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Tetraploidy constitutes a genomically metastable state that can
lead to aneuploidy and genomic instability. Tetraploid cells are
frequently found in preneoplastic lesions, including intestinal
cancers arising due to the inactivation of the tumor suppressor
adenomatous polyposis coli (APC). Using a phenotypic screen, we
identified resveratrol as an agent that selectively reduces the
fitness of tetraploid cells by slowing down their cell cycle pro-
gression and by stimulating the intrinsic pathway of apoptosis.
Selective killing of tetraploid cells was observed for a series of
additional agents that indirectly or directly stimulate AMP-acti-
vated protein kinase (AMPK) including salicylate, whose chemo-
preventive action has been established by epidemiological studies
and clinical trials. Both resveratrol and salicylate reduced the for-
mation of tetraploid or higher-order polyploid cells resulting from
the culture of human colon carcinoma cell lines or primary mouse
epithelial cells lacking tumor protein p53 (TP53, best known as
p53) in the presence of antimitotic agents, as determined by cyto-
fluorometric and videomicroscopic assays. Moreover, oral treat-
ment with either resveratrol or aspirin, the prodrug of salicylate,
repressed the accumulation of tetraploid intestinal epithelial
cells in the ApcMin/+ mouse model of colon cancer. Collectively,
our results suggest that the chemopreventive action of resver-
atrol and aspirin involves the elimination of tetraploid cancer
cell precursors.

One of the initiating triggers of carcinogenesis is illicit tet-
raploidization, i.e., the formation of cells that encompass

twice as many chromosomes as their normal, diploid counter-
parts (1–4). Such an augmentation in nuclear DNA content may
originate from cell-to-cell fusion, endocycling, or endomitosis.
Contrasting with some exceptions (such as hepatocytes, syncy-
tiotrophoblasts, megakaryocytes, and myocytes), most cell types
do not tolerate significant variations from the diploid status,
meaning that tetraploid as well as higher-order polyploid cells
usually activate programmed death pathways as soon as they are
generated (5) or elicit immune responses resulting in their elimi-
nation (6).
A supraphysiological frequency of tetraploid cells has been

detected at early stages of multiple cancer cell types (including
bronchial, esophageal, gastric, mammary, colorectal, ovarian,
cervical, and prostate carcinomas), often correlating with the
inactivation of the tumor suppressors retinoblastoma 1 (RB1)
and tumor protein p53 (TP53, best known as p53) (7). The in-
activation of p53 facilitates the tetraploidization of cell lines (8–
10) and primary epithelial cells from the colon and the mammary
gland (11–13). Similarly, inactivation of the adenomatous poly-
posis coli (APC) tumor suppressor gene (whose mutations ini-
tiate a majority of colorectal cancers) results in tetraploidization
both in vitro and in vivo in mouse models (14, 15).
Tetraploid cells can give rise to an aneuploid offspring through

several mechanisms, namely the gradual gain or loss of chro-
mosomes during subsequent rounds of bipolar (and aberrant)

mitosis or, alternatively, the reduction of the chromosomal content
during multipolar mitoses (16). Such multipolar mitoses, which
result from the presence of extra centrosomes, provoke asym-
metric cell divisions in which chromosomes are close-to-randomly
distributed among three or more daughter cells (12, 17). Ex-
ceptionally, newly generated aneuploid cells are fitter than their
tetraploid progenitors, thus progressively transforming into ma-
lignant cells (2–5, 18).
Given the importance of tetraploidization for oncogenesis, it is

tempting to develop strategies for the selective eradication of
such cells. Tetraploid cells are intrinsically resistant against DNA
damaging agents (9), yet are more susceptible to a variety of
agents including inhibitors of checkpoint kinase 1 (19), Aurora
kinase B (20), and mitotic kinesins (21, 22). Nonetheless, such
agents can perturb normal mitoses and mitotic checkpoints,
casting doubts on their potential utility as chemopreventive
agents. Driven by this consideration, we developed a screen for
the identification of selective killers of tetraploid cells. This
screen led to the identification of resveratrol and other AMP-
activated protein kinase (AMPK) activators, including salicylate
as potent antitetraploids.
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Results
Selective Killing of Tetraploid Cells by Resveratrol. In a pharmaco-
logical screen, we identified resveratrol as an agent that kills

tetraploid cells more efficiently than their precursors (Fig. S1).
To confirm the impact of resveratrol on tetraploid cell survival
we used several established diploid and tetraploid human colon
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Fig. 1. Validation of the selective inhibitory effect of
resveratrol toward tetraploid cells. (A–D) Multiple
diploid and tetraploid clones from human colon
carcinoma HCT116 cells (framed in green and red,
respectively) were treated with the indicated con-
centrations of resveratrol for 48 h before the evalu-
ation of the cell-death–associated parameters either
by cytofluorometry upon costaining with the vital
dye iodure propidium (PI) and the mitochondrial
membrane potential (Δψm)-sensing dye DiOC6(3)
(A and B) or by fluorescence microcopy upon coim-
munostaining with antibodies directed against cyto-
chrome c (Cyt c) and activated caspase 3 (Caspase-3a)
(C and D). A illustrates representative dot plots
(numbers refer to the percentage of cells found in
each quadrants), whereas B shows quantitative data
(mean ± SEM; n = 5) from experiments performed on
eight different diploid and seven tetraploid clones.
Representative pictures and the quantification of
cells displaying Cyt c release, caspase-3 activation
(Caspase-3a+), and pyknotic nuclei (as determined by
nuclear counterstaining with Hoechst 33342) are
reported in C and D, respectively (mean ± SEM; n =
500 cells). In B, the fraction of dying (DiOC6(3)

low PI−)
and dead cells (PI+) is represented by white and
black columns, respectively, and cisplatin (CDDP) was
used as a negative control. **P < 0.01; ***P < 0.001
(Student t test), compared with the equally treated
diploid cells. See also Figs. S2 and S3.
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Fig. 2. Activation of the energy sensor 5′AMP-activated
protein kinase (AMPK) preferentially induces tetraploid
cell death. (A) Proposed model of how resveratrol acti-
vates AMPK and induces tetraploid cell death (see text
for more details). (B–F) Diploid and tetraploid human
colon carcinoma HCT116 cells (depicted in green and
red, respectively), treated for 48 h with the indicated
concentrations of the phosphodiesterase 4 (PDE-4)
inhibitor rolipram (B), resveratrol in combination with
either the adenylate cyclase inhibitor MDL-12330A (C),
or the PKA inhibitor H89 (D), the AMPK activator A-
769662 (E), or salicylate (SAL) (F). Thereafter, the cells
were subjected to the flow cytometry-assisted mea-
surement of cell death parameters after DiOC6(3)/PI
costaining (mean ± SEM; three independent experi-
ments conducted with three diploid and three tetra-
ploid clones). Alternatively, cells were transfected with
GFP-LC3 plus vector (pcDNA3) or a cDNA encoding
AMPK α1, followed by the quantitation of apoptotic
nuclei in transfected (GFP+) cells (G and H). *P < 0.05;
**P < 0.01; ***P < 0.001 (Student t test), compared
with the equally treated diploid cells (B, E, F, and H) or
to cells treated only with resveratrol (C and D). In B–F
and H, representative immunoblots of phosphorylated
AMPK (Thr172) and total AMPK for each drug are
depicted as Insets. Actin or GAPDH were used as loading
controls. See also Figs. S6 and S8.
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carcinoma HCT116 clones (9). Resveratrol induced an increased
frequency of cell death in tetraploid HCT116 clones, as de-
termined by staining with the mitochondrial inner trans-
membrane potential (Δψm)-sensitive dye DiOC6(3) and the vital
dye propidium iodide (PI) that leads to the identification of
dying (DiOC6(3)

low PI−) and dead (PI+) cells (Fig. 1 A and B).
Similar results were obtained when apoptosis was detected by
staining with FITC-labeled Annexin V, which recognizes phos-
phatidylserine residues present in the outer leaflet of the plasma
membrane (Fig. S2A). Resveratrol was selectively cytotoxic for
tetraploid human colorectal carcinoma RKO cells, mouse Lewis
lung cancer (LLC) cells, and mouse embryonic fibroblasts
(MEF) with respect to their diploid counterparts (Fig. S2 B–D).
The close structural resveratrol analog piceatannol (which is
a hydroxylated version of resveratrol) (23, 24) also selectively
depleted both tetraploid HCT116 and tetraploid RKO cells (Fig.
S2 E and F). In contrast, other cytotoxic agents such as the DNA
damaging agent cisplatin, the flavonoid quercetin, or the herbi-
cide paraquat eliminated HCT116 parental cells more efficiently
than tetraploid ones (Fig. S3 A–C). Although resveratrol has
been reported to inhibit the respiratory chain complex I (25, 26),
rotenone, a specific complex I inhibitor, had no selective anti-
tetraploid effect (Fig. S3D). The resveratrol-induced killing of
tetraploid HCT116 cells was abolished by the pan-caspase in-
hibitor Z-VAD-fmk (Fig. S4A) and partially suppressed by the
knockdown of the proapoptotic proteins from the Bcl-2 family
BAX or BAK1, whereas it was increased by the knockdown of
the antiapoptotic Bcl-2 family proteins BCL2, BCL2L1 (best
known as BCLXL) and MCL1 (Fig. S4B). Tetraploid cell death
induced by resveratrol was accompanied by classical features of
apoptosis (27), including cytochrome c release from mitochon-
dria, proteolytic maturation of caspase-3, and chromatin con-
densation with nuclear shrinkage (Fig. 1 C and D). Finally,
videomicroscopic observation of tetraploid cells with fluorescent
nuclei (due to the stable expression of H2B-GFP) exposed to
resveratrol confirmed an increased induction of apoptosis, as well
as a significant reduction in mitoses in resveratrol-treated tetra-
ploid cell cultures compared with their diploid controls (Fig. S5
and Movies S1 and S2).

Selective Elimination of Tetraploid Cells by Multiple AMPK Activators.
Resveratrol stimulates the activation of AMPK by inhibiting
phosphodiesterase 4 (PDE-4), thereby provoking the accumu-
lation of cAMP, which triggers cAMP-activated protein kinase A
(PKA) (28) (Fig. 2A). After resveratrol treatment, AMPK dis-
played a similar level of activation in diploid and tetraploid cells,
as indicated by its phosphorylation and that of its substrate acetyl
CoA carboxylase (ACC) (Fig. S6). Inhibition of PDE-4 with
rolipram (29) mimicked the effects of resveratrol with respect to
selective tetraploid depletion and AMPK activation (Fig. 2B),
whereas inhibitors of adenylyl cyclase (MDL-12330A) and PKA
(H89) interfered with the killing of tetraploid cells by resveratrol
(Fig. 2 C and D). In contrast, EX-527, a sirtuin-1-specific in-
hibitor that blocks resveratrol-induced autophagy (30), failed to
protect tetraploid cells from resveratrol-induced cytotoxicity,
indicating that neither sirtuin-1 nor autophagy are involved in
this phenomenon (Fig. S7). Moreover, several AMPK-activating
agents were endowed with the capacity of selectively eliminating
tetraploid cells. This applies to AMPK activators such as acetyl
salicylate (better known as aspirin), salicylate (31, 32) (which is
more active than its precursor aspirin), 5-aminoimidazole-4-
carboxamide-1-β-D-ribofuranoside (AICAR), and A-769662 (Fig. 2
E and F and Figs. S6 and S8), as well as to indirect strategies
for AMPK activation, including inhibition of glycolysis with 2-
deoxyglucose or 3-bromopyruvate or culture of cells in nutrient-free
medium (Figs. S6 and S8). Transfection-enforced overexpression of
the AMPK α1 subunit also caused AMPK activation and selective
tetraploid cell killing (Fig. 2 G and H).

Abortion of Newly Formed Tetraploid Cells by Resveratrol and Salicylate
in Vitro and ex Vivo. Next, we wondered whether agents with well-
established chemopreventive effects such as resveratrol and sa-
licylate would be capable of impeding the de novo formation of
tetraploid cells. The microtubule inhibitor nocodazole and the
actin cytoskeleton inhibitor cytochalasin D increased the fre-
quency of tetraploid p53−/− HCT116 cells (33), and similarly de-
pletion of Aurora kinase B (AURKB) induced tetraploidization
(DNA content >4n) of WT HCT116 cells. All these tetraploidy-
inducing effects were significantly reduced in the presence of
resveratrol, rolipram, A769662, aspirin, salicylate, 2-deoxyglucose,
or 3-bromopyruvate, which concomitantly increased the fre-
quency of cell deaths (Fig. 3A and Fig. S9). Very similar results
were obtained with primary epithelial cells from p53−/− mice,
which, in contrast to their WT counterparts, are prone to in vitro
tetraploidization (11–13). Again, multiple agents that directly or
indirectly activate AMPK reduced the tetraploidization efficacy
of the cytokinesis inhibitor dihydrocytochalasin B (Fig. 3B).
Resveratrol and salicylate also significantly increased the fre-
quency of cell deaths in nocodazole-treated p53−/− HCT116 cul-
tures and reduced the generation of polyploid cells, as determined
by videomicroscopy (Fig. 4 A and B and Movies S3–S5).

Chemopreventive Effects of Resveratrol and Salicylate Correlate with
Elimination of Tetraploid Cells. To extend the aforementioned
observation to an in vivo model of chemoprevention, we took
advantage of mice carrying the ApcMin mutation that develop in-
testinal carcinomas resembling those found in human patients
with loss-of-function mutations of the tumor suppressor APC (34).
In such ApcMin/+ mice, oral treatment with resveratrol or aspirin
reduces the frequency of intestinal adenomas and adenocarcino-
mas (35–38). Intestinal epithelial cells (stained with a pancytokeratine-
specific antibody) from ApcMin/+ mice contained more tetra-
ploid cells than those from WT C57BL/6 control mice (Fig. 5A).
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This ApcMin/+ associated increase in the frequency of tetraploid
cells was no more detectable if the mice were treated for 5 wk by
gavage with resveratrol or aspirin at doses known to have che-
mopreventive effects (35, 36) (Fig. 5 A and B). Similar results were
obtained when tetraploidy was detected by means of fluorescent in
situ hybridization (FISH) with two probes recognizing two dif-
ferent chromosomes. Intestinal tissues from ApcMin/+mice con-
tained a higher frequency of apparently tetraploid cells (that
contained four copies of both chromosomes) and aneuploid cells
(such as cells containing three copies of chromosome 15) than WT
control tissues, and this effect of the ApcMin mutation was reversed
by pretreatment with resveratrol or aspirin (Fig. 5 C–G). More-
over, the increase in cells with abnormally large nuclei (which
frequently were tetraploid, Table S1) associated with the ApcMin/+

genotype was reversed by resveratrol or aspirin (Fig. 5H).
These results support the notion that oncogenesis-associated

tetraploidization is avoided by long-term treatment with resver-
atrol or aspirin.

Discussion
In the present work, we show that several agents that are well reputed
for their chemopreventive action, namely resveratrol (and its hy-
droxylated metabolite piceatannol) and aspirin (and its active de-
acetylated derivative salicylate) are endowed with the capacity of
reducing the generation, proliferation, and survival of tetraploid cells,
in a variety of cellular models comprising several human and mouse
cancer cell lines, as well as primary epithelial cells, in vitro, ex vivo,
and in vivo. Although chemoprevention by resveratrol in humans is
debated (39, 40), there is ample evidence that prolonged daily intake
of aspirin has amajor preventive effect on proximal colon cancer (41).
Resveratrol has multiple targets within cells (42, 43). Based on

our results, it can be excluded that inhibition of respiratory chain

complex I or activation of sirtuin-1 by resveratrol participates
in the selective antitetraploid effect of resveratrol. Rather, it
appears that an increase in intracellular cAMP levels with sub-
sequent PKA activation (28) is involved in this effect, because
pharmacological manipulations designed to lower cAMP or to
suppress PKA reduced the killing of tetraploid cells by resvera-
trol. At least in the context of colon cancer, aspirin is generally
thought to act via inhibition of prostaglandin-endoperoxide
synthase 2 (PTGS2, better known as cyclooxygenase-2, COX2)
(44, 45). Nonetheless, we did not observe that more selective
COX2 inhibitors than aspirin would selectively kill tetraploid
cells (Fig. S10). Reportedly, aspirin activates AMPK, and salic-
ylate directly interacts with AMPK (31, 32). In line with this
evidence, we found indeed that multiple ways of activating
AMPK either directly (with compounds such as AICAR or
A769662) or indirectly (by energy depletion due to nutrient
shortage or inhibition of glycolysis) were selectively toxic for
tetraploid cells. That said, resveratrol and salicylate induced
a similar degree of AMPK activation in tetraploid and diploid
cells. Thus, it appears that a baseline level of AMPK activation is
required for cell survival and that, for yet-to-be-elucidated rea-
sons, tetraploid cells tolerate a lower degree of AMPK activa-
tion. One of the downstream targets of AMPK is 3-hydroxy-3-
methylglutaryl CoA (HMG-CoA) reductase, which undergoes an
inhibitory phosphorylation. Interestingly, statins (which inhibit
HMG-CoA reductase and have putative chemopreventive effects)
(46) also killed tetraploid HCT116 cells more efficiently than
diploid cells (Fig. S10), suggesting that this pathway may operate
downstream of AMPK.
Irrespective of these speculations, our results establish a novel

continuum between selective antitetraploid effects and chemo-
prevention. We provide evidence that several highly effective
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chemopreventive agents, including resveratrol and aspirin as well as
their active metabolites, eliminate tetraploid cells from mixed dip-
loid/tetraploid cultures and prevent the formation of tetraploid cells
in vitro and in vivo, in a model of intestinal carcinogenesis. Based on
these findings, it may be interesting to launch large high-throughput
screening efforts for the identification of novel antitetraploids with
putative chemopreventive properties. One of the challenges will be
to identify agents without major side effects (such as bleeding in-
duced by aspirin), including those that might arise from the per-
turbation of physiological polyploidization processes.

Materials and Methods
Mouse Strains and in Vivo Experiments. Six-week-old C57BL/6 and ApcMin/+

mice (Charles River) were treated for 5 wk by oral gavage (five times
a week) with resveratrol (100 mg/kg) or aspirin (25 mg/kg), both sus-
pended in water. After the mice were killed, intestines were processed
for flow cytometric determination of DNA content or in situ hybrid-
ization. Tp53− /− mice were obtained by crossing Tp53+ /− C57BL/6 (CNRS
UMR6218).

Mice were maintained in specific pathogen-free conditions. Animal
experiments were approved by the local Ethics Committee [Comité d’éthique
en expérimentation animale (CEEA) Integrated Research Cancer Institute in
Villejuif (IRCIV)/Institut Gustave Roussy (IGR) n°26, registered with the French

Ministry of Research], and in accordance with the Directive EU 63/2010.
Experiments followed the Federation for Laboratory Animal Science Asso-
ciation guidelines.

FISH. Intestines were rinsed in PBS and fixed in formalin solution (DiaPath)
before paraffin embedding. Ten-micrometer slices were processed (KBI-60004
Tissue Digestion kit II; Kreatech Diagnostics), and hybridized with two FISH
probes targeting chromosomes 8 or 15 [XCyting Muticolor FISH Probes (XMP) 8
green and XMP 15 orange, MetaSystems]. Images were acquired at 0.4-μm
intervals in the z dimension, using an oil immersion objective (63×). Images
were analyzed with the open-source software Image J. Scoring of FISH signals
was performed by manual counting. Nuclear diameter was measured at the
largest cross-section.

ACKNOWLEDGMENTS. We thank Dr. Benoit Viollet (Cochin Institute) for
plasmids. G.K. is supported by the Ligue contre le Cancer, Agence National
de la Recherche, Association pour la recherche sur le cancer, Cancéropôle
Ile-de-France, Institut National du Cancer, Fondation Bettencourt-Schuel-
ler, Fondation de France, Fondation pour la Recherche Médicale, the Eu-
ropean Commission (ArtForce), the European Research Council (Advanced
Investigator Award), the LabEx Immuno-Oncology, the Site de Recherche
Intégrée sur le Cancer (SIRIC) Stratified Oncology Cell DNA Repair and
Tumor Immune Elimination, the SIRIC Cancer Research and Personalized
Medicine, and the Paris Alliance of Cancer Research Institutes. I.V. is sup-
ported by Associazione Italiana per la Ricerca sul Cancro.

1. Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131(3):
437–440.

2. Gordon DJ, Resio B, Pellman D (2012) Causes and consequences of aneuploidy in
cancer. Nat Rev Genet 13(3):189–203.

R1

A B

E

C
yt

ok
er

at
in

C57Bl/6 Co

C D

3.6% 2.6%2.5%2.1%

R1 R1
ApcMin/+ Co ApcMin/+ Resv ApcMin/+ Asp

C
ou

nt
s

ResvCo Asp
0

1

2

3

4

5

Po
ly

pl
oi

d 
ce

lls
 (%

)

Co
C57Bl/6 ApcMin/+

NSNS

*

0

1

2

3

4

C
el

ls
 w

ith
 fo

ur
 F

IS
H

 s
ig

na
ls

 (%
)

NS
20/1401

9/771
8/740

21/760

ResvCo AspCo
C57Bl/6 ApcMin/+

*

NS

Diploid Tetraploid

D
A

P
I

C
hr

 8
C

hr
 1

5

5 m

1 2

F
Trisomic 
for chr.15

D
A

P
I

C
hr

 8
C

hr
 1

5

10 m

2

1

Chr 15
Chr 8

DNA content

R1

H

0

1

2

3

4

C
el

ls
 w

ith
 n

uc
le

ar
 ø

 >
10

 
m

 (%
)

ResvCo AspCo
C57Bl/6 ApcMin/+

*
23/1000

22/1000

29/1000

17/1000

NS

NS

G

ResvCo AspCo
C57Bl/6 ApcMin/+

C
el

ls
 tr

is
om

ic
 fo

r C
hr

 1
5 

(%
)

19/1000

37/1000

26/1000

22/1000

**

NS

NS

0

1

2

3

4

5

5 m
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