < 0.001 (by the Mann-Whitney U test). FIR-AFR, fetal
inflammatory response syndrome associated with maternal anti-fetal rejection; FIRS, fetal
inflammatory response syndrome.
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Figure 4. Comparison of the fetal blood proteome between cases with and without fetal
inflammatory response associated with maternal anti-fetal rejection
(A) Two-dimensional difference gel electrophoresis (2D-DIGE) images show differentially
abundant proteins between cases with (Cy5: red) and without (Cy3: green) Fetal
inflammatory response associated with maternal anti-fetal rejection. The spots are labeled by
number. (B) Three-dimensional images from DeCyder software analysis for spot 17 marked
in the 2D-DIGE image (A), which is increased in cases with fetal inflammatory response
associated with maternal anti-fetal rejection. The spot was identified as apolipoprotein C-III
by MALDI-TOF-MS/MS. (C) The difference in apolipoprotein C-III concentration in fetal
serum samples between the cases with and without fetal inflammatory response associated
with maternal anti-fetal rejection was confirmed by specific immunoassay (P=0.013).
*P<0.05 (by the Mann-Whitney U test)
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ApoC-III, Apolipoprotein C-III; FIR-AFR, fetal inflammatory response syndrome associated
with maternal anti-fetal rejection.
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Table I

Demographics and clinical characteristics of the study population

Term delivery Spontaneous preterm delivery

n=150 n=150

Maternal age (year)* 27 (17–43) 25 (15–44) NS

Gestational age at delivery (weeks)* 39.5 (37.0–41.6) 34.8 (22.9–36.9) <0.001

Birth weight (g)* 3440 (2650–4110) 2460 (530–3900) <0.001

Baby gender (male, %) 54.7 (82/150) 66.7 (100/150) 0.033

Cesarean delivery (%) 50.0 (75/150) 22.0 (33/150) <0.001

Primigravida (%) 16.0 (24/150) 38.7 (58/150) <0.001

Nullipara (%) 18.0 (27/150) 42.7 (64/150) <0.001

Cellular rejection

 CCA (%) 14.0 (21/150) 44.0 (66/150) <0.001

 VUE (%) 16.7 (25/150) 22.0 (33/150) NS

 CDP (%) 14.7 (22/150) 26.0 (39/150) 0.015

 One or more of CCA/VUE/CDP (%) 32.0 (48/150) 56.0 (84/150) <0.001

 Severity of chronic inflammation (%) <0.001

 None of CCA/VUE/CDP (%) 68.0 (102/150) 44.0 (66/150)

 One of CCA/VUE/CDP (%) 22.7 (34/150) 28.0 (42/150)

 Two of CCA/VUE/CDP (%) 5.3 (8/150) 20.0 (30/150)

 All of CCA/VUE/CDP (%) 4.0 (6/150) 8.0 (12/150)

Humoral rejection

 Maternal HLA class I PRA positive (%)† 32.0 (48/150) 50.0 (75/150) 0.002

 Maternal HLA class II PRA positive (%)† 18.0 (27/150) 18.7 (28/150) NS

 Fetal HLA class I PRA positive (%)† 18.0 (27/150) 22.7 (34/150) NS

 Fetal HLA class II PRA positive (%)† 8.7 (13/150) 2.7 (4/150) 0.025

*
Median (range).

†
Positive HLA PRA is defined as 10% or more of reactivity of HLA panel-reactive antibodies.

ACA, acute chorioamnionitis; CCA, chronic chorioamnionitis; CDP, chronic deciduitis with plasma cells; HLA, human leukocyte antigen; NS, not
significant; PRA, panel-reactive antibodies; VUE, villitis of unknown etiology.
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Table II

Top 25 each of up- and down-regulated genes in fetal inflammatory response associated with maternal anti-
fetal rejection

Gene Fold-change P value Direction

GCET2 2.02 0.0008 ↑

EFEMP1 1.99 0.0071 ↑

TCEA3 1.83 0.0000 ↑

FCER2 1.79 0.0049 ↑

FCRL5 1.75 0.0096 ↑

SCARNA21 1.65 0.0090 ↑

TTC39B 1.63 0.0057 ↑

ID3 1.62 0.0090 ↑

PPAPDC1B 1.62 0.0011 ↑

GBP1 1.61 0.0019 ↑

DKK3 1.59 0.0043 ↑

ATPBD4 1.59 0.0033 ↑

HAPLN3 1.59 0.0099 ↑

AXIN2 1.59 0.0018 ↑

GBP1 1.57 0.0027 ↑

C6orf105 1.57 0.0023 ↑

HPCAL4 1.57 0.0056 ↑

NUDT9P1 1.57 0.0034 ↑

FAM134B 1.56 0.0059 ↑

ZNF391 1.56 0.0030 ↑

GNB5 1.55 0.0019 ↑

ZNF667 1.54 0.0027 ↑

LOC100129902 1.54 0.0036 ↑

P2RY10 1.54 0.0073 ↑

SOCS1 1.53 0.0062 ↑

PRTN3 7.09 0.0000 ↓

AZU1 6.71 0.0002 ↓

CTSG 4.58 0.0002 ↓

MPO 4.35 0.0003 ↓

MS4A3 4.05 0.0001 ↓

RNASE3 3.96 0.0003 ↓

DEFA4 3.74 0.0018 ↓

TACSTD2 3.73 0.0021 ↓

COL17A1 3.72 0.0008 ↓

ELANE 3.58 0.0001 ↓

CEACAM6 3.53 0.0005 ↓
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Gene Fold-change P value Direction

TCTEX1D1 3.53 0.0004 ↓

LTF 3.37 0.0059 ↓

CEACAM8 3.31 0.0007 ↓

ABCA13 2.95 0.0067 ↓

MS4A3 2.83 0.0005 ↓

SERPINB10 2.78 0.0066 ↓

SLC2A5 2.72 0.0062 ↓

BPI 2.68 0.0017 ↓

CD34 2.60 0.0007 ↓

CEBPE 2.59 0.0047 ↓

MKI67 2.54 0.0070 ↓

FIS 2.53 0.0077 ↓

FOXM1 2.51 0.0063 ↓

CKAP2L 2.45 0.0055 ↓
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Table III

Top biological processes enriched in fetal inflammatory response associated with maternal anti-fetal rejection

Biological process No. Differentially Expressed
Genes/No. Total Genes P value False Discovery Rate

Response to bacterium 10/145 0.0000 0.0004

Defense response to bacterium 7/57 0.0000 0.0004

Killing of cells of another organism 4/12 0.0000 0.0011

Defense response to fungus 3/8 0.0000 0.0103

M phase 12/348 0.0001 0.0103

Nuclear division 10/245 0.0001 0.0103

Mitosis 10/245 0.0001 0.0103

Response to other organism 10/251 0.0001 0.0103

M phase of mitotic cell cycle 10/252 0.0001 0.0103

Organelle fission 10/254 0.0001 0.0103

DNA replication 9/210 0.0001 0.0114

Neutrophil mediated cytotoxicity 2/3 0.0002 0.0216

Neutrophil mediated killing of symbiont cell 2/3 0.0002 0.0216

Response to fungus 3/16 0.0004 0.0304

Cell division 10/307 0.0004 0.0321

Disruption by host of symbiont cells 2/4 0.0005 0.0329

Killing by host of symbiont cells 2/4 0.0005 0.0329

Cell cycle process 14/574 0.0005 0.0352

Cell cycle phase 12/443 0.0006 0.0352

Response to biotic stimulus 10/323 0.0006 0.0352

Cell killing 4/44 0.0006 0.0352

Disruption of cells of other organism involved in symbiotic interaction 2/5 0.0008 0.0403

Killing of cells in other organism involved in symbiotic interaction 2/5 0.0008 0.0403

Mitotic spindle organization 3/22 0.0009 0.0469
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Table IV

Fetal serum proteins show significant changes in cases with fetal inflammatory response associated with
maternal anti-fetal rejection

Spot number Protein name Accession number Molecular weight (Da) Protein PI

2 Chain A, Crystal Structure of the Ga Module Complexed
with Human Serum Albumin

gi|55669910 65178.2 5.6

3 Alpha-1-B glycoprotein [Homo sapiens] gi|119592981 54238.6 5.6

8 Apolipoprotein J precursor [Homo sapiens] gi|178855 48772.1 6.3

9 Apolipoprotein E precursor [Homo sapiens] gi|4557325 36131.8 5.7

11 Chain B, Crystal Structure Of Fibrinogen Fragment D gi|2781208 37624.7 5.8

12 Chain A, Apolipoprotein E3 22kd Fragment Lys146gln
Mutant

gi|15826034 22116.5 5.4

14 C1q B-chain precursor [Homo sapiens] gi|573114 23925.9 8.9

16 Peroxiredoxin-2 isoform a [Homo sapiens] gi|32189392 21878.2 5.7

17 Apolipoprotein C-III [Homo sapiens] gi|521205 10815.5 5.2

20 Chain G, Structure of Human Foetal Deoxyhaemoglobin gi|157875419 15985.2 6.7

21 Chain B, Human Hemoglobin A Mutant Beta H63w
Carbonmonoxy-Form

gi|300508775 15906.3 6.8

22 Chain G, Structure of Human Foetal Deoxyhaemoglobin gi|157875419 15985.2 6.7

23 Hemoglobin subunit gamma-2 [Homo sapiens] gi|6715607 16116.3 6.6

24 Chain A, Solution Structure of Human Normal Adult
Hemoglobin

gi|157883730 15071.8 8.1

25 Chain A, Crystal Structure of Oxy-Human Hemoglobin
Bassett at 2.15 Angstrom

gi|37928140 15072.9 9.1

26 Hemoglobin alpha-1 globin chain [Homo sapiens] gi|319739573 10776.5 8.1

27 Chain A, Structure of Haemoglobin in the Deoxy
Quaternary State with Ligand Bound at the Alpha Haem

gi|229751 15116.9 8.7

28 Chain A, Structure of Haemoglobin in the Deoxy
Quaternary State with Ligand Bound at the Alpha Haem

gi|229751 15116.9 8.7

29 Hemoglobin alpha-1 globin chain [Homo sapiens] gi|319739573 10776.5 8.1

30 Chain A, Structure of Haemoglobin in the Deoxy
Quaternary State with Ligand Bound at the Alpha Haem

gi|229751 15116.9 8.7
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