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The mechanisms that control invariant natural killer T (iNKT)-cell
development and function are still poorly understood. The mech-
anistic or mammalian target of rapamycin (mTOR) integrates var-
ious environmental signals/cues to regulate cell growth, proliferation,
metabolism, and survival. We report here that ablation of mTOR
complex 1 (mTORC1) signaling by conditionally deleting Raptor causes
severe defects in iNKT-cell development at early stages, leading to
drastic reductions in iNKT-cell numbers in the thymus and periphery.
In addition, loss of Raptor impairs iNKT-cell proliferation and produc-
tion of cytokines upon α-galactosylceramide stimulation in vitro and
in vivo, and inhibits liver inflammation in an iNKT cell-mediated hep-
atitis model. Furthermore, Raptor deficiency and rapamycin treatment
lead to aberrant intracellular localization and functional impairment
of promyelocytic leukemia zinc-finger, a transcription factor critical for
iNKT-cell development and effector programs. Our findings define an
essential role of mTORC1 to direct iNKT-cell lineage development and
effector function.
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The invariant Vα14-Jα18 T-cell receptor (iVα14TCR)–expressing
natural killer T (iNKT) cells play important roles in both

innate and adaptive immunity and in the pathogenesis of disease.
iNKT cells are derived from the CD4+CD8+ double-positive thy-
mocytes, and their development has been divided into four stages,
from the earliest stage 0 (CD24+CD44−NK1.1−), to stage 1
(CD24−CD44−NK1.1−), stage 2 (CD24−CD44+NK1.1−), and
stage 3 (CD24−CD44+NK1.1+). In contrast to conventional αβ
T (cαβT) cells, iNKT cells immediately secrete a broad range of
cytokines, such as IL-4, IFN-γ, and TNF-α, after TCR stimula-
tion. The prompt responses enable these cells to play important
roles in both innate and adaptive immunity (1–5).
Extensive studies have revealed a large number of transcrip-

tion factors required for iNKT-cell ontogeny. Among them, the
promyelocytic leukemia zinc-finger transcription factor (PLZF)
is a key regulator for early development and functional matu-
ration in the iNKT-cell lineage. Deletion or natural mutation of
PLZF in mice prevents the transition of stage 1 iNKT cells to
stage 2 iNKT cells, as well as impairing effector function, such as
cytokine production, upon activation (6, 7). PLZF interacts with
other molecules, is posttranslationally modified, and functions
within special speckle-like nuclear compartments, nuclear bodies
(NBs). In addition to its role in iNKT cells, PLZF plays important
roles in effector T-cell differentiation and in many other de-
velopmental programs (8). How PLZF is regulated during iNKT-
cell maturation and other developmental programs is unknown.
The mechanistic or mammalian target of rapamycin (mTOR),

a serine/threonine kinase, integrates various environmental sig-
nals/cues, such as growth factors, nutrients, energy, and stress, to
control cell growth, proliferation, autophagy, and survival. This
molecule signals through two signaling complexes: mTORC1 and
mTORC2. mTORC1 promotes protein translation, nucleotide
synthesis, and lipid/sterol synthesis. mTORC2 phosphorylates

AKT, serum and glucocorticoid-regulated kinase 1, and PKC-α
to promote nutrient uptake, cell survival, and actin rearrangement
(9). Activation of mTORC1 and mTORC2 upon TCR stimulation
depends on PI3K-AKT, as well as Ras guanyl releasing protein 1
(RasGRP1)-Ras-Erk1/2 pathways (10). Additional studies, in-
cluding ours, have demonstrated that mTOR and its tight reg-
ulation by the tumor suppressor TSC1 play crucial roles in T-cell
differentiation, survival, quiescence, and migration, as well as
other immune cell development and function (11–17). However,
the role of mTOR in iNKT cells is unclear.
We report here that deficiency of mTORC1 caused by con-

ditional mTOR KO or Raptor KO in mice blocks iNKT-cell
development at early stages, as well as its activation in vitro and
in vivo, phenotypically similar to that caused by PLZF deficiency.
The suppression of mTORC1 by Raptor deficiency and rapa-
mycin dislocates PLZF from its functional nuclear compartment,
suggesting that mTORC1 acts as an upstream regulator of PLZF
to control iNKT-cell lineage development and function.

Results
mTOR Is Essential for iNKT-Cell Development. To determine the role
of mTOR in iNKT-cell development, we analyzed mTORf/f mice
carrying a CD4-Cre transgene (mTOR-T-KO) using PBS57-
loaded CD1d-tetramer (CD1d-tet) to detect the iNKT-cell pop-
ulation. Both the frequencies and numbers of CD1d-tet+TCR-β+
iNKT cells were severely decreased in the thymus, spleen, and
liver of mTOR-T-KO mice compared with mTORf/f (WT) litter-
mates (Fig. 1 A and B). mTOR-T-KO iNKT cells were highly
enriched at CD24+ stage 0 compared with WT controls (Fig. 1C,
Left). The percentages of CD44−NK1.1− stage 1 and CD44+NK1.1+

Significance

The mechanistic or mammalian target of rapamycin (mTOR) is an
evolutionarily conserved serine/threonine kinase that integrates
various environmental signals/cues to regulate cell growth,
proliferation, metabolism, and survival. The promyelocytic leu-
kemia zinc-finger transcription factor (PLZF) is known to be
critical not only for invariant natural killer T (iNKT)-cell de-
velopment and effector program differentiation of lymphocytes,
but also for many other developmental programs. Our study
demonstrates that mTOR is a crucial regulator of PLZF via control
of PLZF localization to special nuclear compartments, which is
essential for iNKT-cell lineage development and effector function.

Author contributions: J.S., S.W., W.D., J.G., and X.-P.Z. designed research; J.S., S.W., W.D.,
and J.W. performed research; J.W. contributed new reagents/analytic tools; J.S., S.W.,
W.D., J.G., and X.-P.Z. analyzed data; and J.S. and X.-P.Z. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1J.S. and S.W. contributed equally to this work.
2To whom correspondence may be addressed. E-mail: zhong001@mc.duke.edu or jimingao@
yahoo.com.

E776–E783 | PNAS | Published online February 10, 2014 www.pnas.org/cgi/doi/10.1073/pnas.1315435111

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1315435111&domain=pdf&date_stamp=2014-03-17
mailto:zhong001@mc.duke.edu
mailto:jimingao@yahoo.com
mailto:jimingao@yahoo.com
www.pnas.org/cgi/doi/10.1073/pnas.1315435111


stage 3 populations from CD24− iNKT cells were drastically in-
creased and decreased, respectively, compared with WT controls
(Fig. 1C, Right). However, due to the great decrease in total iNKT-
cell numbers, mTOR-T-KO mice actually contained 60% less stage
0 iNKT cells and a more drastic decrease of stage 1–3 iNKT cells
than their corresponding WT controls (Fig. 1D). The total
numbers of thymocytes, splenocytes, and liver mononuclear cells
(MNCs) were similar in WT and mTOR-T-KO mice (Fig. 1E).
Although it has been reported that mTOR deficiency causes an
increase in the ratio of CD4 single-positive (CD4SP) to CD8SP
cells in the thymus (18), we did not observe abnormal cαβT-cell
frequencies and numbers in mTOR-T-KO thymus compared
with WT controls based on CD4 and CD8 staining (Fig. 1F).
These results show that mTOR is selectively required for early
development of iNKT cells.

Raptor/mTORC1 Deficiency Impairs iNKT-Cell Development. To de-
termine the contribution of mTORC1 to iNKT-cell develop-
ment, we further examined iNKT development in Raptor f/f-CD4Cre
(Raptor-T-KO) mice, because Raptor is an essential component
for mTORC1 signaling (9). Thymic subsets based on CD4 and
CD8 staining were similar between WT and Raptor-T-KO mice
(Fig. 2A), which is consistent with previous observations in Raptor f/f-
LckCremice (19). Raptor protein level was obviously decreased in
Raptor-T-KO thymocytes (Fig. 2B), suggesting efficient ablation
of Raptor. The residual Raptor protein detected in Raptor-T-KO
thymocytes could be caused by the expression of this protein in
double-negative (DN) thymocytes before Cre transgene expression.

Phosphorylation of S6 and 4E-BP1 (mTORC1-dependent events)
but not Erk1/2, phospholipase C-γ1 (PLC-γ1; mTORC1-indepen-
dent event), or AKT at serine 473 (mTORC2-dependent event) was
considerably decreased in Raptor-T-KO thymocytes, indicating
impaired mTORC1 signaling in these cells (Fig. 2C). In contrast to
cαβT cells, Raptor deficiency led to drastic decreases of iNKT cells
in the thymus, spleen, and liver (Fig. 2 D–F). Within Raptor-T-KO
iNKT cells, the ratios of stage 0 and stage 1 iNKT cells were con-
siderably increased, the ratio of stage 2 iNKT cells was not obviously
altered, but the ratio of stage 3 iNKT cells was drastically reduced
(Fig. 2G). However, due to the drastic decreases of total iNKT-cell
numbers, the total numbers of stage 0 and stage 1 iNKT cells were
not significantly different between WT and Raptor-T-KO mice,
whereas stage 2 and 3 iNKT-cell numbers were strikingly decreased
in Raptor-T-KO mice (Fig. 2H). Of note, the developmental
blockade of iNKT cells in raptor-deficient mice occurs at
stage 1 after positive selection of this lineage of cells. The lack of
obvious effects of mTORC1 deficiency on cαβT-cell develop-
ment in raptorf/f-CD4Cre mice could be due to insufficient de-
letion of mTORC1 during positive selection of these cells in the
thymus. Nevertheless, our results demonstrated that mTORC1 is
crucial for maturation of iNKT cells from stage 1 to stage 2.

Developmental Defect of Raptor-Deficient iNKT Cells Is Cell-Intrinsic.
Because Raptor was deleted not only in iNKT cells, but also in
other cαβT cells in Raptor-T-KO mice, we sought to determine if
the developmental defect of iNKT cells in these mice is due
to cell-intrinsic mechanisms. In chimeric mice generated with
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Fig. 1. iNKT-cell development is blocked early in mTOR-deficient mice. (A) Percentages of iNKT cells in mTOR-T-KO and WT mice. iNKT-cell populations were
determined by CD1d-tet+TCR-β+. Each dot in the bar graphs represents an individual mouse of the indicated genotype. Data are representative of three
experiments. (B) Total iNKT-cell numbers in the thymus (Thy), spleen (Spl), and liver (Lv) of mTOR-T-KO andWT mice. Bar graphs are shown as mean ± SEM. (C)
Thymic iNKT-cell developmental stages. CD24 expression on gated iNKT cells (Left) and CD44 and NK1.1 expression on CD24− iNKT cells (Right) are shown.
Data are representative of three experiments. (D) iNKT-cell numbers at each developmental stage in mTOR-T-KO and WT mice. Bar graphs represent mean ±
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mixed CD45.1+WT and CD45.2+Raptor-T-KO bone marrow
(BM) cells at a 1:8 ratio (Fig. 3A), CD4−CD8−DN, CD4+SP, and
CD8+SP thymocyte populations displayed close to 1:8 ratios of
WT to Raptor-T-KO cells. The ratio was slightly increased in
CD4+CD8+DP thymocyte populations, suggesting the possibility
of Raptor playing a role in DP cell expansion and/or survival
(Fig. 3B). Overall, Raptor is not essential for cαβT-cell de-
velopment even in the competitive environment. In contrast to
cαβT cells, the iNKT-cell ratio of thymic WT to Raptor-T-KO
was increased to 1:0.6 (Fig. 3C). The WT to Raptor-T-KO ratio
of stage 0 iNKT cells was similar to that of DP cells, suggesting
that positive selection of iNKT cells was intact. The ratio of stage
1 iNKT cells was 1:8 (similar to SP thymocytes). However, the
ratios of stage 2 and stage 3 iNKT cells were increased to 1:1 and
98:1, respectively. These data not only indicate that mTORC1
was dispensable for stage 0 to stage 1 but crucial for stage 1 to
stage 2 maturation of iNKT cells, but also suggest a potential

role of mTORC1 for stage 2 to stage 3 maturation. In addition,
Raptor-T-KO iNKT-cell developmental defect is intrinsic, be-
cause the presence of WT thymocytes failed to restore normal
development.
One potential mechanism for the decrease of iNKT cells in the

absence of Raptor is impaired expansion of developing iNKT
cells. Raptor-T-KO iNKT cells incorporated less BrdU at stage 1
but more at stage 3 than WT controls (Fig. 3D), suggesting that
the decreased proliferation of stage 1 iNKT cells may have con-
tributed to the slight reduction of these cells in Raptor-T-KO
thymus. 7-Aminoactinomycin D (7AAD) staining did not reveal
an increase of death in Raptor-T-KO iNKT cells (Fig. 3E). In fact,
Raptor-deficient iNKT cells at stage 1 survived better than WT
controls. Together, these results suggest that the decrease of
iNKT-cell population by Raptor deficiency depends on, or at least
partially on, reduced proliferation but not increased cell death.
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mTORC1 Regulates PLZF Subcellular Localization and Function. As
mentioned earlier, PLZF is critical for iNKT-cell maturation
from stage 1 to stage 2, as well as for acquisition of effector
function in iNKT cells and other innate-like T cells and cαβT
cells (6, 7). Because the developmental defect in Raptor-T-KO
mice was similar to that in PLZF-deficient mice, it suggests
possible cross-regulation between mTORC1 and PLZF. How-
ever, intracellular staining did not reveal obvious differences in
PLZF protein levels between WT and Raptor-T-KO iNKT cells
at stage 1, whereas S6 phosphorylation as a readout for mTORC1
activity was decreased in Raptor-T-KO iNKT cells (Fig. 4A).
However, AKT phosphorylation at Ser473 was similar between
WT and Raptor-T-KO iNKT cells. These observations suggest
that the suppression of mTORC1 signal did not cause a decrease
in PLZF expression in iNKT cells. The localization of PLZF in
NBs is crucial for its function (8, 20–22). In WT stage 1 iNKT
cells, PLZF was localized in both the cytoplasm and PLZF-NBs.
However, in Raptor-T-KO stage 1 iNKT cells, PLZF was pri-
marily found in the cytoplasm and PLZF-NBs were virtually un-
detectable (Fig. 4B). PLZF was also localized in both the cytoplasm
and NBs in iNKT-cell hybridoma cells retrovirally transduced with
PLZF (PLZF-3C3). Rapamycin treatment to inhibit mTORC1
signaling greatly reduced PLZF-NBs (Fig. 4D) without an obvious
impact on PLZF protein expression (Fig. 4C).
PLZF possesses both transcriptional activation and repression

functions. It promotes redd1 and maf but suppresses gfi1 tran-
scription (20, 23, 24). Using ChIP and quantitative real-time
PCR (qRT-PCR), we found diminished association of PLZF
protein with gfi1, redd1, maf, and myc promoters in rapamycin-
treated PLZF-3C3 cells compared with mock-treated cells (Fig.
4E). Moreover, mRNA levels of redd1 and maf were decreased
and the mRNA level of gfi1 was increased in Raptor-T-KO stage
1 iNKT cells compared with WT controls (Fig. 4F). Together,
these results suggest that mTORC1 is an important regulator for
PLZF nuclear localization and function.

Raptor Deficiency Impairs iNKT-Cell Effector Function. iNKT cells
rapidly produce high levels of cytokines, such as TNF-α, IL-4,
and IFN-γ, following activation. In the absence of PLZF, iNKT

cells are defective in production of cytokines upon α-galactosylcer-
amide (α-GalCer) stimulation (6, 7). To examine whether Raptor
deficiency can modulate antigen-activated iNKT-cell function, we
generated Raptorf/f-ERcre (eKO) mice. Short-term administration of
tamoxifen efficiently induced Raptor deletion in eKO thymocytes
without obviously affecting iNKT-cell numbers in the thymus,
spleen, and liver (Fig. 5A). eKO iNKT cells produced much less
TNF-α, IL-4, and IFN-γ than WT controls following stimulation
with α-GalCer for 3 d, with the addition of phorbol 12-myristate
13-acetate (PMA), ionomycin, and Golgi-Plug (BD Biosciences)
in the last 5 h (Fig. 5B). Moreover, eKO iNKT cells displayed
reduced proliferation following α-GalCer stimulation visualized
by 5,6-carboxy-fluorescein diacetate succinimidyl ester (CFSE)
dilution (Fig. 5C). These results suggest that mTORC1 plays
critical roles in antigen-induced iNKT-cell activation in vitro.
To determine the role of mTORC1 in iNKT-cell function in

vivo further, we injected 0.5 μg of α-GalCer into eKO and WT
mice. Administration of α-GalCer activates iNKT cells in vivo,
leading to rapid cytokine production and expansion of iNKT
cells (25). Consistent with the in vitro data, serum TNF-α, IL-4,
and IFN-γ levels were decreased in eKO mice upon α-GalCer
stimulation (Fig. 5D). iNKT-cell numbers were drastically in-
creased in WT mice 3 d after α-GalCer injection. In contrast,
iNKT-cell numbers in eKO mice remained low, suggesting im-
paired expansion of iNKT cells in the absence of Raptor (Fig.
5E). Together, these observations suggest that mTORC1 is im-
portant for iNKT-cell activation in vivo.
We further investigated the pathophysiological relevance of

impaired iNKT-cell function in Raptor-deficient mice using a
model of α-GalCer–induced hepatitis (26, 27). Seventeen hours
after α-GalCer injection, serum levels of alanine transaminase
(ALT) and aspartate transaminase (AST), markers of liver
damage, were considerably elevated in WT mice. However, such
ALT and AST elevation was diminished in Raptor eKO mice
(Fig. 5F), suggesting milder liver damage in these mice than in
WT control mice. H&E staining of paraffin-embedded liver thin
sections showed patches of massive necrosis accompanying leu-
kocyte infiltration in the liver of WT mice. In contrast, such
massive necrosis was virtually absent in the liver of Raptor eKO
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thymic iNKT cells based on 7AAD staining (mean ± SEM, n = 3). *P < 0.05 determined by the Student t test.
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mice (Fig. 5G). TNF-α released by hepatic iNKT cells plays an
important role in liver damage following α-GalCer administration
(26, 27). Hepatic iNKT cells isolated from Raptor eKO mice pro-
duced lower levels of TNF-α than WT controls (Fig. 5H), which
may contribute to the reduced ability of Raptor eKO iNKT cells

to induce liver damage. Similar to Raptor-T-KO iNKT cells,
PLZF in eKO iNKT cells was predominantly localized in the cy-
tosol but not in the nuclei (Fig. 5I), suggesting that mTORC1 also
regulates PLZF NB formation in mature iNKT cells to control their
function. Together, these observations indicate that mTORC1 ac-
tivity is critical for iNKT-cell activation to cause liver damage.

Discussion
mTOR signaling controls diverse cellular processes, including
growth, proliferation, differentiation, survival, and function. We
demonstrate here a critical role of mTOR in early iNKT-cell de-
velopment by selectively ablating mTOR in T cells. In T cell-specific
mTOR-deficient mice, iNKT-cell numbers are greatly decreased,
which started at stage 0. Using Raptor-deficient mice, we demon-
strate further that mTORC1 deficiency impedes iNKT-cell matu-
ration from stage 1 to stage 2. Moreover, deletion of Raptor in
mature iNKT cells impairs antigen-induced activation of these cells
in vitro and in vivo. Because the developmental defect of iNKT cells
in Raptor-deficient mice occurs later than in mTOR-deficient mice,
our data also suggest that mTORC1-independent mTOR signaling
pathways, such as mTORC2 signaling, may play a role during early
iNKT-cell development. In addition, TSC1 deficiency induces
decreased iNKT cells correlated with hyperactivated mTORC1
(13), suggesting that both hypoactivation and hyperactivation of
mTORC1 are detrimental for iNKT-cell development.
The ability of mTOR to sense both intracellular and envi-

ronmental cues raises the question of how mTOR signaling
is triggered during iNKT-cell development and activation. In de-
veloping thymocytes as well as peripheral T cells, acute TCR
stimulation is able to induce mTOR activation (10). In thymocytes,
both diacylglycerol-RasGRP1-Ras-Mek1/2-Erk1/2 and PI3K-
PDK1-AKT pathways are activated following TCR engagement,
and both are critical for TCR-induced mTOR activation (10). In-
terestingly, ablation or inhibition of these pathways has a profound
impact on iNKT-cell development. RasGRP1-deficient mice dis-
play substantial decreases of not only total iNKT cells, but also
stage 0 iNKT cells (28). In the absence of PDK1, stage 1–3 but not
stage 0 iNKT cells are drastically decreased (29). Moreover, ele-
vated expression of phosphatase and tensin homolog (the phos-
phatase catalyzing the reverse reaction-mediated PI3K) due to
micro-RNA (miRNA) miR-181 deficiency also causes early iNKT-
cell developmental defects (30, 31). Based on these observations,
we propose that the RasGRP1-Ras-Erk1/2 and PI3K-PDK1-AKT
pathways may relay the iVα14TCR signal and possibly other signals
to mTOR for promoting iNKT-cell development.
Similar to mTOR, PLZF is a fundamentally important regulator

of the development and effector program of iNKT cells (6, 7). In
addition to iNKT cells, PLZF controls other lymphoid effector
programs and is involved in many major developmental and bi-
ological processes, such as megakaryocytic development, stem cell
renewal, limb development, and tumorigenesis (8, 32–35). PLZF
nuclear localization to the NBs has been proposed to be important
for its function. A recent study showed that PLZF binds and recruits
E3 ligase Cullin 3 to the nucleus to promote iNKT-cell development
(21). Defective PLZF nuclear localization to the NBs in Raptor-
deficient iNKT cells and in an iNKT-cell hybridoma treated with
rapamycin and diminished association of PLZF to its target genes
suggest that mTORC1 may promote PLZF function during iNKT-
cell development. Interestingly, mTORC1 has been demonstrated
to control nuclear localization of multiple molecules both posi-
tively and negatively. It inhibits Lipin1 (a phosphatase for phos-
phatidic acid) and transcription factor EB nuclear translocation
(36–38) but promotes RAR-related orphan receptor-γt nuclear
accumulation (19). mTOR itself dynamically shuttles between the
nucleus and cytoplasm in a rapamycin-dependent manner (39, 40).
Future studies should determine how mTORC1 promotes PLZF
localization to the NBs in the control of iNKT-cell development
and possibly other important biological processes with both PLZF
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and mTORC1 playing important roles. Additionally, PLZF can
oppose mTORC1 activity through the induction of Redd1 (23).
PLZF may function as a negative feedback mechanism to dampen
mTORC1 activation. Hyperactivation of mTORC1 poses detri-
mental effects in other immune cells (12–17). Fine-tuning of
mTORC1 and PLZF activities may be crucial for the proper de-
velopment and function of iNKT cells and many other cell types.
The severe decrease of iNKT cells caused by mTOR de-

ficiency is in sharp contrast to the virtually normal populations of
cαβT cells in the thymus of these mice, suggesting a differential
requirement of mTOR activity for cαβT-cell and iNKT-cell de-
velopment. Such difference may be due, in part, to the more

dynamic nature of stage 0 and stage 1 iNKT cells than thymocytes
committed to the cαβT lineages. Highly proliferative stage 0 and 1
iNKT cells may rely more stringently on mTOR for the proper
metabolism and generation of sufficient building blocks necessary
for growth and proliferation. In addition, mTOR signaling may be
essential for the expression or function of yet to be identified
factors other than PLZF that are critical for iNKT-cell maturation.
For example, miRNAs have recently emerged as critical regulators
of immune cell development and function (41). Expression of
Dicer, an essential component of miRNA biogenesis, appears to
be dependent on mTORC1 activity (42). miRNA networks have
been found to regulate iNKT-cell development and/or function
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(43–47), but whether mTORC1 promotes iNKT maturation via
miRNAs remains to be determined.
iNKT cells regulate the pathogenesis of many diseases. They

are enriched in liver MNCs in both mice and humans. Evidence
suggests that iNKT cells play complex roles in multiple liver dis-
eases, such as hepatitis and fibrosis (48–50). Our findings that
mTORC1 positively regulates iNKT-cell activation upon stimula-
tion with a cognate antigen and is critical for the development of
iNKT cell-mediated hepatitis suggest mTOR as a potential thera-
peutic target for liver autoimmune/inflammatory diseases in which
iNKT cells may play an important role.

Materials and Methods
Mice. mTORf/f, Raptorf/f, and CD4-Cre mice were purchased from the Jackson
Laboratory or Taconic Farm. Estrogen receptor (ER)-Cre mice were previously
reported (51). The 4- to 8-wk-oldmTORf/f-CD4Cre, Raptorf/f-CD4-Cre, and Raptorf/f-
ER-Cremice and their respective Cre-negative (WT) littermates were used for
the experiments, which were performed according to protocols approved by
the Duke University Institute Animal Care and Use Committee.

Flow Cytometry. Thymocytes, splenocytes, and liver MNCs were prepared
according to published protocols (52). Cells were stained with appropriate
fluorochrome-conjugated antibodies in PBS containing 2% (vol/vol) FBS on
ice for 30 min, and data were collected using a FACSCanto II flow cytometer
(BD Biosciences). Phycoerythrin (PE)- or allophycocyanin-labeled PBS57-
loaded CD1d-tet was provided by the National Institutes of Health Tetramer
Core Facility. Fluorochrome-conjugated anti-CD4 (GK1.5), CD8 (53-6.7), TCR-β
(H57-597), NK1.1 (PK136), CD44 (IM7), CD24 (M1/69), CD45.1 (A20), and
CD45.2 (104) were purchased from Biolegend.

Enrichment of iNKT Cells. iNKT cells were enriched from thymocytes, as pre-
viously published (28), with slight modifications. Briefly, 50–100 million
thymocytes in 500 μL of Iscove’s modified Dulbecco’s medium (IMDM) with
10% (vol/vol) FBS (IMDM-10) were stained with 2 μL of PE–CD1d-tet on ice
for 30min. After being washed two times, the cells were resuspended in 500 μL
of IMDM-10 followed by the addition of 30 μL of anti–PE-conjugated mi-
crobeads (Miltenyi Biotec). Following incubation on ice for 30 min, iNKT cells
were enriched using LS columns according to the manufacturer’s protocol.
Enriched iNKT cells were used for additional staining and FACS analyses or
sorting for iNKT cells using a MoFlo FACS (Beckman–Coulter). To detect in-
tracellular PLZF, phospho-AKT (pAKT), or phospho-S6 (pS6), cells fixed and per-
meabilized using a Foxp3 staining kit (eBioscience) for PLZF and a BD CytoFix/
CytoPerm kit (BD Pharmingen) for pS6 and pAKT, were labeled with mouse anti-
PLZF (Santa Cruz Biotechnology), rabbit anti-pAKT (Ser473; Cell Signaling Tech-
nology), or rabbit anti-pS6 (Ser240/244; Cell Signaling Technology) antibodies
and detected with FITC-conjugated anti-mouse or rabbit secondary antibodies
(1:400). Data were analyzed using FlowJo Version 9.2 software (TreeStar).

Mixed BM Chimeric Mice. Seven-week-old TCR-β/δ double-KO mice were sub-
jected to sublethal irradiation (600 rad). Twelve hours later, BM cells from tibias
and femurs of WT control (CD45.1) and Raptorf/f-CD4cre (CD45.2) mice were
mixed at a 1:8 ratio, and a total of 1 × 107 cells were i.v. injected into the irra-
diated mice. The chimeras were analyzed 6 wk later.

Western Blotting. Thymocytes were rested in PBS at 37 °C for 30 min and left
unstimulated or stimulated with an anti-CD3e antibody (500A2) at 37 °C for 10
min. Cells were lysed in radioimmunoprecipitation assay buffer [0.1% SDS, 1%
Triton X-100, 0.25% sodium deoxycholate, 150 mM NaCl, 50 mM Tris (pH 7.4)]
with a freshly added protease inhibitor mixture and phosphatase inhibitors.
Proteins were resolved by SDS/PAGE, transferred to a Trans-Blot Nitrocellulose
membrane (Bio-Rad), and probed with the following antibodies: anti-Raptor,
anti–phospho-4E-BP1 (Thr37/46) and total 4E-BP1, anti-pS6 (Ser235/236) and
total S6, anti–phospho-Erk1/2 (Thr202/Tyr204) and total Erk1/2, anti–phospho-
PLC-γ1 (Tyr783) and total PLC-γ1, and anti-pAKT (Ser473) antibodies from Cell
Signaling Technology.

Immunofluorescence Microscopic Analysis. Sorted stage 1 iNKT, α-GalCer–
stimulated iNKT, or stably FLAG-PLZF–expressing 3C3 NKT hybridoma (PLZF-
3C3) cells were cytospun on slides using a cytocentrifuge (Shandon Cytospin
3 cytocentrifuge; Thermo Scientific) at 600 rpm for 5 min, fixed with 4%
paraformaldehyde, and then permeabilized with 0.1% Triton X-100. The
samples were incubated with a mouse anti-PLZF antibody (4 μg/mL) for 1 h,
further stained with an FITC-conjugated anti-mouse secondary antibody

(1:400, Molecular Probes) for 30 min, and finally covered with VECTASHIELD
mounting medium containing 1.5 μg/mL DAPI (Vector Laboratory). Images
were collected using a Zeiss ApoTome system and AxioVision software (Carl
Zeiss) with a 63× oil objective and a CoolSNAP HQ CCD camera (Roper Sci-
entific). Photoshop (Adobe Systems) was used for postacquisition processing
of brightness and contrast.

qRT-PCR. TotalRNAswere isolatedfrommagneticbead-enrichedandthenFACS-
sorted stage 1 iNKT cells using TRIzol Reagent (Sigma) and were reversely
transcribed using the iScript cDNA Synthesis Kit (Bio-Rad). qRT-PCR was per-
formedwithMastercycler realplex (Eppendorf) and SsoFast EvaGreen Supermix
(Bio-Rad) with the following primer pairs: gfi1 (5′-AGGAGGCACCGAGAG-
ACTCA-3′ and 5′-GGGAGGCAGGGAAGACATC-3′), redd1 (5′-AGGAGGCACCGAG-
AGACTCA and GGGAGGCAGGGAAGACATC-3′),maf (5′-AATCCTGGCCTGTTT-
CACAT-3′ and 5′-TGACGCCAACATAGGAGGTG-3′), and myc (5′-TGAAGGCTG-
GATTTCCTTTG-3′ and 5′-TTCTCTTCCTCGTCGCAGAT-3′). Expressed levels of target
mRNAs were normalized with β-actin and calculated using the 2-ΔΔCT method.

ChIP. ChIP analysis was performed as previously described (53). Briefly, PLZF-
3C3 cells were cultured in the presence or absence of 2 nM rapamycin for
2 d. Ten million cells were cross-linked with 1% formaldehyde for 8–10 min
at room temperature. The reaction was stopped with the addition of glycine
to 0.125 M. Nuclei were lysed with NLB buffer [50 mM Tris (pH 8.1), 10 mM
EDTA, 1% SDS, protease inhibitor mixture] and sonicated using a Misonics
sonicator S-4000. Lysates were incubated with anti–FLAG-conjugated aga-
rose beads at 4 °C overnight and then washed five times with LiCl wash
buffer [100 mM Tris (pH 7.5), 500 mM LiCl, 1% Nonidet P-40, 1% sodium
deoxycholate] and two times with TE [10 mM Tris (pH 8.0), 1 mM EDTA].
After elution of DNA with elution buffer (1% SDS, 100 mM NaHCO3), ChIP
samples were de–cross-linked at 65 °C overnight, followed by proteinase K
treatment. DNA was purified using a PCR Purification Kit (Qiagen) and an-
alyzed by qRT-PCR. The primers used were gfi1 (5′-GCCTCTAACGCTCAG-
GAAGT-3′ and 5′-CTTGCTTTCGGGAGAGACTG-3′), redd1 (5′-CCTCGCCTGA-
ATGATGAAAC-3′ and 5′-CAATTCAATGGAACCCAGGA-3′), maf (5′-TCACTTG-
CAGAGAGGGACAA-3′ and 5′-CCATCCTCTGCATCTTTCGT-3′), and myc (5′-
ACTCATTCGTTCGTCCTTCC-3′ and 5′-CTCCACACAATACGCCATGT-3′). Pre-
cipitated DNA was calculated as a percentage of input DNA.

iNKT-Cell Proliferation and Death. Thymocytes were labeled with 5 μM CFSE at
room temperature for 9 min as previously described (28, 54), and 1 × 107 labeled
cells were then seeded in 48-well plates with or without 125 ng/mL α-GalCer for
3 d. CD1d-tet+TCR-β+ and CD1d-tet−TCR-β+ cells were analyzed by flow cytom-
etry. For in vivo cell proliferation analysis, mice were i.p. injected with 1.5 mg of
BrdU in PBS. Sixteen hours later, thymic iNKT cells were enriched using PE–CD1d-
tet and stained for CD24, CD44, NK1.1, and TCR-β surface expression. Afterward,
samples were intracellularly stained for BrdU using an FITC BrdU Flow Kit (BD
Pharmingen). To access in vivo cell death, enriched iNKT cells were stained with
7AAD (2 μg/mL; Life Technologies), together with cell surface antibodies.

α-GalCer–Induced Cytokines. Thymocytes were stimulated with α-GalCer for 3 d
and further incubated with PMA (50 ng/mL) plus ionomycin (500 ng/mL) in the
presence of Golgi-Plug protein transport inhibitor (1:1,000; BD Biosciences) for
5 h. Afterward, the cells were harvested and stained using a Cytofix/Cytoperm
Fixation/Permeabilization Kit (BD Biosciences). Anti–IL-4 (11B11), anti–IFN-γ
(XMG1.2), and anti–TNF-α (MP6-XT22) antibodies were from BioLegend. To
measure in vivo cytokine levels, mice were injected i.v. with 0.5 μg of α-GalCer in
PBS. At 2 h for IL-4 and TNF-α and at 12 h for IFN-γ, the sera from immunized
mice were collected and the levels of indicated cytokines were determined
using Mouse ELISA Max (BioLegend) according to the manufacturer’s instruc-
tions.

α-GalCer–Induced Hepatitis.Mice were injected i.v. with 2 μg of α-GalCer, and
serum and liver tissue from the immunized mice were collected 17 h post-
injection. To assess for liver damage, ALT/AST levels in serum were de-
termined using 5 μL of serum by means of a serum ALT/AST enzyme activity
assay kit (BioTron Diagnostics, Inc.). The livers were used to determine in-
tracellular TNF-α levels after 90 min of stimulation or were fixed with 10%
formalin overnight, dehydrated with 70% ethanol, and embedded in paraffin.
H&E staining of thin sections was performed following standard protocols.

Statistical Analysis. To compare the difference between WT and KO values,
a two-tailed Student t test, the Mann–Whitney U test, or ANOVA was
performed using GraphPad PRISM analysis software (*P < 0.05; **P < 0.01;
***P < 0.001).
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