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ABSTRACT
End-stage liver disease and liver failure are major health 
problems worldwide leading to high mortality and mor-
bidity and high healthcare costs. Currently, orthotropic 
liver transplantation is the only effective treatment avail-
able to the patients of end-stage liver disease. However, a 
serious shortage of liver donors, high cost, and risk of or-
gan rejection are the major obstacles to liver transplanta-
tion. Because of the ability of stem cells for differentiation 
into any tissue type, they have huge potential in therapy of 
various end-stage or degenerative diseases and traumatic 
injuries. Stem cell therapy has the potential to provide a 
valuable adjunct and alternative to liver transplantation 
and has immense potential in the management of end 
stage liver disease and liver failure. Stem cell therapy can 
be mediated by either a direct contribution to the func-
tional hepatocyte population with embryonic, induced 
pluripotent, or adult stem cells or by promotion of endog-
enous regenerative processes with bone marrow-derived 
stem cells. Initial translational studies have been encour-
aging and have suggested improved liver function in ad-
vanced chronic liver disease and enhanced liver regeneration 
after portal vein embolization and partial hepatic resec-
tion. Stem cells infusion in cirrhotic patients has im-
proved liver parameters and could form a viable bridge to 
transplantation. The present review summarizes basic of 
stem cell biology relevant to clinicians and an update on 
recent advances on the management of liver diseases using 
stem cells.

INTRODUCTION
End-stage liver disease and liver failure are major health 
problems worldwide leading to high mortality and mor-
bidity, and high healthcare costs. Alcohol, hepatitis viruses, 
diabetes, and obesity are important causes of end-stage 
liver disease and liver failure. Currently, orthotropic liver 
transplantation is the only effective treatment available to 
the patients of end-stage liver disease.1 However, a serious 
shortage of liver donors, high cost, and risk of organ re-
jection are the major obstacles to liver transplantation. 
Therefore, alternative methods, with the potential to sub-
stitute for liver transplantation or bridge the patients 
awaiting transplantation, are urgently required. Stem cell 
therapy has the potential to provide a valuable adjunct 
and alternative to liver transplantation and has immense 
potential in the management of end-stage liver disease 
and liver failure.2,3 The present review summarizes basic of 
stem cell biology relevant to clinicians and an update on 
recent advances on the management of liver diseases using 
stem cells.

WHAT ARE STEM CELLS?
Stem cells are defined as undifferentiated cells capable of 
proliferation, self-maintenance, and differentiation into 
functional progeny with flexibility or plasticity in these 
options. They play a crucial role in the development and 
regeneration. Stem cells are found at all developmental 
stages, from embryonic stem (ES) cells that differentiate 
into all cell types found in the human body to adult stem 
cells that are responsible for tissue regeneration.4 Adult 
stem cells have been found in the bone marrow (BM), pe-
ripheral blood, umbilical cord, liver, skin, gastrointestinal 
tract, pancreas, cornea, and retina of the eye, and the den-
tal pulp of teeth.5

Stem cells are characterized by two special properties: 
self-renewal and potency.6 Self-renewal implies the ability 
to go through numerous cycles of cell division while main-
taining the undifferentiated state. When a stem cell di-
vides, each new cell has the potential either to remain a 
stem cell or become another type of cell with a more spe-
cialized function, such as a muscle cell, a red blood cell, or 
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a brain cell. Potency specifies the potential of the stem 
cells to differentiate into different cell types. They have the 
remarkable potential to develop into many different cell 
types in the body during early life and growth. In addition, 
in many tissues they serve as internal repair system, divid-
ing essentially without limit, to replenish other cells. Stem 
cells may be divided into 5 different groups according to 
their potential for differentiation: totipotent, pluripotent, 
multipotent, oligopotent, or unipotent (Table 1).

There are important differences between adult stem 
cells and fetal stem cells—adult stem cells are small in 
number, are already partially committed to a lineage, and 
their main function is to maintain tissue homeostasis as 
they are. In contrast, fetal stem cells are higher in number, 
with expansion potential and differentiation abilities to 
form a complete organism.4

Stem cells and undifferentiated progenitor cells play an 
important role in both tissue homeostasis and tissue re-
generation. The ability of the human body to self-repair 
and replace the cells and tissues of some organs is often 
evident (as in the case of the skin), and is mediated by 
adult stem cells. Adult stem cells are typically quiescent or 
pass slowly through the cell cycle, but they can be acti-
vated in response to cell loss and wounding. To a great 
extent the stem cells migration towards injured tissue is 
mediated by damaged tissue factors. The tissue factors 
lead to gene activation and other functional reactions 
of stem cells such as movement to a specific district, dif-
ferentiation into a particular cell type or resting in spe-
cific niches and eventually alteration of the gene expression 
patterns.5 Therefore, stem cells can be induced to become 
cells with specialized functions such as liver cells, car-
diac myocytes, neurons, and insulin-producing pancreatic 
β-cells.

USE OF STEM CELLS IN REGENERATIVE 
MEDICINE
Current research is on to understand and to indentify the 
cellular cross-talk and molecular processes that involves 
the stem cells. The aim of the scientific research is to 
be able to reproduce the cellular cross-talk and molecu-
lar processes of stem cells in the laboratory and apply the 
results obtained in the treatment of degenerative patholo-
gies, i.e. neurological disorder such as Parkinson’s disease, 
Alzheimer’s disease, Huntington’s disease, multiple scle-
rosis, musculoskeletal disorder, diabetes, eye disorder, 
autoimmune diseases, liver cirrhosis, lung disease and 
cancer.7

Because of the ability of stem cells for differentiation 
into any tissue type, they have huge potential in therapy of 
various end-stage or degenerative diseases and traumatic 
injuries. Therefore, stem cells field of research, with the 
name of ‘regenerative medicine’ has emerged rapidly in re-
cent years with leading to great interest among clinicians 
and scientists.8 Therefore, stem cell therapy has the poten-
tial to help tissue regeneration while providing minimally 
invasive procedures and few complications.

USE OF STEM CELLS IN LIVER DISEASES
In liver disease scenario, stem cell therapy sounds particu-
larly attractive for its potential to support tissue regenera-
tion. Stem cell therapy can be mediated by either a direct 
contribution to the functional hepatocyte population 
with embryonic, induced pluripotent, or adult stem cells or 
by promotion of endogenous regenerative processes with 
BM-derived stem cells. Preclinical studies have demon-
strated a range of endogenous repair processes that can be 
exploited through stem cell therapy. Initial translational 

Table 1 Potency of stem cells.

Name Potency Example

Totipotent Can differentiate into embryonic and extra-embryonic cell types. Such 
cells can construct a complete, viable, organism. The zygote and the 
earliest embryonic stem cells are totipotent, from which the trophoblast 
and all three germ layers (endoderm, mesoderm, and ectoderm) 
necessary for future development of an organism are derived.

Zygote and the earliest embryonic stem cells.

Pluripotent Can differentiate into all cells (all three germ layers). But, they lack the 
potential to form into extra-embryonic tissue. Embryonic stem cells are 
considered pluripotent instead of totipotent because they do not have the 
ability to become part of the extra-embryonic membranes or the placenta.

Embryonic stem cells.

Multipotent Can differentiate cells of different lineages within a single germ layer. 
They constitute the adult stem cell population in later life.

Adult hematopoietic stem cells that can become 
red and white blood cells and platelets.

Oligopotent Can differentiate into cells of only a few lineages. Oval stem cells of liver that can form into 
hepatocytes and cholangiocytes.

Unipotent Can produce only one cell type but have the property of self-renewal 
required to be labeled a stem cell.

Muscle stem cells and skin stem cells.
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shown to contribute to parenchymal liver cell popula-
tions, and although this may not be functionally signifi-
cant, it has sparked interest in the field of autologous 
stem cell infusion as a possible treatment for cirrhosis.14

Both rodent and human HSCs have been induced to 
differentiate into hepatocytes in vitro. Most of the proto-
cols to induce CD34+ HSCs differentiation into hepato-
cytes employed growing media conditioned with growth 
factors and mitogens (e.g. hepatocyte growth factors, fi-
broblast growth factor, oncostatin M and culture layers 
specific for hepatocyte growth, like matrigel). To repro-
duce the pathophysiological conditions of liver injury, some 
studies also employed cholestatic serum or co-culture 
with chemically damaged liver tissue.15 Although these 
studies showed some HSC ‘transdifferentiation’ into he-
patocytes, the reported percentage of hepatocytes derived 
from HSCs did not exceed 5%.

Differentiation of hepatocyte like cells from umbilical 
cord blood derived HSC were also observed to show high 
expression of genes related to hepatocytes. The quantities 
of albumin and AFP at day 0 were low and upon differen-
tiation the cells were able to produce albumin and AFP at 
high levels. This strategy can also be used as cell replace-
ment therapy for liver diseases.16

Recent animal studies conducted showed that HSC 
transplantation can lead to regression of liver fibrosis. 
Although, there have been many animal studies on BM-
derived HSC administration, clinical studies on humans 
are few and involve small number of patients (Table 2). 
They can be divided into studies performed in patients with 
and without an underlying chronic liver disease. In patients 
with liver malignancies arisen on a ‘healthy’ liver, the intra-
portal injection of CD133+ BM stem cells (a subpopula-
tion of stem cells with both hematopoietic and endothelial 
progenitor characteristics) improved liver regeneration 
after extensive resection and segmental portal vein embo-
lization.11,22 Injection of CD34+ HSCs directly into the 
liver vascular system of patients with cirrhosis,19 and infu-
sion of autologous BM through a peripheral vein18 was 
also studied. These studies have documented a slight im-
provement in liver function and clinical conditions, how-
ever, these studies have a limitation of small number of 
patients and lack of a control group. Reports of stem cell 
transplantation and phase 1 trials of BM transplantation 
in humans for liver diseases are exciting but require more 
robust verification.32

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) originally derived from 
BM, however have been isolated from other tissues also, 
such as adipose tissue, periosteum, synovial membrane, 
synovial fluid muscle, dermis, deciduous teeth, pericytes, 
trabecular bone, infrapatellar fat pad, and articular carti-
lage.33,34 MSCs are fusiform, fibroblast-like, and in their 

studies have been encouraging and have suggested im-
proved liver function in advanced chronic liver disease and 
enhanced liver regeneration after portal vein embolization 
and partial hepatic resection. Stem cells infusion in cirrhotic 
patients has improved liver parameters, such as decrease 
in transaminase and bilirubin, and increase in albumin.9,10 
After stem cell infusion, proliferation indexes, such as 
α-fetoprotein (AFP) and proliferating cell nuclear antigen 
have significantly increased, suggesting that stem cells can 
enhance and accelerate hepatic regeneration.11

Commonly, for therapeutic and research purposes, 
stem cells come from following main sources7:
● Adult stem cells
● Induced pluripotent stem cells
● Embryonic stem cells
● Fetal stem cells
● Umbilical cord stem cells

USE OF ADULT STEM CELLS
Adult or somatic stem cells are found among differenti-
ated cells in tissues or organs, throughout the body, that 
can renew itself and can differentiate to yield some or all 
of the major specialized cell types of the tissues or organs. 
These stem cells have been found in brain, BM, blood, 
blood vessels, skeletal muscles, skin, and the liver. They re-
main in a quiescent or non-dividing state for years until 
activated by disease or tissue injury. The primary roles of 
adult stem cells are to maintain and repair the tissue in 
which they are found. They can divide or self-renew indef-
initely, enabling them to generate a range of cell types 
from the originating organ, or they can even regenerate 
the entire original organ.

Unlike ES cells, which are defined by their origin (cells 
from the pre-implantation stage embryo), the origin of 
adult stem cells in some mature tissues is still under inves-
tigation. It is generally thought that adult stem cells are 
limited in their ability to differentiate based on their tis-
sue of origin, but there is some evidence to suggest that 
they can differentiate to become other cell types.

Hematopoietic stem cells, mesenchymal stem cells, and 
hepatic stem cells are the most common adult stem cells 
being used in research and clinical practice for liver diseases.

Hematopoietic Stem Cells
Hematopoietic stem cells (HSC) have been the center of 
intensive research and they are probably the most studied 
and best-understood stem cell within the body.12 The 
identification and isolation of HSCs is possible with im-
mune capture of CD34, a surface protein that distin-
guishes stem cells from other hematopoietic cells.13 Not 
being at the top of the stem cell hierarchy, HSCs were ini-
tially thought to possess a restricted differentiation po-
tential and therefore to be able to generate only cells of the 
hematopoietic system. However, BM stem cells have been 
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Table 2 Human studies on use of adult stem cells for treatment of liver diseases.

Author Year Number 
of 

patients

Treatment Results

Am Esch et al11 2005 3 vs 3 
controls

Infusion of autologous bone marrow-
derived CD133+ cells in patients who were 
undergoing partial hepatectomy for liver 
cancer, to expand a remnant segment of 
liver.

Patients receiving the infusion of bone marrow 
cells (which likely contained both hematopoietic 
stem cells and epithelial cells) exhibited 2.5-fold 
higher mean proliferation rates when compared 
with a group of three consecutive patients who did 
not receive bone marrow cells.

Yannaki et al17 2006 2 Patients with end-stage liver disease treated 
with autologous mobilized peripheral blood 
hematopoietic stem cells.

Lasting amelioration in the clinical course of the 
disease during the 30 months of follow-up.

Terai et al18 2006 9 Liver cirrhosis patients underwent 
autologous bone marrow cell infusion via 
the peripheral vein.

Significant improvements in serum albumin levels 
and total protein at 24 weeks. 
Significantly improved Child-Pugh scores at 4 and 
24 weeks.

Gordon et al19 2006
2008

5 Infusion of autologous CD34+ cells via 
either the portal vein or the hepatic artery in 
patients suffering from cirrhosis.

Three of the 5 patients showed improvement 
in serum bilirubin and 4 of 5 in serum albumin. 
Long-term results published subsequently showing 
that 4 of 5 patients maintained improved clinical 
parameters for roughly 12 months post-infusion.

Mohamadnejad 
et al20

2007 4 Patients with decompensated cirrhosis were 
infused through the hepatic artery 
3–10 million CD34+ cells which were 
isolated from their bone marrow.

Development of hepatorenal syndrome and death 
of 1 patient, with the remaining 3 patients showing 
no evidence of significant clinical improvement.

Mohamadnejad 
et al21

2007 4 Patients with decompensated cirrhosis were 
infused bone marrow derived mesenchymal 
stem cells through a peripheral vein.

Procedure well-tolerated. Definite therapeutic 
effect in 2 of 4 patients.

Fürst et al22 2007 6 vs 7 
controls

Infusion of autologous bone marrow derived 
CD133+ cells with portal vein embolization 
in patients who were undergoing extended 
right hepatectomy for liver cancer, to expand 
a remnant segment of liver.

The CD133+ administration substantially 
increased hepatic regeneration compared with 
portal vein embolization alone.

Lyra et al10 2007 10 Patients of Child-Pugh B and C infused into 
hepatic artery autologous bone marrow 
mononuclear cells.

Improved liver function seen up to 4 months from 
infusion.

Khan et al23 2008 4 Patients with chronic liver disease were 
injected autologous bone marrow stem cells 
(CD34+) into hepatic artery.

Patients showed improvements in serum albumin, 
bilirubin and ALT after 1 month from the cell 
infusion.

Pai et al9 2008 9 Patients with alcoholic liver cirrhosis 
received autologous CD34+ cells into the 
hepatic artery.

Significant decreases in serum bilirubin 4, 8, and 
12 week post-infusion. Transaminases showed 
improvement through the study period and at 
1 week post-infusion. The Child-Pugh score 
improved in 7 out of 9 patients, while 5 patients 
had improvement in ascites on imaging.

Kharaziha et al24 2009 8 Patients with end stage liver disease 
injected with autologous mesenchymal stem 
cells into peripheral or portal vein.

Improved liver function, model for end-stage 
liver disease score, and creatinine, up to 
24 weeks.

Ismail et al25 2010 10 vs 10 
controls

Patients having liver cirrhosis with 
hepatocellular carcinoma randomly received 
autologous stem cells or placebo followed 
by liver resection.

Group receiving pre-operative stem cell therapy had 
shown a significant improvement in all parameters 
of liver function and had no postoperative 
complications.

Kim et al26 2010 10 Patients with advanced liver cirrhosis due 
to hepatitis B underwent autologous bone 
marrow infusion.

Serum albumin, hemoglobin, quality of life, liver 
volume, and Child-Pugh scores improved. Clinical 
improvement was sustained for >6 months, 
histological changes in the liver returned to 
baseline by 6 months.
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Table 2 (Continued)

Author Year Number 
of 

patients

Treatment Results

Lyra et al27 2010 15 vs 15 
controls

Liver cirrhosis patients on transplant waiting 
list were infused into the hepatic artery 
autologous mononuclear-enriched bone 
marrow stem cells.

Improved liver function in the first 90 days.

Salama et al28 2010 48 Patients with end stage liver disease were 
infused autologous hematopoietic stem 
cells into hepatic artery or portal vein.

Borderline significant improvements in the serum 
albumin levels at the end of the 6 month study.

Salama et al29 2010 90 vs 50 
controls

Autologous CD34+ and CD133+ stem cell 
infusion in the portal vein.

Near normalization of liver enzymes and 
improvement in synthetic function were observed 
in 54.5% of treated patients; 13.6% of the patients 
showed stable states in the infused group.

Saito et al30 2011 5 vs 5 
controls

Patients with alcoholic liver cirrhosis 
received autologous bone marrow cells 
intravenously.

Liver function and Child-Pugh score improved. The 
degree of fibrosis decreased in 4 of 5 patients.

Nikeghbalian et al31 2011 6 Patients with end-stage liver disease 
subjected to intraportal administration of 
autologous bone marrow-derived CD133+ 
or mononuclear cells.

There were no adverse effects during the short- 
and long-term follow-up. No significant alterations 
of liver function parameters, liver enzymes, serum 
albumin, creatinine, serum bilirubin and/or liver 
volume after transplantation of both types of 
autologous cells in these patients.

initial growth in vitro they form colonies. Stem cell char-
acteristics of MSCs are based on their ability to differenti-
ate into multiple cell types including osteoblasts, 
chondrocytes, endothelial cells, hepatic cells and even 
neuron-like cells.35,36 MSCs are of great therapeutic po-
tential due to their capacity of self-renewal and multilin-
eage differentiation. Recent studies have shown that MSC 
have far greater differentiative abilities than previously 
thought. They, in fact, appear to be capable of giving rise 
to cells of all three germinal layers,37 including albumin-
producing hepatocyte-like cells in vitro and in vivo.38–41

There is no specific marker or combination of markers 
that specifically identifies MSCs. These cells have been de-
fined by using a combination of phenotypic markers and 
functional properties. Controversy still exists over the in-
vivo phenotype of MSC; however, ex-vivo expanded MSCs 
do not express the hematopoietic markers CD14, CD31, 
CD34, CD45, or CD133. Along with these phenotypic 
characteristics, MSCs secrete various anti-apoptotic, im-
munomodulatory, angiogenic, antiscarring, and chemo-
attractant bioactive molecules, providing a basis for their 
use as tools to create local regenerative environments 
in vivo.42 Experimental and clinical data also demonstrated 
an immunoregulatory function of BM-derived MSC, 
which may contribute to the reduction of the incidence of 
graft versus host disease following hematopoietic stem 
cell transplantation.

Mesenchymal stem cells can be a rescue for liver dis-
eases as they differentiate to hepatocytes, stimulate the re-
generation of endogenous parenchymal cells, and enhance 

fibrous matrix degradation.43 The transplantation of au-
tologous BM-derived mesenchymal stem cells holds great 
potential for treating hepatic cirrhosis. Umbilical cord 
blood-derived mesenchymal stem cells were also effective 
in improving insulin resistance in CCl4-induced liver 
cirrhosis and thereby contributing to glucose homeo-
stasis.44 Transplantation of MSCs alone and along with 
baicalin was able to promote partial recovery of liver func-
tion, suppression of liver inflammation, and had the best 
therapeutic effect for hepatic fibrosis.45

In spite of great potential of MSCs in therapy of liver 
diseases, only a few clinical studies on the administration 
of MSCs to cirrhotic patients have been published up to 
now (Table 2). Although preliminary results seem to be 
encouraging, the number of treated patients is too small 
and the study design is not completely appropriate to 
demonstrate safety and efficacy of MSC therapy in liver 
cirrhosis. Well designed, randomized, controlled studies 
are needed to confirm preliminary results and eventually 
clear doubts.

Hepatic Stem Cells
Hepatocytes are the main cells of the liver. Normally, these 
cells are non-proliferative, however, in response to cell loss 
they enter the cell cycle and undergo rapid self-renewal 
to regenerate liver tissue. Some of this expansion in cell 
numbers is the result of clonal expansion, as shown by 
studies of hepatocyte transplantation.46 The hepatocyte 
can therefore be regarded as a functional stem cell for the 
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USE OF INDUCED PLURIPOTENT STEM 
CELLS

Recently, breakthrough has been obtained to reprogram 
adult differentiated cells into stem cells, known as induced 
pluripotent stem cells (iPSCs).54–56 In 2006, Yamanaka 
and co-workers demonstrated that both mouse embry-
onic fibroblasts and tail tip fibroblasts could be repro-
grammed into a pluripotent state similar to that observed 
in ES cells.57 This was achieved by the retroviral transduc-
tion of Oct4, Sox2, Klf4, and c-Myc genes. iPS cells are 
defined as adult somatic cells that have been genetically 
reprogrammed to an ES cell-like state by being forced to 
express genes and factors important for maintaining the 
defining properties of ES cells. Subsequently in 2007, hu-
man somatic cells were successfully reprogrammed into iPS 
cells.58,59 There are a few ways of creating iPSCs, i.e. ge-
nomic modification, protein introduction, and treatment 
with chemical agents.60

Human-iPS cells have the hallmarks of ES cell attributes 
including: morphology, unlimited self-renewal, expression 
of key pluripotency genes, and a normal karyotype. Human 
iPS cell generation from developmentally diverse origins 
like endoderm, mesoderm, and ectoderm along with mul-
tistage hepatic differentiation protocols regarded as the 
most promising way to create stem cells.61

It has been demonstrated that human-iPS cells can be 
differentiated into specialized cell lineages of all three em-
bryonic germ layers, such as motor neurons,62 hepatocytes,63 
pancreatic insulin-producing cells,64 cardiomyocytes,65 
etc. This wide differentiation potential provides fascinat-
ing possibilities for their use in regenerative medicine, in 
addition to their role in study of human development, ge-
netic diseases, and drug discovery.66 Human-iPS cells can 
be made to differentiate into cells of hepatic lineage which 
presents possibilities for treating liver diseases by autolo-
gous cell therapies that would avoid immune rejection 
and enable correction of gene defects. iPS technology can 
also be used for drug development, tissue engineering, 
and the development of bio-artificial livers.67

Therefore, iPSCs may hold great promise for a poten-
tially abundant source of hepatocytes; however, directing 
their differentiation into specific, fully functional adult 
cell lineages remains a significant challenge.68,69 New dis-
coveries in the mechanisms of liver development have pro-
vided novel insights into hepatocyte differentiation of 
stem cells for therapeutic applications.50 Efforts in pro-
gramming human iPSCs, to generate hepatocytes de novo 
are founded on understanding how hepatocytes normally 
develop and differentiate in the embryo and how hepato-
cytes arise during regeneration in adults, in response to 
tissue damage and disease.70,71 Many animal studies have 
reveled differentiation of murine iPS cells into hemato-
poietic-like and liver-like embryoid bodies. Liver-like em-
bryoid bodies provided evident cure for coagulation factor 

liver. More severe damage or blockage of normal hepato-
cyte regeneration after injury activates a second regenera-
tive program within the liver. Cells from the intrahepatic 
biliary tree proliferate and give rise to bipotential oval cells 
that differentiate into both new hepatocytes and biliary 
cells.47

Liver stem cells or oval cells were first described by 
Farber48 in 1956 as ‘small oval cells with scanty light baso-
philic cytoplasm and pale blue-staining nuclei’ with a high 
nuclear/cytoplasmic ratio and an ovoid nucleus.49 Oval 
cells represent a heterogeneous population of bipotential, 
transiently amplifying cells originating in the canal of 
Hering, and activate in the liver as a result of injury or in-
sult. The number of quiescent (or dormant) oval cells is 
very low under physiological conditions,50 but is greatly 
increased in response to specific types of liver injury. 
Hepatic stem cells constitute approximately 0.5–2.5% of 
liver parenchyma of all donor ages. These cells behave like 
bipotential progenitor cells and are able to differentiate 
into hepatocytes and cholangiocytes.49

Identification and isolation of oval cells provides diffi-
culties, mostly because the differences in expression of spe-
cific markers by oval cells in mice, rats, and humans. Due to 
significant differences in the anatomical structure of mu-
rine and human canals of Hering, the human equivalent of 
oval cells are named liver precursor cells or hepatic pro-
genitor cells (HPC).49,51 HPCs are difficult to track and 
isolate because of the lack of definitive markers, and re-
quire further in-vitro testing by an epithelial colony-forming 
assay to assess the precursor properties of isolated cells. 
HPCs have been reported to express CD133, CK-19, CD44, 
claudin 3 and have been recently successfully isolated 
using two novel HPC-specific surface markers, epithelial 
cell adhesion molecule (EPCAM) and neural cell adhesion 
molecule (NCAM).49,52 They are negative for AFP, inter-
cellular adhesion molecule (ICAM) 1, and for markers of 
adult liver cells (cytochrome P450s), hemopoietic cells 
(CD45), and mesenchymal cells (vascular endothelial growth 
factor receptor and desmin). In situ studies reveal that 
EPCAM + liver stem cells are located in the ductal plates of 
fetal liver. Once isolated, these cells are capable of self-
renewal and clonogenic expansion, as well as differentia-
tion into both hepatocytic and biliary lineages in defined 
culture conditions.8

Hepatic progenitor cells transplantation is a promising 
alternative to liver transplantation for patients with end-
stage liver disease.53

Animal studies showed that, purified EPCAM + liver 
stem cells when transplanted are able to engraft the liv-
ers of immunodeficient adult mice yielding mature hu-
man liver tissue.52 Transplantation of freshly isolated 
EPCAM+ cells expanded in culture into NOD/SCID mice 
results in mature liver tissue expressing human-specific 
proteins and proved to be good candidate for liver cell 
therapies.52
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cell generation.80 In vitro hepatocyte differentiation of 
ES cells requires a profound understanding of normal 
development during embryonic hepatogenesis.81 In vitro 
differentiation has been well documented in generating 
functional but immature hepatocytes.82,83 When they are 
transplanted into rodent models of toxin-induced hepatic 
injury and partial hepatectomy, there is evidence of en-
graftment and differentiation into hepatocyte-like cells 
with some contribution to regeneration, but generally at 
low levels with minimal hepatocyte function.82,84,85 In com-
parison with the transplantation of adult hepatocytes, 
however, fetal liver progenitors and ES cell-derived hepatic 
precursors currently appear less efficient at generating liver 
tissue in vivo.86

The discovery of human ES cells87 had raised the hopes 
for curing diseases that have poor prognoses. However, ex-
ploiting the therapeutic potential of ES cells in a clinical 
setting presents a number of challenges. These challenges 
relate to stem cell safety, efficacy, and bioethics, and they 
have not been sufficiently overcome till date. The poten-
tial for teratoma formation is likely to remain a concern 
until long-term trials can provide evidence of phenotypic 
stability and safety.88 A clinical trial of human ES cell-
derived oligodendrocyte progenitors in spinal cord injury 
patients was placed on hold pending more data regarding 
its safety. The ethical dilemmas may continue to prohibit 
research in some countries, but there has been a gradual 
relaxation around the world as the therapeutic possibili-
ties are realized.

USE OF FETAL STEM CELLS
Fetal stem cells (FSCs) are multipotent cells with the same 
functional properties of ASCs, but they are located in the 
fetal tissue.7 They can be isolated from fetal blood and BM 
as well as from other fetal tissues, including liver and kid-
ney. FSCs have been subdivided into hemopoietic FSCs, 
located in blood, liver, BM, mesenchymal FSCs located in 
blood, liver, BM, lung, kidney and pancreas, endothelial 
FSCs found in BM and placenta, epithelial FSCs located 
in liver and pancreas and neural FSCs located in brain and 
spinal cord.89 Fetal blood is a rich source of hemopoietic 
stem cells, which proliferate more rapidly than those in 
cord blood or adult BM. Obviously, the only source of FSCs, 
relatively feasible and safe for fetus is fetal blood which can 
be obtained under ultrasound guidance. First trimester fe-
tal blood also contains a population of non-hemopoietic 
mesenchymal stem cells, which support hemopoiesis and 
can differentiate along multiple lineages. In terms of even-
tual downstream application, both fetal HSC and MSC 
have advantages over their adult counterparts, including 
better intrinsic homing and engraftment, greater multipo-
tentiality and lower immunogenicity. Fetal stem cells are 
less ethically contentious than ES cells and their differen-
tiation potential appears greater than adult stem cells.89

deficiencies and liver diseases.72 Differentiation of fetal 
hepatocyte from iPS cells and ES cells display specific he-
patic functions like ammonia metabolism, excretion of 
indocyanin green and are capable to engraft and express 
hepatic proteins 2 months after transplantation into new-
born uPAxrag2gc−/− mouse liver.73

However, modulating the human genome and over ex-
pression has been associated with tumorigenesis,74,75 
there is a risk that the differentiated cells might also be 
tumorigenic when transplanted into patients. The insertion 
of transgenes into functional genes of the human genome 
can be detrimental.76

Transplantation of mouse iPS cell-derived endothelial 
cells and endothelial progenitor cells into the livers of ir-
radiated hemophilia A mice have increased survival rates 
and plasma factor VIII.77 To date, there is no report on the 
transplantation of iPS cell-derived hepatocytes into ani-
mal models, but successful differentiation of human-iPS 
cells into hepatocytes63,78,79 has paved the way for the fu-
ture application of patient-specific iPS cells to be utilized 
as cell therapies for liver diseases.67

USE OF EMBRYONIC STEM CELLS
Embryonic stem cells, as their name suggests, are derived 
from embryos. They are derived from a 4 or 5 day old hu-
man embryo that is in the blastocyst phase of develop-
ment. However, these embryos are not derived from eggs 
fertilized in a woman’s body. Most of these embryos de-
velop from eggs that have been fertilized in vitro at an 
in vitro fertilization clinic. The embryos are usually extras 
where several eggs are fertilized in a test tube, but only one 
is implanted into a woman. These extra embryos are then 
donated for research purposes with informed consent of 
the donors.

Blastocyst consists of an inner cell mass (embryoblast) 
and an outer cell mass (trophoblast). The outer cell mass 
becomes part of the placenta, and the inner cell mass is 
the group of cells that will differentiate to become all the 
structures of an adult organism. This latter mass is the 
source of pluripotent ES cells. These cells are isolated by 
placing the inner cell mass into a culture dish containing 
a nutrient-rich broth. Lacking the necessary stimulation 
to differentiate, they begin to divide and replicate while 
maintaining their ability to become any cell type in the 
human body. Eventually, these undifferentiated cells can 
be stimulated to create specialized cells.

Embryonic stem cells possess the most potent differen-
tiation potential, with their capacity for self-renewal theo-
retically providing an unlimited supply of hepatocytes to 
support regeneration of the injured liver. Directed differ-
entiation of ES cells to liver cells is a promising strategy 
for obtaining hepatocytes that can be used for cell trans-
plantation. ES cells were very well compared with adult liver 
progenitor cells and found suitable for hepatocyte-like 
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therapeutics for liver diseases will be firmly established in 
hepatology.
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