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Abstract
Accurate segregation of the replicated genome during cell division depends on dynamic
attachments formed between chromosomes and the microtubule polymers of the spindle. Here we
review recent advances in mechanistic analysis of microtubule attachment formation and
regulation.

Introduction
Accurate genome distribution during cell division requires dynamic attachments between
kinetochores, proteinaceous structures assembled on the centromeric regions of
chromosomes, and spindle microtubules. Kinetochores harness the forces generated by
microtubule dynamics to drive chromosome segregation and ensure chromosome
biorientation—the state where sister chromatids are attached to microtubules from opposite
spindle poles. Here we review recent advances in mechanistic analysis of kinetochore-
microtubule attachment formation and regulation. Due to space constraints, we do not
discuss the chromatin-proximal features important for building microtubule attachment sites
[1–3].

Current Views of the Kinetochore-Microtubule Interface
EM tomography, super-resolution imaging, EM of purified kinetochore complexes, and
atomic structures of kinetochore proteins are providing increasingly detailed views of the
kinetochore-microtubule interface. EM tomography of cultured cells has revealed an
amorphous interface between plus ends of spindle microtubules and the kinetochore (Fig.
1A) [4,5]. The primary feature revealed by this approach is flared protofilaments at attached
plus ends, which appear to connect to chromatin by slender fibrils, whose molecular
composition is unclear [4]. The curvature of the protofilament flaring is distinct for
kinetochore microtubules, compared to non-kinetochore spindle microtubules, consistent
with a special coupling interface. EM tomography across multiple organisms has revealed
similar flared protofilaments at kinetochore-attached plus ends [6].

Complementing the EM analysis in vivo is super-resolution imaging with probes to specific
kinetochore proteins—this approach has generated positional maps of individual proteins
and revealed broad conservation of the architecture and composition of the kinetochore-
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microtubule interface[7–10]. There has been some controversy about the number of specific
molecules per microtubule attachment site measured by fluorescence microscopy—earlier
work suggested approximately 8 core microtubule-binding Ndc80 complexes (see below)
per kinetochore microtubule but recent work has suggested that this number may actually
~20 [11]—additional work is needed to definitively address this important question.
Multivalency of attachment complexes suggested by these value ranges is now widely
accepted as being critical for generating a dynamic interface with spindle microtubules
although the detailed physical mechanism remains an active topic of investigation.

In addition to the EM and superresolution imaging, atomic resolution views are now
available for a significant number of kinetochore parts, including the key microtubule
binding complexes and the components linking these complexes to the chromatin [1,2,12]. A
specific domain, referred to as the RWD domain, has emerged as a common element of
functionally distinct kinetochore proteins, potentially reflecting their common origin (Fig.
1B) [13–17]. While we are still some way from placing atomic structures into the picture of
an intact kinetochore, the possibility of doing so has been greatly advanced by the
purification of native kinetochore-like particles from budding yeast [18,19]. EM of these
particles has revealed a central hub surrounded by globular domains (Fig.1C). In the
presence of microtubules these particles adopt different conformations consistent with
multivalent attachments being formed by the globular domains (Fig.1C). Fitting molecular
views of well-studied components into the various elements observed in these striking
images is an important future goal.

Though much of the work in the past decade has focused on the kinetochore itself, earlier
studies showed that the kinetochore fiber, comprised of multiple stable microtubules that
extend from kinetochore to the spindle pole, is highly organized (Fig.1A)[20]. Recent work
suggests that the vesicle coat protein clathrin contributes to this organization, providing a
mitotic function distinct from its well-studied interphase role [21–23]. Other proteins whose
primary studied role is outside of mitosis, such as the Y-complex of nucleoporins and the
actin-nucleating formins, also target to and function at kinetochores, highlighting an
emerging importance of “moonlighting” activities in chromosome segregation [24,25].

Force Generation at the Kinetochore
Genetic analysis in multiple organisms has cemented the much-debated view that
microtubule dynamics, rather than motor activity, is the primary driver of chromosome
movement [26]. In support of this, in vitro experiments estimate that a single
depolymerizing microtubule can generate 30–65pN force [27]. In classic experiments
performed in grasshopper spermatocytes, the force needed to stall a chromosome in motion
was estimated to be ~ 700 piconewtons (pN) [28]. A recent study that revisited this issue in
the same experimental system using an optical trap has suggested that the stall force may be
100 times less than what was originally measured [29]. New force measurement experiments
are urgently needed in vivo to resolve this large discrepancy. Regardless, the coupling
interface between the kinetochore and dynamic microtubules must transduce sufficient force
to the chromatin to drive chromosome movement.

The kinetochore-like particles purified from budding yeast are providing important new
insights into the biophysical properties of kinetochore-microtubule interactions. Optical
trapping of beads coated with these particles has revealed a catch bond‘-like force-
dependent stabilization of attachments [18]. This finding suggests a first-principles model
for selective stabilization of bi-oriented attachments that are being pulled towards opposite
spindle poles. Tension-based modulation of microtubule dynamics has also been
documented during metaphase oscillations in vertebrate kinetochores [30]. Though the
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identity of molecular enforcers of tension-dependent stabilization remains unclear, super-
resolution imaging has shown that kinetochore conformation/organization is altered in
response to microtubule dynamics [9,31,32]. In addition, recent work analyzing vertebrate
kinetochore structure during metaphase oscillations has shown that the kinetochore is pliant
and undergoes compression while moving poleward, potentially due to differentially
positioned active and passive force-generating microtubule attachment sites [33]. As
oscillations are not a universal feature of attached chromosomes, potentially the passive site
positioned further out from the chromatin represents a conserved coupling point.
Determining the molecular basis for force-dependent attachment stabilization and the
dynamic conformational changes observed within the kinetochore are challenging but
important avenues to explore in the future.

New Insights into the Primary Conserved Mediator of Kinetochore-
Microtubule Interactions: The Ndc80 Complex

The 4-subunit Ndc80 complex is the primary mediator of dynamic attachments at the
kinetochore [34,35]. The microtubule-binding activity of the complex resides in
heterodimers of Ndc80 and Nuf2 subunits whose N termini fold into calponin homology
(CH) domains. Given its central importance in chromosome segregation and ease of
reconstitution, a number of structural and biophysical studies have been conducted on the
Ndc80 complex. Early work revealed that microtubule-binding activity resides in the CH
domains of Ndc80 and Nuf2 and in the basic N-terminal tail of Ndc80, predicted to be
unstructured and targeted for phosphorylation by Aurora B kinase [36]. High resolution
cryo-EM of Ndc80 complex-decorated microtubules revealed that the Ndc80 CH domain is
in direct contact with the microtubule lattice (reviewed in [12]) [37,38]. Consistent with this,
disruption of the interface residues on the Ndc80 CH domain abrogate microtubule binding
in vivo [39,40]. A recent higher resolution cryo-EM analysis of the Ndc80-microtubule
interface map points to a more complex multimodal interaction with additional points of
contact involving the tail and the Nuf2 CH domain [41]. However, the precise roles of the
N-terminal tail and of the Nuf2 CH domain in vivo are unclear. Tail deletion of Ndc80 in
budding yeast does not affect viability whereas in human cells a similar deletion prevents
kinetochore fiber formation [42–44]. Mutations in the Nuf2 CH domain appear to cause only
mild defects in cultured human cells even though microtubule binding is impaired by these
mutations to the same extent as Ndc80 CH domain mutations in vitro [39]. One clue into the
origin of differing outcomes of similar Ndc80 complex perturbations in different species has
come from biophysical experiments—e.g., unlike the budding yeast Ndc80 complex, human
Ndc80 complex by itself stabilizes microtubule ends by promoting rescue [45–47].
Developing a unified conceptual framework for the mechanistic contributions of the N-
terminal Ndc80 tail and the Nuf2 CH domain function is essential given the central role of
the Ndc80 complex at the kinetochore.

Cooperators of the Ndc80 Complex: Different Flavors, Different
Mechanisms?

An emerging theme in recent years is that the Ndc80 complex needs cooperators to generate
efficient coupling of the kinetochore to dynamic microtubule ends. Surprisingly, the
cooperators appear to be distinct in different species, a feature that is somewhat
disconcerting and the explanation for which remains unclear. All of the cooperators
described to date are characterized by their dependency on the Ndc80 complex for
kinetochore localization. To date, these cooperators include bona fide dynamic end couplers
like the Dam1 and Ska complexes[48–50], microtubule dynamics modulators like
XMAP215 [51,52], and, somewhat surprisingly, the DNA replication factor Cdt1 [53]. The
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yeast Dam1 complex, which oligomerizes into rings/spirals encircling the microtubule
lattice, is the best characterized Ndc80 cooperator [48,49,54–56]. However, a direct physical
connection between the Dam1 and Ndc80 complexes has not been observed. Though the
precise mechanism behind this cooperativity is still being investigated, a recent in vitro
study suggests that the concerted action of a fibrillar element and a ring-based coupler
provides the ideal coupling geometry for transducing force generated by depolymerization
of a microtubule end [57].

Although metazoans lack the Dam1 complex, the 3-subunit Ska complex, which does not
exhibit primary sequence similarity to Dam1 complex subunits, is emerging as a functional
counterpart [58]. The Ska complex is a microtubule end coupler similar to Dam1 and can
bind curved protofilament rings that mimic depolymerizing ends[50]. Structural work
indicates that the Ska complex forms a W-shaped dimer with a winged helix motif,
commonly found in DNA-binding proteins, imparting microtubule-binding activity to the
outer arms [59]]. Similar to Dam1, Ska does not exhibit a direct interaction with the Ndc80
complex but enhances Ndc80 microtubule binding and its ability to track depolymerizing
ends [50]. In vivo, kinetochore-microtubule interactions are compromised in Ska-inhibited
human cancer cells but the complex is also implicated in controlling anaphase onset and is
dispensable for viability in chicken cells [58,60,61]. Further work is needed to integrate the
in vitro and in vivo analysis of Ska complex – Ndc80 complex cooperation.

Cdt1 in mammalian cells and fission yeast XMAP215 family members Dis1/TOG1 and
Alp14 have also emerged as Ndc80 complex cooperators [51–53]. Although both Cdt1 and
Dis1 are proposed to associate with the NDC80 loop, a short region that breaks the NDC80
coiled coil, different mechanisms have been proposed for how they stabilize Ndc80-
mediated attachments. Based on super resolution microscopy, Cdt1 has been suggested to
stabilize an extended confirmation of Ndc80 and enhance its microtubule binding. Dis1/
Alp14 are members of the well-studied XMAP215 family of microtubule dynamics
regulators and presumably a locally enriched pool at the kinetochore stabilizes bound
microtubules [62]. In vitro studies, similar to those performed for Dam1 and Ska complexes
mixed with Ndc80 complexes, will be important to understand the precise means by which
Cdt1 and the XMAP215 family proteins cooperate with the Ndc80 complex. More
importantly, the reason for the diversity of Ndc80 cooperators, despite the conservation of
the Ndc80 complex, needs to be addressed.

Regulation of Kinetochore-Microtubule Attachments: From Mechanisms to
Origins of Chromosomal Instability

During prometaphase, kinetochores initially interact laterally with the microtubule lattice
[63]. These initial lateral interactions accelerate microtubule capture and help the
kinetochore achieve the proper orientation to form stable end-coupled attachments that
generate tension [64,65]. The formation and stability of end-coupled attachments are tightly
regulated since incorrect attachments lead to lagging chromosomes and segregation errors.
Multiple studies suggest that precise regulation of kinetochore-microtubule attachments
involves interplay between kinases and phosphatases that control kinetochore composition
and microtubule-binding properties of their kinetochore substrates.

The best-studied regulator of kinetochore-microtubule attachment stability is the Aurora B
kinase, which is proposed to be the primary tension sensor at the kinetochore. Aurora B
kinase promotes turnover of microtubule attachments by directly altering the microtubule
binding properties of its substrates and regulating the recruitment of multiple proteins to the
kinetochore [66–69]. Biophysical assays are providing valuable insight into the mechanism
by which Aurora B kinase-mediated phosphorylation promotes kinetochore-microtubule
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turnover. Experiments employing phosphomimetic substitutions suggest that Aurora B-
mediated phosphorylation does not simply detach the Ndc80 complex or yeast kinetochore-
like particles from a microtubule; instead, phosphorylation reduces tip stabilization leading
to disassembly of the bound microtubules and subsequent detachment [46,47].

Aurora B is enriched at the inner centromere region inbetween the sister kinetochores (Fig.
1A). The localization of the kinase between sister kinetochores, the compliance of
centromeric chromatin, and the detrimental effects of forced localization of the kinase to the
kinetochore led to a model in which attachment stability was a function of substrate
proximity to the kinase at the centromere [70]. In this model, tension stabilized attachments
by spatially displacing substrates from the influence of the kinase. This model has been
challenged by analysis of a mutant that is defective in localizing Aurora B to centromeres in
budding yeast, which surprisingly nonetheless exhibited normal tension-sensitive regulation
of attachments [71]; earlier work perturbing one of the two known mechanisms involved in
Aurora B centromere targeting in chicken cells suggest that this also may be true to some
extent in vertebrates [72]. Thus, the mechanism by which Aurora B discriminates between
correctly bioriented and incorrectly attached kinetochores remains an open question. Protein
phosphatase 1 (PP1) has been known for a long time to genetically oppose Aurora B in
budding yeast [73]. Both the outer kinetochore protein Knl1 (Spc105 in budding yeast) and
the motor protein CENP-E harbor PP1 docking sites that are themselves Aurora B targets
[74,75]. Progressive recruitment of PP1 following microtubule attachment to the
kinetochore, by a mechanism that remains unclear, was proposed to stabilize bi-oriented
microtubule attachments [74,76]. However, at least in budding yeast, the importance of PP1
to attachment stabilization appears to be limited [77]. Thus, the precise interplay between
attachment, tension, Aurora B and PP1 remain unclear. We speculate that discrimination of
correctly bioriented (under tension) versus incorrect (tensionless) attachments is intrinsic to
the kinetochore and requires activated Aurora B. This speculation is based on the
observation that bioriented kinetochores bound to dynamic microtubules are in a very
different structural state compared to taxol-treated non-dynamic kinetochores [9]; this
structural transition may control susceptibility of the kinetochore-microtubule interface to
the action of active Aurora B. Inner centromere-targeted Aurora B likely has roles that are
also important in segregation, e.g. in protecting against merotely and in centromeric
cohesion [71,78,79] that may explain the widely conserved localization pattern.

In recent years, the mitotic kinase Plk1 has emerged as an additional major regulator of
kinetochore-microtubule attachments [80,81]. Plk1, unlike Aurora B, has many distinct roles
preceding anaphase (as well as post-anaphase functions), which makes it difficult to study
and explains the greater attention that has been paid to Aurora B. Plk1 is enriched on
kinetochores before biorientation, is reduced following microtubule attachment, and has
multiple kinetochore substrates, identified in proteomic studies [82–84]. An appealing
mechanism proposed for how Plk1 stabilizes attachments is via phosphorylation of BubR1, a
dual function pseudokinase involved in checkpoint signaling and chromosome segregation
[85]. Phosphorylation of a specific region in BubR1 by Plk1 promotes interaction with the
PP2A-B56a phosphatase that stabilizes kinetochore-microtubule attachments, potentially via
counteraction of Aurora B [86,87]. Consistent with this, a recent study reported that
tethering constitutively Plk1 to the kinetochore stabilized kinetochore-bound microtubules
[88]. However, as Plk1 has multiple targets enriched at kinetochores, which include
stabilizers and destabilizers of microtubules, a more complex view of how Plk1 controls
kinetochore-microtubule interactions is already emerging [89–92]. One challenge limiting
analysis of Plk1 has been an inability to precisely perturb its localization to the kinetochore.
Kinetochore recruitment of Plk1 is thought to involve Cdk1-, Aurora B- and Plk1-dependent
priming of multiple kinetochore proteins [93–95]. Nonetheless, it is our opinion that the
primary Plk1 docking site at the kinetochore remains to be identified.

Cheerambathur and Desai Page 5

Curr Opin Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In addition to the local regulation of attachment stability at the kinetochore-microtubule
interface, global control of kinetochore-microtubule turnover has emerged as an important
contributor to error-free segregation. In mammalian cultured cells, kinetochore microtubules
switch from a dynamic state in prometaphase to a more stable state in metaphase; this
change is dependent on degradation of Cyclin A during prometaphase [96] and is
reminiscent of the well-known metaphase-anaphase transition, when there is additional
stabilization of attachments following degradation of Cyclin B [97]. Thus Cyclin A appears
to create a less stable kinetochore-microtubule interface during prometaphase, presumably to
facilitate error correction. The mechanism by which Cyclin A-Cdk1 globally controls
kinetochore-bound microtubule dynamics will be important to elucidate to integrate this new
finding into the prior studies focused on control at individual kinetochores. Potentially
contributing to the prometaphase-metaphase and metaphase-anaphase transitions in
attachment stability is the Astrin-SKAP microtubule-binding complex that is recruited to
kinetochores following chromosome bi-orientation [98–100].

Studies in human cells have also revealed important roles for motor proteins in kinetochore
microtubule stability. The kinesin-8 family member Kif18, a processive plus end motor that
suppresses end dynamics, confines kinetochores to the middle of the spindle by limiting the
extent of dynamic transitions [101–104]. The kinesin-13 family of depolymerases, enriched
between sister kinetochores, reduce the likelihood of merotelic attachments, where a single
kinetochore connects to opposite spindle poles [105]. The chromokinesins Kif4 and Kid,
concentrated on chromosome arms, regulate chromosome positioning by altering inter-
kinetochore tension in a position-dependent manner within the spindle [104];
chromokinesins also likely move chromosomes to form an equatorial ring in prometaphase
prior to establishment of kinetochore-microtubule attachments [64,106]. Finally the
kinesin-7 family motor, CENP-E, concentrated on the outer kinetochore, increases the
stability of attachments [107]. The combination of an N-terminal plus end motor activity, a
long flexible interrupted coiled-coil tether, and a C-terminal non-motor microtubule-binding
domain enable CENP-E to bidirectionally track growing and depolymerizing microtubule
plus ends, a striking property that likely underlies its role at the kinetochore [107]. Overall
motors play important roles in restricting kinetochore position and maintaining attachment
stability.

Proper regulation of kinetochore microtubule attachments is important because
misattachments lead to unequal distribution of the genome. A majority of solid tumor cells
are aneuploid and exhibit elevated rates of chromosome missegregation [108]. Many cancer
cells appear to have hyperstable kinetochore-microtubule attachments that underlie
increased rates of missegregation [109,110]; in addition, cancer cells may be less efficient in
error correction [68]. Remarkably, reducing kinetochore-microtubule attachment stability in
cancer cell lines by overexpression of a kinesin-13 family microtubule depolymerase
reduces chromosome missegregation [111]. While these studies highlight the importance of
precise control of kinetochore-microtubule dynamics in preventing chromosomal instability,
the genetic/epigenetic basis underlying loss of this control in cancer cells remains unclear
and is important to elucidate.

Interplay Between Attachment Formation and Checkpoint Signaling
The mechanical events at the kinetochore are coordinated with checkpoint signaling, which
ensures that the separation of all chromosomes only occurs after the last chromosome has
attached to the spindle [112]. Silencing of the spindle assembly checkpoint is coordinated
with microtubule attachment, which leads to dynein motor-based stripping of checkpoint
proteins from the kinetochore in metazoans [113,114] Recent work suggests that the key
event in this silencing mechanism is removal of the dynein adaptor protein Spindly [115]. In
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the absence of Spindly, but not in the presence of a Spindly mutant that fails to recruit
dynein, the checkpoint is still silenced following attachment; as dynein is not ubiquitously
present at kinetochores across species, the presence of a dynein-independent but microtubule
attachment-dependent silencing pathway is perhaps not surprising. Two other components
implicated in silencing are protein phosphatase I, whose recruitment by Knl1/Spc105 is
important for checkpoint silencing in fungi and worms [77,116,117]. As constitutive
tethering of PP1 to budding yeast kinetochores does not prevent checkpoint activation [77],
whether PP1 responds to microtubule attachment is unclear. Microtubule binding by the PP1
docking protein KNL-1 has been proposed to contribute to checkpoint silencing in C.
elegans, although this contribution appears to be genetically parallel to PP1 docking [117].
Thus, while microtubule attachment must be relayed to control checkpoint signaling at the
kinetochore, the underlying molecular mechanisms remain to be clarified in future work. A
major challenge here is our lack of understanding of how the checkpoint is activated at the
kinetochore. As progress is made on this topic, understanding how attachment silences the
checkpoint will become more feasible, potentially through the use of in vitro systems such
as the kinetochore-like particles from budding yeast.

Perspective
The cataloguing of the majority of kinetochore proteins, genetic/RNAi analysis in multiple
model organisms and in cultured mammalian cells, in vitro reconstitutions of complexes,
biophysical assays with purified components/complexes and native assemblies, and
structural approaches are cumulatively building a detailed picture of how kinetochore-
microtubule interactions are formed and regulated. Still, many challenges lie ahead, notably
resolving contradictions between in vitro and cellular studies, and elucidation of the
complex kinase-phosphatase activity fluxes that coordinate different events at the
kinetochore but are themselves under mechanical control. In addition, surprises are likely to
emerge from work in different biological contexts, such as stem cell divisions that exhibit
asymmetric chromatid segregation [118,119] and meiosis I, where homologues rather than
sisters segregate [120,121]. Thus, the many outstanding questions and emerging new areas
will keep the field occupied for some time to come.
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Figure 1. Different Resolution Views of Kinetochore Architecture
(A) A slice from an EM tomogram of plus ends embedded in the outer kinetochore (top;
courtesy of R. McIntosh) and a thin cross-sectional view of a cold-stable kinetochore fiber
(courtesy of C. Rieder; ref. 20). The schematic on the left highlights a plate-like architecture
at the kinetochore evident in older EM studies whose existence has come under debate
following the development of new EM preservation methods [see ref. 5]. (B) Schematic of
the RWD domain that recurs in multiple kinetochore proteins. The domain is always present
in 2 copies – either as a heterodimer or as a homodimer. The structure of the Spc24/25
heterodimer from the Ndc80 complex, the first kinetochore components found to harbor this
domain, is shown on the right (PDB 2FTX); Spc24 has a minimal RWD domain—the other
kinetochore protein listed below harbor different insertions in the loop indicated by the
arrow. (C) Negative stain EM images of purified native yeast kinetochore-like particles.
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Images of particles on their own and bound to microtubule ends are shown (courtesy of S.
Biggins; ref 19].
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