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The B-myb (MYBL2) gene is a member of the MYB family of tran-
scription factors and is involved in cell cycle regulation, DNA rep-
lication, and maintenance of genomic integrity. However, its function
during adult development and hematopoiesis is unknown. We
show here that conditional inactivation of B-myb in vivo results
in depletion of the hematopoietic stem cell (HSC) pool, leading to
profound reductions in mature lymphoid, erythroid, and myeloid
cells. This defect is autonomous to the bone marrow and is first
evident in stem cells, which accumulate in the S and G2/M phases.
B-myb inactivation also causes defects in the myeloid progenitor
compartment, consisting of depletion of common myeloid progen-
itors but relative sparing of granulocyte–macrophage progenitors.
Microarray studies indicate that B-myb–null LSK+ cells differen-
tially express genes that direct myeloid lineage development
and commitment, suggesting that B-myb is a key player in control-
ling cell fate. Collectively, these studies demonstrate that B-myb
is essential for HSC and progenitor maintenance and survival
during hematopoiesis.

myeloipiesis | myelodisplastic syndrome

Hematopoiesis is maintained by the renewal of multipotent
hematopoietic stem cells (HSCs) that give rise to lineage-

committed cells. HSCs are maintained in constant numbers in
the bone marrow (BM), where they reside in a quiescent state
(1, 2). According to the stochastic model of hematopoiesis,
long-term HSCs (LT-HSCs), which can undergo extensive self-
renewal, begin to differentiate into short-term HSCs (ST-HSCs)
with limited self-renewing potential. ST-HSCs further differen-
tiate into multipotent progenitors (MPPs) that unlike HSCs do
not self-renew, but retain the ability to commit to multiple lin-
eages. Lineage commitment begins to occur at the level of the
common lymphoid and myeloid progenitors (CLPs and CMPs),
which are thought to arise from MPPs. Whereas CLPs give rise
to lymphoid cells, CMPs further differentiate into megakaryo-
cyte–erythroid progenitors (MEPs) and granulocyte–monocyte
progenitors (GMPs) (1, 2). More recent studies have identified
additional intermediates, such as lymphoid-primed MPPs (LMPPs),
in this developmental pathway (3).
The MYB family of transcription factors has three members:

A-myb (MYBL1), B-myb (MYBL2), and c-myb (MYB). Disrup-
tion of the c-myb locus in mice results in embryonic lethality at
embryonic day 15, primarily due to defective erythropoiesis in
the fetal liver (4). A role for c-myb in adult hematopoiesis has
been shown more recently using several conditional knockout
(KO) and mutant mouse models. In adult thymocytes and B
lymphocytes, disruption of c-myb blocks development at the DN3
and prepro B stages, respectively (5–8). c-myb expression is also
required for erythropoiesis, myelopoiesis, and the development
and maintenance of HSCs (9–12), underscoring the importance
of this gene within the entire hematopoietic compartment.
B-myb–null mutant mice die in utero at days 4–6.5 of ges-

tation due to defects in inner cell mass formation (13), which
precludes the study of this gene in hematopoiesis. In this paper,

we describe the effects of conditional disruption of B-myb in
adult hematopoietic cells. Loss of B-myb leads to depletion of
the HSC pool, resulting in dramatic losses of mature cells in
multiple lineages. The effect of B-myb deficiency is autonomous
and is associated with defects in HSC cell cycle progression and
increased levels of cell death in the myeloid progenitor com-
partment. Gene expression analysis indicates that B-myb–null
LSK+ cells differentially express genes that regulate myeloid line-
age development and commitment, suggesting that B-myb plays
a critical role in regulating HSC and progenitor cell maintenance.

Results
Loss of B-myb Expression Results in Defective Hematopoiesis. In BM,
B-myb mRNA is expressed at appreciable levels in the HSC and
myeloid progenitor compartments, with the highest levels in the
CMP and GMP populations. These levels are in stark contrast to
those of mature, lineage+ (Lin+) cells (Fig. 1A). To determine
the role of B-myb in adult hematopoiesis, we generated a con-
ditional B-myb floxed (B-mybF/F) mouse model (Fig. 1 B–D) and
crossed this mouse with the Mx1-cre strain (14). Administration of
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polyinosinic:polycytidylic acid (pIpC) to B-mybF/F-Cre mice (des-
ignated “F/Fcre”) resulted in a dramatic loss of cellularity in the
BM and spleen (Fig. 2 A and B) compared with identically treated
littermate control (F/F or +/F) animals. Notably, we observed sig-
nificant decreases in the number of B- and T-lymphoid, erythroid,
and myeloid lineage cells, with the myeloid compartment being
most profoundly affected in both tissues (Fig. 2 C and D). Statis-
tically significant reductions in the number of platelets, total white
blood cells, lymphocytes, and neutrophils were also observed in the
peripheral blood (PB) of B-myb–deficient F/Fcre animals (Fig. S1).
These differences resulted in changes in the frequencies of cell
types in the spleen and BM (Fig. S2), as the percentages of B,
erythroid, and myeloid cells were altered in the absence of B-myb

expression. Although the number of T-lineage (CD3+) cells were
also decreased in both the BM and spleen, thymocytes and the CD3+

cells in the thymus were not significantly depleted (Fig. 2 C–F).
A more detailed examination of the HSC and progenitor

compartments showed that B-myb–deficient mice have marked
decreases in the absolute number of HSCs (Lin−Sca1+cKit+

CD150+CD48−), MPPs (Lin−Sca1+cKit+CD150−CD48−) (15)
as well as CMPs (Lin−Sca1−cKit+CD34+CD16/32[FcγR]mid),
GMPs (Lin−Sca1−cKit+CD34+CD16/32[FcγR]hi) and MEPs
(Lin−Sca1−cKit+CD34loCD16/32[FcγR]lo) (Fig. 2G and H) (16).
Although we also observed a decrease in the number of CLPs
(Lin−/IL7Rα+/Sca1lo/cKitlo) (Fig. 2H) (17), this difference was
not significant. Consistent with the reductions in myeloid pro-
genitors, B-myb–deficient BM also formed fewer colonies in in
vitro colony-forming unit (cfu) assays (Fig. 2I). All of the myeloid
lineage colonies that were scored, with the exception of CFU-M,
were reduced in number in cultures derived from B-myb–deficient
BM. The increased number of CFU-M colonies, although not
statistically significant, mirrors the CD11b+Gr1lo monocyte-
containing population whose frequency is increased in B-myb
F/Fcre mice (Fig. S2A). Taken together, these results show that
B-myb expression is required for adult hematopoiesis and for the
maintenance of HSCs and myeloid progenitor cells.

B-myb–Mediated Defects in the BM Are Autonomous. We next per-
formed noncompetitive BM transplantation assays to determine
whether the defect in hematopoiesis was intrinsic to BM. Whole
BM was isolated from CD45.2+ control or B-myb–deficient mice
and transplanted into lethally irradiated CD45.1+ recipients
(Fig. S3A). pIpC was administered once engraftment was stable
(8–10 wk posttransplant) and ∼90% of the PB in the recipients
was reconstituted from CD45.2+ donor-derived cells (Fig. 3A).
Mice transplanted with B-myb–deficient BM and treated with
pIpC became pancytopenic (Fig. 3 B and C) and showed pro-
found decreases in the numbers of LT-HSCs and myeloid pro-
genitors (Fig. 3 D and E) as well as reduced PB counts (Fig. S4).
On the other hand, reciprocal, noncompetitive BM transplants,
whereby wild-type BM (CD45.1+) was transplanted into lethally
irradiated control or B-myb F/Fcre (CD45.2+) mice, failed to
produce a phenotype (Fig. S5). These observations confirm that
loss of B-myb expression impairs hematopoiesis in a cell-autono-
mous manner.

B-myb–Deficient HSCs Fail to Long-Term Repopulate. Because loss of
B-myb caused a dramatic decrease in the number of HSCs,
we performed competitive repopulation studies to determine
whether B-myb KO HSCs were capable of long-term reconstitution
in vivo. Whole BM was isolated from pIpC-treated control and
B-myb F/Fcre animals (CD45.2+), mixed in a 1:1 ratio with com-
petitor wild-type (CD45.1+) BM and transplanted into lethally
irradiated recipient (CD45.1+) mice (Fig. S3B). Engraftment was
monitored every 4 wk to determine the contribution of CD45.1+

and CD45.2+ cells. The control CD45.2+ cells reconstituted the
myeloid and B- and T-lineage cells in the PB at levels comparable
to the competitor for the 16-wk duration of the experiment
(Fig. S6). In contrast, multilineage reconstitution by B-myb–
deficient BM was strongly impaired at 4 wk posttransplant, and
decreased progressively over time, demonstrating that B-myb is
required for the maintenance and self-renewal of HSCs.

B-myb Disruption Leads to Aberrant Cell Cycle Progression of HSCs.
Loss of HSC renewal is often associated with a defect in pro-
liferative control. In their steady-state, HSCs are largely quies-
cent and enter the cell cycle in response to stimuli that trigger
differentiation and lineage commitment (18). B-myb has been
shown to play a role in the cell cycle progression of multiple cell
types and is involved in regulating progression through the S and
G2/M phases (19–25). To determine whether loss of B-myb
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Fig. 1. Murine B-myb genomic structure and target production. (A) Ex-
pression of B-myb in HSCs and progenitor cells. (All mRNA levels shown are
normalized to that of β-actin.) All values represent mean ± SEM. (B) Sche-
matic representation of the mouse B-myb genomic clone. (Note: not drawn
to scale.) LoxP sites are depicted as black arrowheads. Homologous re-
combination will generate the B-mybF(neo) allele that will be used for sub-
sequent recombination by Cre recombinase. ES cells with either a type I or II
deletion (B-mybΔEx6 and B-mybF) will be produced following Cre expression.
The probe that can be used to determine homologous recombination is in-
dicated. Restriction enzyme sites: B, BamHI; Bg, BglII: H, HindIII; S, SmaI; Xb,
XbaI; Xh, XhoI. Deletion of exon 6 produces a B-MYB protein without a DNA-
binding domain and a shift in reading frame. (C) Representative semi-
quantitative PCR analysis of genomic DNA isolated from pIpC-treated control
and B-myb floxed mice showing the presence of floxed and deleted alleles in
the BM, spleen (SP) and thymus (THY). The percentage of deletion is shown.
(D) Western blot analysis of B-MYB protein (arrow) in sorted Lin− BM cells
derived from pIpC-treated control (F/F) and floxed/Mx1Cre+ (F/Fcre) mice.
β-Actin is shown as a loading control.
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expression led to altered cell cycle kinetics in HSCs, pIpC-trea-
ted control and B-myb F/Fcre mice were injected with BrdU and
BM was harvested 2 h posttreatment. BrdU incorporation was
significantly higher in B-myb–deficient HSCs compared with
those of the control, reflecting increases in the fraction of cells in
the S and G2/M phases (Fig. 4A). In the myeloid compartments,
more subtle but statistically significant increases in the fre-
quencies of cells in the G2/M phase were observed as a con-
sequence of B-myb deletion. These studies indicate that loss
of B-myb expression alters cell cycle progression predominantly
in HSCs, and to a lesser extent, in myeloid progenitors.

Loss of B-myb Increases Cell Death of Myeloid Progenitors. We next
determined whether altered cell cycle kinetics in B-myb KO mice

resulted in differentiation-associated cell death, which might
account for the depletion of HSCs and progenitors, by stain-
ing BM from pIpC-treated control and B-myb KO mice with
Annexin V. B-myb KO mice did not have increased percentages
of apoptotic (Annexin V+ DAPI+) HSCs or MPPs (Fig. 4B).
However, the fraction of apoptotic CMPs, GMPs, and MEPs was
higher in B-myb–deficient animals, with the difference in cell
death being significant in the GMP population. Interestingly,
despite the fact that B-myb–deficient mice have a profound re-
duction in the number of myeloid progenitors and mature myeloid
cells (Fig. 2), the relative frequency of GMPs was actually increased
in these animals (Fig. 4C). To determine whether the higher per-
centage of GMPs in the B-myb KO mice resulted from increased
differentiation of CMPs and/or proliferation of GMPs, we sorted

Control       F/Fcre 0 

1 

2 

3 

4 

5 
A Bone Marrow B Spleen 

Thymus 

Control F/Fcre 
0 

2 

6 

4 

8 
C 

Myeloid 
Cells 

B Cells T Cells Erythroid  
Cells 

Control 
F/Fcre 

C
el

l n
um

be
r (

x1
07

) 

0 

0.5 

1.0 

1.5 Bone Marrow 

D F 

C
FU

s 
pe

r 1
0,

00
0 

W
B

M
 

Control F/Fcre 
0 

10 

20 

30 

40 

50 

60 

CFU-G 
CFU-M 
CFU-GM 
CFU-E 
CFU-GEMM 

Control F/Fcre 

HSC 

C
el

l n
um

be
r (

x1
03

) 

0 

4 

8 

12 

16 

Control F/Fcre 

C
el

l n
um

be
r (

x1
07

) 

0 

1 

2 

3 

4 

Control F/Fcre 

Thymus 

0 

2 

8 

6 

4 

C
el

l n
um

be
r (

x1
06

) 

CD3+CD4+CD8+ 
CD3+CD4+ 
CD3+CD8+ 

Control 
F/Fcre 

Myeloid 
Cells 

B Cells T Cells Erythroid  
Cells 

C
el

l n
um

be
r (

x1
07

) 

0 

1 

2 

3 

G I H 
Control 
F/Fcre 

MPP CMP GMP MEP CLP 

C
el

l n
um

be
r (

x1
04

) 

0 

4 

8 

12 

Spleen 
C

el
l n

um
be

r (
x1

07
) 

C
el

l n
um

be
r (

x1
07

) 

E 

Fig. 2. B-myb is required for hematopoiesis. B-myb–deficient (F/Fcre; Mx1-cre-B-mybF/F) and control (B-myb+/F or B-mybF/F) mice were treated with pIpC every
other day over a 5-d period. Tissues were harvested on day 21 posttreatment. Total number of cells isolated from BM (A) and spleen (B) of control and B-myb–
deficient mice. Analysis of mature lineage cells present in the BM (C) and spleen (D) of control and B-myb–deficient mice. Erythroid, B-, T-, and myeloid
lineage cells are defined as TER119+, B220+, CD3+, and CD11b+Gr1+, respectively. Total number of thymocytes (E) and mature populations (F) in the thymuses
of control and B-myb F/Fcre mice. (G) Total number of HSCs in the BM of control and B-myb–deficient mice. (H) Total number of MPPs, myeloid progenitors
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these populations from control and B-myb F/Fcre mice (16) and
plated them in GM-CSF–containing medium in the presence of
IFN-α to delete floxed sequences in vitro (12). Loss of B-myb
resulted in lower cell numbers, reflecting an inhibition of both CMP
and GMP proliferation (Fig. S7A). Furthermore, a sharp decrease
in the frequency of CD11b+ and Gr1+ mature myeloid cells was
observed in cultures of CMPs. The frequency of the CD11b+Gr1hi

population in the B-myb F/Fcre GMP cultures was also signifi-
cantly decreased (Fig. S7B), suggesting that loss of B-myb affects
proliferation and differentiation along the myeloid lineage.

Disruption of B-myb Results in Altered Gene Expression in LSK+ Cells.
To gain mechanistic insight into the hematological defects in
B-myb–deficient mice, we performed a oligonucleotide microarray
analysis of the Lin−Sca1+ckit+ (LSK+) population because the
defect in development originates in the HSCs. Comparative
analysis and hierarchical clustering identified 438 and 470 genes
that were significantly up- and down-regulated, respectively, in the
B-myb KO cells (Fig. 5A). When these gene lists were further
analyzed using the ChIP Enrichment Analysis (ChEA) database
within ENRICHR (http://amp.pharm.mssm.edu/Enrichr) (26, 27),
considerable overlap was observed with the promoters of genes
that are occupied by transcription factors during the control of
maintenance, development, and multipotency of HSCs and pro-
genitor cells as well as embryonic stem cells (ESCs) (Dataset S1)
(28–34). Of these transcription factors, C-MYC and E2F-1 are
known to be intricately involved in B-MYB–dependent tran-
scription (22, 25, 35–38), whereas others, such as JARID1A,
RUNX1 (AML1), TAL1 (SCL), LMO1, and FLI1, are not as
well defined with respect to B-MYB transcriptional activation
and repression of its targets (25, 39). In addition to the tran-
scription factors listed above, we also detected an overlap with

genes that are targets of C-MYB, which is known to regulate
promoters that are both distinct from and common with other
members of the MYB family (40, 41).
We next confirmed the pattern of expression of differentially

expressed genes known to be expressed in HSCs that, based on
the predicted level of expression in the absence of B-myb, might
possibly account for the observed phenotype. Quantitative PCR
(qPCR) revealed that the level of cyclin D1 (CCND1), which
promotes G1/S progression, is increased by approximately eight-
fold in B-myb–deficient LSK+ cells (Fig. 5B). We also detected
a decrease in S/G2 cyclin, cyclin G2 (CCNG2) expression after
B-myb deletion. The dramatic changes in the myeloid progenitor
compartment of the B-myb KO mice also prompted us to assess
the expression of select genes that govern myeloid lineage de-
velopment. ID1, GATA2, and CEBPα are transcription factors
that regulate HSC development as well as various stages of mye-
loid lineage commitment (42). ID1 levels, which normally increase
as cells transition to the GMP stage (43), were elevated in B-myb
KO LSK+ cells (Fig. 5B), along with those of CEBPα and to a
lesser extent, myeloperoxidase (MPO). Of these, CEBPα is re-
quired for the development of CMPs to GMPs (44). GATA2, on
the other hand, was decreased in the absence of B-myb. We also
examined the expression pattern of genes that modulate S phase
progression and G2/M transition, some of which have been im-
plicated in the proliferative defects observed in B-myb–null ESCs
(22). Of the genes analyzed in Fig. S8, only PLK1 and BIRC5
(survivin) were predicted to be differentially expressed. The ex-
pression pattern of these genes does not overlap with B-myb KO
ESCs, which might suggest a differential use of target genes in
LSK+ cells, or, simply reflects a greater accumulation of B-myb–
deficient LSK+ cells in S phase compared with ESCs (22). Given
that B-myb–null HSCs display a profound engraftment defect,
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these studies suggest that loss of B-myb induces changes in gene
expression that impair self-renewal and results in aberrant
lineage commitment.

Discussion
Here, we describe the effect of loss of B-myb during adult hema-
topoiesis. Our studies show that B-myb–deficient mice are pan-
cytopenic, with dramatic losses in BM and splenic cellularity, have
a profound cell-automous defect in HSC repopulation capacity,
altered HSC (and to lesser extent of myeloid progenitor) cycling, as
well increased apoptosis of myeloid progenitors. Studies have
shown that cycling HSCs and those that have recently undergone
cell division have profound reductions in their engraftment po-
tential, and that long-term repopulation is dependent on the ability
of these cells, or at least a portion of them, to remain in a quiescent
state (18). HSC quiescence is key to maintaining the balance be-
tween long-term self-renewal and differentiation. Accordingly, ge-
netic disruption of genes that alter cell division cause BM failure
due to HSC exhaustion (45). Analysis of B-myb–deficient HSCs
revealed that significant percentages of cells are in the S and G2/M
phases. B-myb KO myeloid progenitors also have increased fre-
quencies of G2/M phase cells. In addition, CMPs and GMPs in
which B-myb is disrupted in vitro proliferate more slowly. These
results are consistent with previous reports documenting a role for
B-myb in S/G2/M progression and checkpoint control (20, 22, 25,

46, 47). A similar phenotype is also observed in the zebrafish
crash&burn (crb) mutant (48), which harbors a loss of function
mutation in bmyb. Cells in these embryos have delays in mitotic
progression, genomic instability, and increased cell death, and it
is thought that loss of bmyb during S phase impairs CYCLIN B1
expression, which is required for progression through G2 (48,
49). Although we encountered difficulties in examining the cell
cycle of LT-HSCs as a distinct population in B-myb KO mice due
to their extremely low numbers, our data suggest that loss of B-
myb pushes HSCs out of quiescence, but arrests them in the S
and G2/M phases. As loss of quiescence is associated with
a failure to maintain long-term self-renewal (45), these data
provide a partial explanation for HSC depletion in these animals.
B-myb KO LSK+ cells express substantially higher levels of
CCND1 mRNA, which, in complex with CDK4/6, drives the cell
through G1 and into S-phase (50). It is interesting to note that
differentiation of LT-HSCs into ST-HSCs and MPPs, but not
HSC self-renewal, correlates with the induction of CCND1
mRNA (18). As the CCND1 promoter is bound by B-MYB in
ChIP assays (25), this increase in cyclin D1mRNA is likely due to
the absence of repression of the CCND1 promoter by B-MYB.
HSC differentiation is also accompanied by increases in CCNG2,
whereas self-renewing HSCs do not exhibit such changes in gene
expression (18). CCNG2 is considered an atypical cyclin in that
its up-regulation is associated with cell cycle inhibition, and
studies have demonstrated the involvement of this gene in the
induction and/or maintenance of cell cycle arrest (51). CCNG2
mRNA levels in B-myb–deficient LSK+ cells were decreased, and
it is therefore possible that B-myb KO HSCs do enter the differ-
entiation program but ultimately fail to complete it. It is in-
teresting to note that even though the S and G2/M checkpoints in
B-myb–null ESCs are defective, these cells still progress through
the cell cycle, even with a loss of genomic integrity (20, 22). Hence,
defects in replication stress responses could also lead to abnor-
malities in HSC function and differentiation in the absence of
B-myb expression.
Because multiple lineages are affected by the loss of B-myb,

we also examined the level of cell death in the stem and pro-
genitor compartments. We did not detect increases in the fre-
quency of Annexin V+ HSCs or MPPs; however, we did observe
increased cell death in the three populations of myeloid pro-
genitors, which would additionally contribute to the depletion of
mature myeloid cells. As previously stated, despite the fact that
B-myb KO mice have a profound reduction in the number of
myeloid progenitors and mature myeloid cells, the percentage
of GMPs in these animals is actually increased compared to
controls. Accordingly, the level of ID1, which is normally up-
regulated as the cells transition from the LMPP to GMP stage
(43), is higher in B-myb–deficient LSK+ cells. In addition, we
observed higher levels of CEBPα and lower levels of GATA2 in
B-myb KO LSK+ cells. Previous studies have shown that GMP
development is also favored if CEBPα is up-regulated before
GATA2, and these cells will continue to give rise to neutrophils
and monocytes if CEBPα expression is maintained (1).
When viewed from the perspective of increased GMP fre-

quency and its relation to pancytopenia, the B-myb KO phenotype
is remarkably similar to that seen in patients with high-risk mye-
lodisplastic syndrome (MDS) (52, 53), a group of blood disorders
that are characterized by cytopenias that arise due to ineffective
hematopoiesis and often progress to acute meylogenous leukemia.
MYBL2 is expressed at 20–30% of normal levels in CD34+ cells
of ∼65% of MDS cases, irrespective of karyotype (46, 54). Con-
sistent with the notion that partial loss of MYBL2 expression is
associated with MDS, it has recently been shown that B-myb
heterozygous mice develop MDS and other myeloproliferative
neoplasms at 12–24 mo of age (54). Although the hematopoietic
compartment of younger animals did not show significant changes,
the phenotype of a subset of the aged animals, particularly those
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subjected to transplant-induced replicative stress, is similar to that
of B-myb KO mice immediately following pIpC administration.
These data suggest that B-myb haploinsufficiency cooperates with
other genetic lesions to cause disease, in contrast to that which
occurs in the absence of B-myb expression or in cells expressing
levels of B-myb that mirror those seen in CD34+ MDS cells
(approximately 20–30% of normal) (46). A better under-
standing of the role of B-myb in normal hematopoietic cell
development will hopefully allow us to define its role in disease
states that result in defective hematopoiesis, such as MDS.

Materials and Methods
Detailed information on animals, bone marrow transplantation, and flow
cytometry can be found in SI Materials and Methods. Microarray and RT-PCR
analysis were performed as described in SI Materials and Methods. Primer
sequences are provided in SI Materials and Methods.
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