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Abstract
We examine the general problem of light transport initiated by oblique illumination of a turbid
medium with a collimated beam. This situation has direct relevance to the analysis of cloudy
atmospheres, terrestrial surfaces, soft condensed matter, and biological tissues. We introduce a
novel solution approach to the equation of radiative transfer that governs this problem, and
develop a comprehensive spherical harmonics expansion method utilizing Fourier decomposition
(SHEFN). The SHEFN approach enables the solution of problems lacking azimuthal symmetry and
provides both the spatial and directional dependence of the radiance. We also introduce the
method of sequential-order smoothing (SOS) that enables the calculation of accurate solutions
from the results of two sequential low-order approximations. We apply the SHEFN approach to
determine the spatial and angular dependence of both internal and boundary radiances from
strongly- and weakly-scattering turbid media. These solutions are validated using more costly
Monte Carlo simulations and reveal important insights regarding the evolution of the radiant field
generated by oblique collimated beams spanning ballistic and diffusely-scattering regimes.

I. INTRODUCTION
The general problem of collimated beam propagation and scattering in a turbid medium is
important to fields as diverse as materials characterization [1, 2], biomedical optics [3–5],
computer graphics [6], and geophysical remote sensing [7–9]. Applications in these areas
utilize measurements of the spatial and/or angular radiance distributions in conjunction with
radiative transport models to determine compositional and morphological properties [1–9].
Light transport in turbid media is modeled by the theory of radiative transfer [10, 11].
Development of general solutions to the equation of radiative transfer (ERT) is challenging
due, in part, to the large number of independent variables. Monte Carlo (MC) simulations of
photon transfer are often the most robust to solve the ERT, however the computational cost
associated with obtaining a solution with sufficient accuracy and resolution can be
computationally prohibitive. Although effective methods exist for solving the ERT in the
limiting cases of single- and diffusive-scattering [11], the development of ERT solutions that
are valid over spatial scales spanning a single-scattering mean-free path to several transport
mean-free paths remains an important challenge [5, 7, 12–16].
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Here, we present a comprehensive analysis of the radiative transport generated by oblique
illumination of a turbid medium with a collimated beam using a generalized spherical
harmonic expansion method. This problem is important for determining the composition and
structure of turbid media on meso- and macro-scopic spatial scales [7, 17–21]. While many
researchers have examined spherical harmonics expansion methods (PN method [22]) and
their variants to address the problem of collimated illumination, the implementations have
been largely limited to cases of normal illumination possessing cylindrical symmetry [23–
27], or isotropic illumination within an infinite medium [28–30]. Moreover, most of these
studies consider only scalar metrics of the radiative field without providing any detailed
directional information [23–25, 28, 29]. Other studies have provided detailed directional
information but limit their consideration to azimuthally symmetric problems [26, 27, 30]. As
a result, these previous methods either cannot accommodate or do not examine radiative
transfer problems which employ sources that break cylindrical symmetry. This is an
inherently more difficult problem since both polar and azimuthal variation in the spherical
harmonic expansion must be considered.

We develop the Nth-order Spherical Harmonic Expansion with Fourier decomposition
(SHEFN) method to address these more general transport problems. The mathematical
analysis uses the Fourier decomposition to obtain a system of differential equations for the
expansion coefficients. We develop a detailed analysis of an associated generalized
eigenvalue problem that provides two key parity relations that reduce the problem to a single
quadrant of the transverse Fourier plane. Furthermore, we ascertain key mathematical
properties of the generalized eigenvalue problem to enable a robust and unified solution
framework for arbitrary expansion orders and illumination angles.

To demonstrate the utility of this framework, we consider both the remitted and internal
light fields generated by oblique illumination of turbid media. Our results provide an
unprecedented view of the evolution of the light field, produced by oblique collimated
illumination, spanning the ballistic to diffusive scattering regimes. In this way SHEFN
provides a novel and comprehensive framework to predict the spatial and angular profiles of
the radiance in both weakly- and strongly-scattering media over mesoscopic and
macroscopic spatial scales. We validate these solutions through comparison with Monte
Carlo simulations over a broad range of optical coefficients. In addition, we compare results
for the spatially-resolved reflectance due to normal illumination with the standard diffusion
approximation, which shows excellent agreement in the limit of high-scattering and large
source-detector separations. Finally, we introduce a sequential-order smoothing (SOS)
method that provides radiant field predictions with increased accuracy through a weighted
combination of neigh-boring even-odd order SHEFN solutions. This enables the use of two
relatively low-order solutions to provide accuracy that would ordinarily be obtained only
through a much higher order, and more computationally costly, solution.

II. THE EQUATION OF RADIATIVE TRANSFER
Consider the semi-infinite domain, z > 0, with boundary plane z = 0 composed of a uniform
absorbing and scattering medium, with relative refractive index n as shown in Fig. 1. A
continuous collimated beam is incident obliquely on z = 0 with angle of incidence θi. We
choose a coordinate system such that the plane of incidence is the x-z-plane. The angle θ0 in
which the beam propagates into the turbid medium is governed by Snell’s law, sin θi = n sin
θ0.

The radiance, L(r, Ω), represents the radiant flux per unit solid angle at position r = (x, y, z)

propagating in direction Ω = (Ωx, Ωy, Ωz) = (η cos ϕ, η sin ϕ, μ) where , μ = cos
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θ is the cosine of the polar angle, θ, and ϕ is the azimuthal angle. For this problem, L is
governed by the following ERT

(1)

subject to

(2)

Here, μt = μa+μs where μa and μs are the absorbing and scattering coefficients, respectively.
The scattering phase function, p, gives the fraction of power scattering in direction Ω due to
light incident in direction Ω′. Here, we have assumed that scattering is spherically symmetric
so that p depends only on Ω′ · Ω. Boundary condition Eq. (2) gives the light incident on z = 0
corresponding to a Gaussian beam with radius ρ and the term ℛL accounts for any internal

reflections due to the refractive index mismatch. Here, μi = cos θi and .

Following Chandrasekhar [10], we represent the radiance as the sum of collimated and
scattered radiances: L = Lc + Ls. Using the δ-Eddington rescaling [31], we find that a
fraction of the collimated radiance, fδ, is scattered directly forward along Ω0 and remains in
Lc. This results in a reduced attenuation coefficient μ̃t = μa + μ̃s = μa + μs (1 − fδ) relative to
the total interaction coefficient μt = μs + μa. Consequently, Lc is given by

(3)

Then, the scattered radiance Ls is governed by

(4)

where the source Q is defined as

(5)

Eq. (4) is subject to

(6)

where rF (μ) is the Fresnel reflection equation for natural light due to a refractive index
mismatch at z = 0 [11].

III. SPHERICAL HARMONICS EXPANSION UTILIZING FOURIER
DECOMPOSITION

We begin with the spherical harmonics

(7)
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where Pℓ,m(μ) is the associated Legendre polynomial of order ℓ = 0, 1, 2, … and degree m =
−ℓ, …, ℓ, and . The orthogonality relation is

(8)

where δℓ,ℓ′ is the Kronecker delta and Y* denotes the complex conjugate. Projecting the
scattered radiance and phase function onto the spherical harmonics gives

(9)

and

(10)

respectively, where  is inserted for convenience. ψℓ,m(r) and gℓ are the
harmonic moments of the scattered radiance and the scattering phase function, respectively.
Inserting Eqs. (9) and (10) into Eq. (4) and multiplying the resulting equation by the

conjugate of the expansion, , followed by integration over all
directions Ω gives

(11)

This projection results in a countable infinity of coupled partial differential equations [22]
for the harmonic moments, ψℓ,m(r). The moments of the extinction coefficient are μt,ℓ ≡ μt −
μsgℓ ≡ μa + μs(1 − gℓ) and the coefficients a through f are

(12)
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Application of the phase function expansion [Eq. (10)] to the modified phase function of the
interior source, p̃(Ω0 · Ω), gives the source moments

(13)

where g̃ℓ is the ℓth moment of p̃.

To obtain computationally feasible solutions of the ERT, we truncate the spherical harmonic
expansion at order N. The resulting band-limited harmonic spectrum gives rise to (N + 1)2

coupled partial differential equations, which assumes ψℓ>N,m = 0. We then Fourier transform
Eq. (11) with respect to the transverse spatial variables (x, y)

(14)

where μd ≡ μ̃t/μ0 + i tan θ0kx. The transverse Fourier moments (TFMs) are defined as

(15)

where k = (kx, ky) is the transverse wave-vector.

Next, we cast the system of equations [Eq. (14)] in vector form

(16)

where the TFMs are the entries of the vector ψ̂, and the entries of the matrices A and B are
constant with respect to z. The vector 𝒬 ̂ contains the harmonic moments of the transverse
Fourier source, and the entries of these arrays map the (ℓ, m) pairs as [(0, 0), (−1, 1), (1, 0),
(1, 1), …]. However, truncation of Eq. (14) at order N produces two algebraic equations for
the outlying moments
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(17)

Substitution of these moments is required to formulate Eq. (16). This substitution modifies
the (ℓ, m) = [N − 1,±(N − 1)] elements of both the diagonal of B

(18)

and the source vector 𝒬 ̂

(19)

Following this substitution [(N + 1)2 − 2] equations remain in Eq. (16).

Next, we seek the solution of Eq. (16) as the sum of homogeneous and particular solutions

(20)

The particular solution is given by ψ̂(p) = (−μdA + B)−1 𝒬 ̂ exp(−μdz), and we seek the
homogeneous solution in the form ψ̂(h) = G exp(z/λ). Upon substitution of the homogeneous
solution into Eq. (16), we obtain the generalized eigenvalue problem AG = −λBG. Analysis
of the matrices of Eq. (16) provides valuable information regarding the generalized
eigenvalue problem. First, while matrix A is real, symmetric, and possesses entries that are
constant with respect to z, it is rank deficient. Matrix B is Hermitian and its entries depend
on the optical coefficients and the transverse wave vector k, but not z. Thus, the generalized
eigenvectors, G, form a basis. The rank deficiency of A, results in (N − 1) eigenvalues that
are zero. To obtain a unique solution to a boundary value problem, we reject the
eigenvectors corresponding to these zero eigenvalues. The remaining eigenvalues occur in
positive/negative pairs that are either distinct or 1-fold degenerate. For even expansion
orders, there are N distinct and N2 degenerate eigenvalues. For odd expansion orders, there
are (N + 1) distinct and (N2 − 1) degenerate eigenvalues. In total, there are N(N + 1) non-
zero eigenvalues for even or odd expansion orders, a quantity which is always even. The
solution we seek for the semi-infinite turbid medium must additionally satisfy the condition
ψ → 0 as z → ∞. Therefore, the eigenvectors corresponding to the positive eigenvalues
must also be rejected. Using these mathematical properties, we represent the TFM solutions
as

(21)

To determine the coefficients Cj in Eq. (21), we prescribe boundary conditions that conserve
hemispherical moments of Eq. (6), due to the absence of a half-range orthogonality
relationship for the spherical harmonics. These hemispherical conditions are extensions of
the Marshak condition [32] and given by

(22)
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Conceptually, this boundary condition requires the portion of the outwardly-directed (μ < 0)
scattered radiation that is internally reflected at the boundary to equal the inwardly-directed
(μ > 0) scattered radiation. This boundary condition accounts for propagation in polar and
azimuthal angles and arbitrary refractive index mismatch. Following insertion of Eq. (9) for
the scattered radiance and integration, the resulting linear equations couple harmonic modes
of constant m at the boundary. Furthermore, the order and degree of the boundary
expressions require (Λ − M) to be odd.

We use the Henyey-Greenstein scattering phase function [33] which is characterized by the
scattering anisotropy g ≡ 〈cos ϑ〉 as

(23)

where cos ϑ ≡ Ω′ · Ω. The harmonic moments of the Henyey-Greenstein scattering phase
function are gℓ = gℓ. The δ-Eddington rescaling of the collimated radiance produces a
modified scattering phase function, p̃(Ω0 · Ω), for the transfer of radiation from collimated to
scattered fields. Through a mapping of the moments of the rescaled phase function with the
Henyey-Greenstein moments, fδ = gN+1 and g̃ℓ = (gℓ − fδ)/(1 − fδ) [31].

To obtain a complete ERT solution, one must, in principle, compute the TFMs over the
entire transverse Fourier plane. However, we exploit two key parity relations to reduce
computation of the TFMs to a single quadrant of the transverse Fourier plane. Consider a
collimated beam in direction Ω0 which lies in the x-z plane. In this case, the TFMs satisfy
the following conjugate symmetry with respect to kx

(24)

and the following symmetry with respect to ky

(25)

Figure 2 shows color contour plots of the real and imaginary components of ψ̂5,±5, computed
using SHEF9. These plots show clearly that these TFMs satisfy the parity relations of Eqs.
(24) and (25) and enables one to reduce the computation of the TFMs to a single quadrant,
e.g., for kx, ky ≥ 0 only.

IV. PROCEDURE TO COMPUTE SPATIALLY-RESOLVED RADIANT FIELDS
The procedure to evaluate the radiant field using the SHEFN framework is segmented into
three processes: (i) initialization, (ii) evaluation of frequency dependent solution in a single
quadrant, and (iii) use of the single quadrant solution to obtain spatially-resolved radiance
profiles.

Following the specification of an expansion order N, the Gaussian beam radius ρ with angle
of incidence θi, and a set of optical properties {μa, μs, g, n}, the integrals of the boundary
condition in Eq. (22) are computed for the given refractive index, n. Use of the azimuthal
portion of the spherical harmonics orthogonality condition [Eq. (8)] gives 0 if m ≠ M. Then,
Gaussian quadrature is employed to numerically integrate Eq. (22) with respect to μ for m =
M, for odd instances of (Λ − M). Next, we compute the moments of the phase function gℓ,
the extinction coefficients μt,ℓ, and the modified phase function g̃ℓ, and evaluate the source
moments qℓ,m(Ω0) [Eq. (13)]. The final step of the initialization procedure populates matrix
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A and the frequency-independent portions of both matrix B and the source vector 𝒬 ̂ required
in Eq. (16).

The procedure continues by evaluating the frequency-dependent TFM solutions for kx, ky ≥
0. We choose the width and sampling of the frequency grid based on the Gaussian beam
radius ρ and the cosine of the angle of incidence μi, so that the source term in Eq. (11) is

adequately resolved. For the results below, we have set  and
Δk = π/30k̂x + π/(30μi)k̂y. Then, for each frequency μd, B, and are evaluated, and we
compute the particular solution coefficient (−μdA + B)−1 𝒬 ̂. Using A and B the generalized
eigenvectors G and eigenvalues λ are computed using the QZ algorithm [34], and the
eigenmodes for λ < 0 are retained. Next, the boundary conditions are employed to compute
the unknowns Cj. The depth resolved TFMs are evaluated through Eq. (21), using Eq. (17)
to evaluate the outlying moments ψ̂N,±N.

Using the parity relations in Eqs. (24) and (25), the TFMs are determined over the entire
transverse Fourier plane. Then, the spatially-resolved harmonic moments of the scattered
radiance are computed via the inverse discrete Fourier transform

(26)

V. RESULTS
We examine spatial and angular radiant distributions provided by the SHEFN framework for
the case of a narrow collimated Gaussian beam of radius ρ incident at the origin on the
surface of a turbid half-space. We consider various angles of incidence, θi, for a beam
aligned in the x-z plane with ϕi = 0°. We present results for both N = 8 and 9 and consider

two different sets of optical properties:  and , where the transport

scattering coefficient, , gives rise to the transport mean free path

. We perform our analysis for a scattering anisotropy g = 0.8 and a relative
refractive index n = 1.4 characteristic of a tissue/air interface [19, 24, 25]. Note that both the
radiance and the spatial dimensions are non-dimensionalized relative to the transport mean

free path ℓ*, such that the results for a given  are scalable for different combinations of

 and μa that result in the  ratio considered.

We compute the spatially-resolved reflectance and the angularly-resolved remitted radiance
and compare these SHEFN results with those provided by Monte Carlo simulations and/or

the standard diffusion approximation. We simulated 108 and 109 photons for 

and , respectively, where an increased number of photons is simulated for the latter
case due to decreased scattering and increased absorption. Within the SHEFN framework the
reflectance equals the current of the scattered radiance crossing the boundary and is given by
R(x, y) = −ψ1,0(x, y, z = 0).

Figure 3 displays the spatially-resolved reflectance evaluated along the beam axis for an
illumination angle θi = 45° for two beam radii ρ = [l*/2, l*/10]. For beam radius ρ = l*/2, the

SHEFN predictions show excellent correspondence with the MC results for  (Fig.

3a). However for  (Fig. 3b) the SHEFN predictions close to the beam origin are
inaccurate, especially at negative x-values. When the beam radius is reduced further to ρ =
l*/10, reflectance predictions near the beam origin oscillate regardless of the optical
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properties (Fig. 3c,d). Truncation of the harmonic expansion at order N gives rise to these
oscillations because they provide insufficient detail of the radiant field in regions where the
transport is dominated by a sparse number of interactions with the medium. As a result, the
deleterious effects of truncation are exacerbated when considering both narrow collimated
sources and transport in weakly-scattering media, both of which result in radiant fields with
high angular/spatial harmonic content. As a result, the spatial extent of the oscillations

increases for weakly-scattering media as seen for  (Fig. 3d).

Since collimated illumination using beam radii smaller than the transport mean free path (ρ
< l*) is a situation of high practical importance, these oscillations are not acceptable. To
ameliorate these errors we take advantage of the observation that oscillations produced by
sequential even-odd solution orders are completely out of phase. Thus, we introduce
sequential-order smoothing (SOS) as the linear combination

(27)

where the subscripts e and o represent the successive even and odd SHEFN orders and ζ =
(No+1)/(2No), where No is the odd expansion order. ζ weights the fraction of non-zero
eigenvalues of the odd expansion order to the sum of non-zero eigenvalues of the successive
even-odd expansions. We have found that SOS effectively removes these oscillations.
Refined SHEF8,9 reflectance predictions using SOS are also shown in Fig. 3, and clearly
provide much better agreement with the MC results as shown in the inset plots for the
relative error. Further SHEFN results are provided for expansion order pairs [(2, 3); (6, 7);
(10, 11)] in Fig. 4 with ρ = l*/2. These results show the improved accuracy of SHEFN with
increasing expansion order N. The additional improvement provided by SOS is most
significant for low expansion orders and/or weakly-scattering media. Because SOS
effectively removes the oscillations produced by SHEFN, we are able to choose N solely on
the desired level of accuracy. For what follows we will focus exclusively on presenting
results for the narrow beam radius ρ = l*/10 using SHEF8,9.

To appreciate the improved accuracy that the SHEFN framework provides we consider the
classic problem of spatially-resolved reflectance produced by normal beam illumination (θi
= 0°). Figure 5 provides SHEF8,9 predictions for this problem along with Monte Carlo
simulation results and predictions by the standard diffusion approximation (SDA) using an

extended source description [35, 36] in both strongly-scattering ( ) and weakly-

scattering ( ) media. This approach accounts for the collimated illumination with an
exponential distribution of image source dipoles rather than a point image source dipole.

These results demonstrate the significant benefits offered by the SHEFN framework to

predict these radially-resolved reflectance profiles. Specifically, for , SHEF8,9
provides greatly improved predictions at small radial locations (ϱ ≤ l*) as compared to the
SDA. Moreover, the SHEF8,9 solutions converge more rapidly to the MC results whereas the

SDA predictions approach the MC results only for ϱ ≳ 4l*. For  the SHEF8,9
predictions are far superior to the SDA results at all radial locations. This is not surprising as
is well-known that the SDA fails in situations where the reduced scattering is comparable to
absorption [5, 22, 37]. By contrast, the SHEF8,9 predictions in weakly-scattering media
provide excellent accuracy for ϱ ≳ l*/2.

The use of the higher-order approximations provided by the SHEFN framework, along with
SOS, produce enhanced predictions of the radiance, the fundamental quantity of the ERT.
Naturally when considering remitted optical signals, the radiance at the surface is the
fundamental quantity for evaluation of the radiative flux captured by a detector with
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arbitrary orientation, dimension, and angle of acceptance. This remitted, or external,
radiance, Lex, at z = 0 (μ < 0) is computed from the scattered radiance, Ls,

(28)

where the cosine of the polar angles μ and μex are related through Snell’s law. Figure 6
displays angular distributions of the remitted radiance for Ωx-Ωz and Ωy-Ωz cross-sections
provided by SHEF8, SHEF9, SHEF8,9 and MC simulations at x = l*/2 on the beam axis for
θi = 45°. It is important to note that the evaluation of the radiance using MC simulations is
computationally costly, and yet provides the angular radiance profile only at discrete
locations. While the truncation required to obtain SHEF8, SHEF9 predictions results in
inaccurate and/or oscillatory predictions, application of SOS [Eq. (27)] provides an accurate,
smooth, and continuous prediction for the angular radiance distribution. The results obtained

at  show that while the SHEF8,9 prediction provides only a modest improvement
in accuracy, it eliminates the significant oscillatory behavior displayed by both SHEF8 and

SHEF9 predictions. By contrast, in the case of , the heightened harmonic content of
the radiance leads to inaccurate and highly oscillatory SHEF8 and SHEF9 predictions.
However, the use of SOS dramatically improves both the accuracy and smoothness of the
radiance profiles and yields predictions in excellent agreement with the MC results. Thus,
application of SOS proves to be extremely valuable in providing accurate radiance profiles
at these low orders.

Figure 7 provides additional angular distributions of the remitted radiance for SHEF8,9 at
locations x = [l*/2, 2l*] on the beam axis, for incident beam angles of θi = [0°, 30°, 60°]. For
locations proximal to the beam origin, variations in θi provide distinct angular spectra.
However at locations more distal from the beam origin in strongly-scattering media (e.g., x =
2 l*, Fig. 7b,f), variations in θi have less impact on the angular spectrum. This displays the
transition from a highly anisotropic radiant field close to the beam origin to a more diffusive
field at more remote locations. By contrast, for weakly-scattering media at this same distal
location, the effect of the illumination angle is preserved, and provides angular distributions
which retain a high degree of anisotropy (Fig. 7d,h). Figures 3–7 exhibit the ability of
SHEFN combined with SOS to obtain accurate predictions, at relatively low approximation
orders, for the complete radiance distributions at the surface of strongly- and weakly-
scattering turbid media on spatial scales significantly smaller than the transport mean free
path.

We have focused on radiance predictions at the surface because, apart from their importance
for materials characterization, imaging, and remote sensing, the presence of the refractive
index mismatch and optical property discontinuity makes them most difficult to predict. To
visualize internal radiant fields, we examine both the scalar radiance, i.e. the fluence rate
φ(r) = ∫4π L(r, Ω) dΩ, and the full angular distribution of the radiance at discrete spatial
locations. Recalling the radiant field inside the medium using SHEFN is given by the
superposition of scattered and collimated components, L(r, Ω) = Ls(r, Ω) + Lc(r, Ω), the
fluence rate is

(29)

where, by definition, ψ0,0(r) ≡ ∫4π Ls(r, Ω) dΩ. Internal distributions are shown in Fig. 8 for

the optical coefficients  and  for incident illumination angle θi = 30°.
3D spatial distributions of the scalar radiant field are displayed by various slices of the
turbid volume (Fig. 8a,e). The spatial dispersion of the radiant field in weakly- versus
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strongly-scattering media is highlighted by the increased persistence of the collimated beam.
Angular distributions of the radiant fields are shown at spatial locations on the beam axis at
a depth of z = l* and transverse x-locations [l*, 2l*, 3l*] from the propagating collimated
beam origin (viz. Fig. 8i). For strongly-scattering media (Fig. 8b–d), the radiant field at
transverse locations more distal from the collimated beam display a stronger angular
dispersion and demonstrates a transition towards a diffusive radiant field. Conversely, for
weakly-scattering media (Fig. 8f–h), the angular spectrum of the radiant field remains much
more localized at equivalent transverse locations. However, independent of the optical
properties, the dominant propagation direction is comparable at equivalent locations, while
the dispersion about this direction is reflective of the underlying sample turbidity. Moreover,
it is important to note that all these radiance distributions lack azimuthal symmetry and thus
cannot be predicted using PN-based methods.

VI. CONCLUSIONS
The SHEFN method provides an accurate and comprehensive framework for the prediction
of both the internal and external radiances, L(r, Ω), produced by the illumination of turbid
media with narrow oblique collimated beams. The use of the complete spherical harmonic
expansion enables the consideration of problems that lack azimuthal symmetry. This
provides capabilities far beyond the PN approximation and are especially valuable for a
broad number of applications in remote sensing, materials characterization, photorealistic
rendering, and biomedical applications where the use of oblique illumination is common [6,
7, 17–21]. Moreover, the development of sequential-order smoothing (SOS) to combine
SHEFN predictions from successive even-odd expansion orders provides predictions with
significantly enhanced accuracy. The use of SOS is shown to be particularly advantageous
for beam radii smaller than l*, weakly-scattering media, and locations proximal to the beam.
The improvements in accuracy and reduction in oscillatory behavior provided by SOS
demonstrates this innovative approach to leverage two sequential low-order approximations
to obtain solution quality that would otherwise only be accessible through the use of a much
higher approximation order. Importantly, the use of SOS with any even/odd pair of
sequential orders N and (N + 1) provides a higher quality solution than that provided by
order (N + 2) but with lower computational cost.

We have demonstrated how the SHEFN framework and SOS can be applied to obtain
radiative transfer predictions that are accurate in both strongly- and weakly-scattering turbid
media on mesoscopic spatial scales. As such, our results demonstrate that the SHEFN
framework provides a unified approach to predict and visualize the evolution of the radiant
field from ballistic to diffusive regimes. Recent experimental and computational work has
shown the importance of angular radiance distributions with regards to ascertaining optical
properties on mesoscopic and macroscopic spatial scales [38, 39]. While a variety of
approaches to obtain ERT solutions exist, including Monte Carlo (MC) simulations and the
discrete ordinate method (DOM) [40, 41], the associated computational expense with these
methods is large, especially when evaluating angular radiance distributions which lack
azimuthal symmetry.

The comprehensive and systematic means by which SHEFN provides complete internal and
external radiance predictions makes it a powerful tool to explore issues concerning both a
priori measurement design (forward problem) and a posteriori signal interpretation (inverse
problem) in areas such as remote sensing and biomedical imaging. Additionally, methods
that operate in the spatial Fourier domain, such as spatial frequency domain imaging [3], can
directly employ the TFM solutions provided by the SHEFN framework [Eq. (21)]. Extension
to time-dependent problems can be achieved through a temporal-frequency-dependent total
interaction coefficient without alteration of the overall solution approach. Layered media
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can be addressed by coupling region-wise solutions using additional boundary conditions at
the media interface(s). Furthermore, because the SHEFN framework provides complete
representation of the spatial and angular characteristics of the radiance, one can leverage the
general reciprocity property of the ERT. This enables an adjoint transfer mechanism to
efficiently and accurately address both forward and inverse problems, such as optical
tomography [5].
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Figure 1.
(Color online) Coordinate system for the problem showing a collimated beam obliquely
incident on the turbid medium. The coordinate system is chosen so that the plane of
incidence is the x-z-plane. The angle of incidence is θi. The beam refracts due to a refractive
index mismatch at the boundary yielding a beam propagating in direction θ0.
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Figure 2.
(Color online) Contour plots displaying the real and imaginary components of the ψ̂5,±5
TFMs at the surface (z = 0), displaying the intra- and inter-moment parity relations on the

transverse wave-vector k. These plots are provided by SHEF9 for θi = 45° and .
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Figure 3.
(Color online) Reflectance as a function of x at y = 0 for illumination with incident angle θi
= 45° and beam radii ρ = l*/2 (a, b) and ρ = l*/10 (c, d). Comparison is provided for SHEF8,

SHEF9 with Monte Carlo (MC) for strongly-scattering ( ) (a, c) and weakly-

scattering ( ) (b, d) media. Also shown is the SOS extension SHEF8,9 for all cases.
The insets show the relative errors of SHEFN with respect to Monte Carlo.
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Figure 4.
(Color online) Reflectance as a function of x at y = 0 for illumination with incident angle θi
= 45° and beam radius ρ = l*/2. SHEFN results are provided for expansion order pairs [(2,
3); (6, 7); (10, 11)] and comparison is provided with Monte Carlo (MC) for strongly-

scattering ( ) (left) and weakly-scattering ( ) (right) media. Also shown
are the SOS solutions for each even-odd expansion order pair, and the insets show the
relative errors of SHEFN with respect to Monte Carlo.
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Figure 5.

(Color online) Radially-resolved reflectance as a function of  for illumination
with a normally incident beam with radius ρ = l*/10. Comparison is provided for SHEF8,9,
standard diffusion approximation (SDA), and Monte Carlo (MC) for strongly-scattering

( ) (left) and weakly-scattering ( ) (right) media. The insets show the
relative errors with respect to Monte Carlo.
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Figure 6.
(Color online) Polar plots displaying angular distributions of the remitted radiance Lex(θex)
for Ωx-Ωz (i.e. ϕ = [0°, 180°]) (left) and Ωy-Ωz (i.e. ϕ = [90°, 270°]) (right) cross-sections at
(x, y, z) = (l*/2, 0, 0) for an incident beam with radius ρ = l*/10 and angle θi = 45°. Results
are provided for SHEF8 (dashed red line), SHEF9 (dotted gold line), SHEF8,9 (solid teal

line), and Monte Carlo (•) for strongly-scattering ( ) (top) and weakly-scattering

( ) (bottom) media.
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Figure 7.
(Color online) Polar plots displaying angular distributions of the remitted radiance Lex(θex)
for Ωx-Ωz (i.e. ϕ = [0°, 180°]) (a–d) and Ωy-Ωz (i.e. ϕ = [90°, 270°]) (e–h) cross-sections
provided by SHEF8,9. Results are shown at proximal (x = l*/2) (a, c, e, g) and distal (x = 2
l*) (b, d, f, h) locations along the x-axis from an incident beam with radius ρ = l*/10 and

illumination angles θi = [0°, 30°, 60°] for strongly-scattering ( ) (a, b, e, f) and

weakly-scattering ( ) (c, d, g, h) media.
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Figure 8.
(Color online) Internal radiant field distributions provided by SHEF8,9 for an incident beam

with radius ρ = l*/10 and illumination angle θi = 30° on strongly-scattering ( ) (a–

d) and weakly-scattering ( ) (e–h) media. The 3D volumetric radiance distribution is
displayed by the Log10 fluence rate φ(r) (a, e) shown by an x-z slice at y = 0, x-y slices at z =
[l*, 3l*], and a y-z slice at x = 2 l*. Angular radiant field distributions are shown at a depth
of z = l* with y = 0 for x locations [l*, 2 l*, 3 l*] from the propagating collimated beam
origin (b–d, f –h). The schematic (i) displays the corresponding spatial locations and the
angular/directional coordinate system.
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