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Abstract

The metagenomic method directly sequences and analyses genome information from microbial communities. The main
computational tasks for metagenomic analyses include taxonomical and functional structure analysis for all genomes in a
microbial community (also referred to as a metagenomic sample). With the advancement of Next Generation Sequencing
(NGS) techniques, the number of metagenomic samples and the data size for each sample are increasing rapidly. Current
metagenomic analysis is both data- and computation- intensive, especially when there are many species in a metagenomic
sample, and each has a large number of sequences. As such, metagenomic analyses require extensive computational power.
The increasing analytical requirements further augment the challenges for computation analysis. In this work, we have
proposed Parallel-META 2.0, a metagenomic analysis software package, to cope with such needs for efficient and fast
analyses of taxonomical and functional structures for microbial communities. Parallel-META 2.0 is an extended and
improved version of Parallel-META 1.0, which enhances the taxonomical analysis using multiple databases, improves
computation efficiency by optimized parallel computing, and supports interactive visualization of results in multiple views.
Furthermore, it enables functional analysis for metagenomic samples including short-reads assembly, gene prediction and
functional annotation. Therefore, it could provide accurate taxonomical and functional analyses of the metagenomic
samples in high-throughput manner and on large scale.
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Background

The total number of microbial cells on earth is huge:

approximate estimation of their number is 1030 [1], and the

genomes of these vastly unknown microbes might contain a large

number of novel genes with very important functions. However,

more than 99% of microbe species remain unknown, un-isolated

or un-culturable [2], making traditional isolation and cultivation

process non-applicable. Metagenomics refer to the study of genetic

materials recovered directly from environmental samples [3],

which has made it possible for better understanding of microbial

diversity as well as their functions and interactions. The broad

applications of metagenomic research, including environmental

sciences, bioenergy research and health care, have made it an

increasingly popular research area.

There are two major analysis tasks for metagenomic samples:

taxonomical and functional analyses (Table 1). For taxonomical

analyses, early metagenomic survey of microbial communities

focused on 16S ribosomal RNA sequences which are relatively

short, often conserved within a species while different between

species. The 16S rRNA-based metagenomic survey has already

produced data for analysis of microbial communities of Sargasso

Sea [4], acid mine drainage biofilm [5], human gut microbiome

[6] and so on. Recently, some 16S rRNA amplicon data analysis

pipelines were introduced, such as PHYLOSHOP [7], Mothur [8]

and QIIME [9]. However, the increasing number of metagenome

data analysis projects needs more and more computing power,

which becomes an increasingly large huddle for the efficient

process of metagenome datasets by current pipelines. The

functional analysis of metagenomic data is based on shotgun

sequencing data that could elucidate the gene-set, pathway and

even regulation network properties and their dynamics for

microbial communities. The most frequently used analysis

methods for shotgun sequencing data including MEGAN [10],

CARMA [11], Sort-ITEM [12], ALLPATHS-LG [13] and IDBA

[14] are designed for only part of the functional analysis, such as

binning and assembly, cannot complete the whole functional

annotation processes. Meanwhile the web-based metagenomic

annotation platforms, such as MG-RAST [15] and CAMERA

[16], have been designed to analyze metagenomic data for

functional annotation. Nevertheless, there are currently few tools
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that integrate taxonomical and functional analysis of metagenomic

samples.

At present one critical bottleneck in metagenomic analysis is the

efficiency of data process because of the slow analysis speed. As

metagenomic data analysis task is both data- and computation-

intensive, high-performance computing is needed, especially when

(1) the dataset size is huge for a sample, (2) a project involves many

metagenomic samples and (3) the analyses are complex and time-

sensitive. Moreover, the increasing number of metagenomic

projects usually requires the comparison of different samples.

Yet current methods are limited by their low efficiency [7,10,11].

Thus, high-performance computational techniques are needed to

speed-up analysis, without compromising the analysis accuracy.

In this work, we have designed Parallel-META 2.0 for

taxonomical and functional analysis of metagenomic samples

based on High Performance Computing (HPC). Parallel-META

2.0 is the improved version of Parallel-META 1.0 [17] with several

significant updates. Firstly, the optimized parallel computing and

I/O strategy achieved more than 12 times speed-up compared to

PHYLOSHOP [7], 3 times faster than MetaPhlAn [18], and 1.4

times faster than version 1.0. Secondly, in version 2.0, the

taxonomical analysis has been enhanced by (a) supporting 18S

rRNA extraction & analysis for Eukaryote, (b) extending to

multiple reference database annotation and (c) providing taxono-

mical comparison between multiple samples. Thirdly, Parallel-

META 2.0 enables functional analysis based on both GO-term

(Gene Ontology term) annotation [19] and SEED [20] annotation

methods. Finally, results could be visualized and compared from

different angles, rather than the plain text by version 1.0. This

visualization of results makes the structures of microbial commu-

nities easier for human reading, and thus could simplify in-depth

manual analyses.

Parallel-META 2.0 software package is available at http://

www.computationalbioenergy.org/parallel-meta.html, which is

released under MIT license. We have also built a project about

this work in GitHub and uploaded the source code, manual,

materials and example datasets onto it. The link of Parallel-META

2.0 is at https://github.com/Comp-Bio-Group/Parallel-META.

As of now, this Parallel-META software package and the

corresponding data analysis platform have supported more than

30 metagenomic data analysis projects around the world.

Methods

In this work we have developed the Parallel-META 2.0 package

to analyze the metagenomic samples by incorporating several

novel functions including improved computational engine based

on High-Performance Computing (HPC), enhanced methods for

taxonomical structure interpretation, functional analysis, as well as

the data visualization techniques. The overall framework is

illustrated in Figure 1.

High Performance Computing
Metagenomic data analysis is both data- and computation-

intensive. To meet the needs for efficient process, we have

improved the High-Performance Computing (HPC) of Parallel-

META software [14] based on GPU and multi-core CPU which

enabled the highly-efficient metagenomic analysis in both

taxonomical and functional analyses.

Parallel-META [14] software processes the metagenomic

taxonomical analysis with shotgun sequencing data in 3 steps: (1)

16S rRNA extraction: To predict and extract 16S rRNA

fragments from the input data by Hidden Markov Model (also

referred to as HMM) algorithm [21,22] with the HMM model

built from all 16S rRNA sequences of Silva Database [23]. (2) 16S

rRNA mapping: To identify each component of the microbial

community by mapping all 16S rRNA fragments to reference

database by parallel computing. (3) Taxonomical annotation: To

parse out taxonomical and phylogenetic structure of the microbial

community.

For highly efficient parallel computing algorithm design and

deep optimization, POSIX thread and OpenMP techniques,

together with CUDA (Compute Unified Device Architecture)

programming techniques based on Linux C++ have been used in

the computing engine of Parallel-META 2.0 for 16S/18S rRNA &

gene prediction and annotation. In addition, this new version of

computing engine also has optimized I/O efficiency, which is one

of key features for high performance computation.

1.1 HMM based 16S/18S rRNA and gene prediction. In

Parallel-META 2.0, the 16S/18S rRNA fragments and genes are

predicted and extracted from the input data based on Hidden

Markov Model algorithm [22]. For taxonomical analysis, 16S/18S

rRNA fragment extraction is realized by GPU based HMM

[21,24,25] with parallel computing on GPU, while the gene

prediction is realized by FragGeneScan [26].

1.2 Parallel computing for BLAST based sequence

mapping. The extracted 16S/18S rRNA fragments and gene

sequences from the input data are then mapped to the reference

database for identification and annotation, which is a time

consuming process. To reduce the time cost of database search,

we have implemented the parallel sequence mapping in Parallel-

META 2.0 using OpenMP and CUDA. Input reads are divided

into smaller sets, and then the mapping task of each set is assigned

to independent thread, which could be processed on different

processors or cores in parallel.

1.3 Input & Output strategy. 16S/18S rRNA sequences

exist in both the original reads and the complementary reads of

input shotgun sequencing data. After loaded the original reads into

Table 1. The comparison of properties of taxonomical and functional analyses for metagenomic samples.

Features Taxonomical analysis Functional analysis

Input data types Pyro-sequencing or shotgun sequencing data shotgun sequencing data

Basic object sequences 16S rRNA sequences Gene sequences

Reference databases GreenGenes, RDP, Silva, etc. NCBI NR, SEED. etc.

Basic results Taxonomy structure (Qualitative and quantitative) Functional hierarchy (Qualitative)

Extended results Sample taxonomical structure comparison Sample functional composition comparison, Functional
and pathway enrichment

Applications Novel strain identification Gene discovery

doi:10.1371/journal.pone.0089323.t001

Enhanced Metagenomic Data Analysis Toolkit 2.0

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e89323

http://www.computationalbioenergy.org/parallel-meta.html
http://www.computationalbioenergy.org/parallel-meta.html
https://github.com/Comp-Bio-Group/Parallel-META


hash table of RAM, all computation processes, including the

complementary reads transformation, 16S/18S rRNA prediction

and extraction, are processed in the RAM rather than extern I/O

operation on file system and Hard Disk Drivers (also referred to as

HDD).

Enhanced Taxonomical analysis
Based on computing method of version 1.0 described in section

‘‘High Performance Computing’’ Parallel-META 2.0 improves all

3 steps of taxonomical analyses as below:
2.1 16S/18S rRNA fragment extraction. In addition to that

Parallel-META 1.0 can only analyze Bacteria domain by 16S

rRNA, In 2.0, Eukaryote domain could also be handled by adding

the 18S rRNA extraction by the Hidden Markov Model (HMM)

algorithm [22] with HMM model built based on Silva Database

[23].
2.2 Multiple databases. Reference databases are used to

identify and classify the taxonomical components for the microbial

community samples based on mapped 16S/18S rRNA reads.

Reference database schemes of Parallel-META 2.0 is an extension

from a single database of previous version (1.0 using only

GreenGenes [27]) to multi-database including GreenGenes, Silva

[23], RDP [28] and Oral Core [29] (Table 2 shows the sequence

number information). Since the accuracy of the metagenomic

analysis results heavily depends on the completeness and

correctness of reference databases, to this end, multi-database is

enabled for 2 reasons: (a) Each database is for specific purpose: the

GreenGenes, RDP and Silva databases are considered to be

relatively complete yet general, and Oral Core database is

specifically designed for species in oral environment with more

details; (b) Community structure of metagenomic sample gener-

ated based on multiple databases can also be integrated to mitigate

Table 2. Information about multiple 16S rRNA reference
databases.

Reference Database # of Sequence
Utilization in Parallel-
META

GreenGenes 4939 1.0 and 2.0

RDP 8423 2.0 only

Silva 14975 2.0 only

Oral Core 1046 2.0 only

doi:10.1371/journal.pone.0089323.t002

Figure 1. The overall framework of Parallel-META 2.0.
doi:10.1371/journal.pone.0089323.g001
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the bias and incompleteness caused by using single reference

database.

2.3 Multi-sample comparison. Parallel-META 2.0 con-

tains new module to qualitatively and quantitatively compare the

taxonomical structures among metagenomic samples on different

biology levels (from domain level to species level). The comparison

results could also be elucidated in the ‘‘global view’’ and ‘‘sub-

sample view’’ described in section ‘‘Interactive visualization’’.

Functional analysis
In Parallel-META 2.0, we enable functional analysis of

metagenomic samples based on two computational engines: one

based on GO-term annotation, another based on SEED annota-

tion, both of which can be divided into 3 steps (Figure 2): (1)

short-reads assembly and gene prediction, (2) gene identification

and (3) functional annotation followed by functional structures

interpretation of microbial communities.

3.1 Short-reads assembly and gene prediction. Short

reads in shotgun sequencing data from input metagenomic

samples need to be assembled into longer contigs for gene

sequence prediction. Here Velvet [30] is chosen as the short reads

assembler which plays the role as a module in Parallel-META 2.0,

and then gene sequences are predicted based on Hidden Markov

Model (HMM) algorithm [22,26]. Note that although there are

some other assembly tools such as ALLPATH-LG [13] that could

outperform Velvet, we have still used Velvet assembler in this

study as it is widely used in the area.

Figure 2. The dual computational engines for functional analysis in Parallel-META 2.0.
doi:10.1371/journal.pone.0089323.g002
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3.2 Gene identification. All predicted gene sequences from

the assembled contigs are then mapped to the reference database

for their identification. In Parallel-META 2.0, the gene identifi-

cation is implemented by two computational engines with different

reference database: GO-term based that maps gene sequences to

NCBI NR database (http://www.ncbi.nlm.nih.gov/), and SEED

based that maps gene sequences to SEED [16] database. As the

database alignment is time consuming, this process is parallelized

to achieve high efficiency (refer to section 1.2 for details).

3.3 Functional annotation. Two kinds of methods are used

in functional annotation as gene identification, GO-term based

and SEED based. For GO-term based analysis, we use blast2go

[15] to get all the GO-terms in the sample. GOSlim-terms

(manually curated by experts, OBO version 1.2, http://www.

geneontology.org/GO_slims/goslim_generic.obo) with important

biological meanings would be our focus. All GO-terms are tracked

to higher levels to parse out the GOSlim-terms, and most

abundant GOSlim-terms are then extracted with abundance

values. For SEED based analysis, each gene sequence can be

assigned to exactly 4 levels of SEED [20] annotations. This tree-

like functional structure with abundance values can be visualized

in the same way as the taxonomical structure (refer to section 4.2

for details).

Interactive visualization
We have used several visualization techniques, such as HTML5,

SVG and JavaScript, in Parallel-META 2.0 for analytical result

visualization (Figure 3), which could either be browsed by online

visualization tool MetaSee [31], or by standalone web browsers.

Based on these techniques, Parallel-META 2.0 supports (a)

interactive visualization of the taxonomical & functional commu-

nity structure (b) smooth change among different angles for the

same sample and (c) comparison of different samples in a single

interface. These visualization functionalities are described as

below:

4.1 Taxonomical structure visualization. Taxonomical

visualization shows the taxonomical structure of a microbial

community in the following angles:

(1) Global view is a taxonomical hierarchical tree that contains

all taxa and their proportions in single or multiple samples. Thus it

shows the whole profile with all samples been compared (Figure 3
(A)). (2) Sample view represents the community taxonomical

structure in a dynamic multi-layer pie-chart, which also supports

smooth shift among multi-sample comparisons of their taxonomi-

cal community structures (Figure 3 (B)). The sample view is

implemented partly by the Krona software [32]. (3) Sub-sample

view is a detailed ‘‘sample view’’ that focuses on one node (a

specific taxa) in the ‘‘global view’’ taxonomical hierarchical tree

structure, which is useful for comparing different samples for a

specific taxa (Figure 3 (C)). (4) Phylogenetic view is a

phylogenetic tree based on 16S rRNA reads from the metage-

nomic sample data, which elucidates the evolutionary relationship

of all microbes in a microbial community sample (Figure 3 (D)).
4.2 Functional structure visualization. Functional visual-

ization reflects the functional structure of a microbial community.

For SEED based functional analysis, as the microbial community

structure can be parsed into 4-level-annotations, this hierarchal

annotation structure could be visualized in the same way as the

taxonomical visualization in ‘‘Sample view’’ (Figure 3 (E)). For

GO-term based analysis, the GO-terms are illustrated into a pie-

chart containing each function’s proportional information using

SVG (Figure 3 (F))..

Results

Datasets and Experiment design
In this work we have evaluated the performance of Parallel-

META 2.0 in taxonomical and functional analysis based on both

simulated datasets and real datasets. All experiments were

completed on a desktop sever with dual Intel Xeon X5650 (12

cores, supporting 24 threads in total), 72 GB RAM and NVIDIA

Tesla C2075 GPU (448 processors, 6 GB on board memory).

For the real metagenomic data, we have collected 3 human

saliva metagenomic samples [17] and 3 human gut samples [33]

from different people (Table 3). Saliva samples were sequenced

by Illumina Solexa GA-IIx into pair-end 100 bp reads, and

sequences of gut samples were produced by 454 FLX.

The simulated datasets contained 10 samples, which were

constructed based on human oral related microbial genomes from

HOMD database [34], with Fusobacterium periodonticum, Veillonella

dispar, Porphyromonas gingivalis, Prevotella tannerae, Veillonella sp., Rothia

dentocariosa, Actinomyces odontolyticus, Megasphaera micronuciformis etc. as

most abundant species. All simulated datasets were created by

metagenomic data simulator Dwgsim (Whole Genome Simulation.

http://sourceforge.net/apps/mediawiki/dnaa/index.php?title = Whole_

Genome_Simulation) based on randomly selected genomes above with

Figure 3. The visualization effects for different kinds of results. (A) Global view, (B) Sample view, (C) Sub-sample view and (D) Phylogenetic
view, (E) Sample view for SEED based functional analysis, and (F) GO-term based analysis.
doi:10.1371/journal.pone.0089323.g003

Table 3. Information about real metagenomic datasets.

Dataset Biological background Source Sequencer # of Reads Size (MB)

Real Sample 1 Saliva sample, person 1,
healthy

MG-RAST, 4454806.3 Illunima Solexa 17,591,235 1576.96

Real Sample 2 Saliva sample, person 2,
decayed tooth

MG-RAST, 4454817.3 Illunima Solexa 34,405,667 2775.04

Real Sample 3 Saliva sample, person 3,
decayed tooth

MG-RAST, 4454816.3 Illunima Solexa 28,854,628 2928.64

Real Sample 4 Gut sample, person 4 CAMERA2, TS3_SRX001344 454 FLX 510,972 198.70

Real Sample 5 Gut sample, person 5 CAMERA2, TS50_SRX001358 454 FLX 549,700 216.76

Real Sample 6 Gut sample, person 6 CAMERA2, TS7_SRX001348 454 FLX 555,853 238.35

doi:10.1371/journal.pone.0089323.t003
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suitable abundances (most abundant 2,3 species are manually defined,

while others are defined randomly). And these genome sequences were

translated into short reads with 100 bp length and 1% sequencing errors.

Table 4 illustrated the basic information of simulated datasets, and the

detail information including genome names and abundance value are

available in supplementary materials (Table S1 (A)–(J) in File S1).

Efficiency evaluation
With the improved High Performance Computing strategy, the

efficiency of Parallel-META 2.0 could be significantly increased.

In this part we compared the two version of Parallel-META, as

well as two other methods (PHYLOSHOP [7] and MetaPhlAn

[18]) based on 3 real saliva samples in Table 3 (real sample 1, 2

and 3) and all 10 simulated samples in Table 4. All tests were

performed on the same hardware platform to evaluate the

acceleration in running time (refer to Table S2 in File S1 for

detailed parameter configuration). From results in Figure 4 we

could see that in the same condition, version 2.0 could achieve an

average speed up of 12.76 to PHYLOSHOP, 3.01 to MetaPhlAn,

and 1.41 to Parallel-META version 1.0. This advantage in

processing efficiency would enable the in-depth analysis among

massive metagenomic data. In addition, there was no significant

difference between real samples and simulated samples on process

efficiency (Figure 4).

Taxonomical Analysis and Visualization
Error rate test with simulated data. In this experiment,

we tested the error rate of taxonomical analysis on both phylum

and genus level by using 10 simulated datasets (Table 4). We

defined the error rate for taxonomical analysis as below:

Assume that there were N taxa (Ti, i = 0 to N-1) at a specified

taxonomical level (phylum or genus) in a simulated sample. Vi was

the abundance value of taxa Ti in the simulated data, while V9i was

the abundance value in the analysis result for taxa Ti.

Then for this simulated data, the error rate E could be

calculated as

E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN{1

i~0

Vi{V ’ið Þ2

N

vuuut
� 100% ð1Þ

Table 4. Information about simulated metagenomic datasets.

Dataset # of Reads Size (MB) # of Strains

Simulated Sample 1 18,936,022 2,180.02 10

Simulated Sample 2 21,860,962 2,517.56 14

Simulated Sample 3 17,702,336 2,042.55 11

Simulated Sample 4 21,850,592 2,518.66 13

Simulated Sample 5 17,003,492 1,955.71 10

Simulated Sample 6 20,156,006 2,328.32 12

Simulated Sample 7 19,700,952 2,270.77 11

Simulated Sample 8 23,718,286 2,732.70 13

Simulated Sample 9 21,6,68,126 2,498.10 13

Simulated Sample 10 20,345,442 2,337.97 11

Refer to Table S1 (A)–(J) in File S1 for detailed strains and their relative
abundances for these simulated samples.
doi:10.1371/journal.pone.0089323.t004

Figure 4. Running time of Parallel-META 1.0 and 2.0 with the same datasets and reference database (Greengenes). The Y-axis is in 10-
based log scale.
doi:10.1371/journal.pone.0089323.g004
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which essentially calculated the Euclidean distance between

predicted and actual taxonomical structures of the microbial

community. Therefore, larger E value indicates higher error rate.

Currently, taxonomical analysis of Parallel-META 2.0 has been

enhanced by using multiple reference databases including

GeneGenes, RDP, Silva and Oral Core, rather than the single

reference database of GreenGenes in version 1.0. In this work

results by Parallel-META 1.0 with database GreenGenes were

considered as ‘‘control results’’, and the comparison among results

based on different databases was conducted to show the improved

accuracy of Parallel-META 2.0 at both phylum level genus level

using Formula (1).

Figure 5. Error rate of taxonomical analysis of Parallel-META 1.0 and 2.0 with simulated data based on different databases at (A)
phylum level and (B) genus level.
doi:10.1371/journal.pone.0089323.g005

Table 5. Average error rate of taxonomical analysis of Parallel-META 2.0.

Reference Database Average error rate (%) at Phylum level Average error rate (%) at Genus level

GreenGenes 11.22 11.97

RDP 8.30 9.51

Sliva 8.49 9.87

Oral Core 7.40 8.48

doi:10.1371/journal.pone.0089323.t005
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The error rates were illustrated in Figure 5. From the results

we could observe that the error rates of taxonomical analysis at

phylum and genus levels could be reduced with the extended sets

of reference databases. In Table 5 the average error rates of

7.40% at phylum level and 8.48% at genus level also indicated the

reliability of the improved taxonomical analysis of Parallel-META

2.0. In addition, as all species of the simulated samples were from

human oral microbial genomes (Table S1 in File S1), results

based on the reference database Oral Core could achieve the

lowest error rate benefited from the optimized annotations of oral

environment microbes.

Multiple Sample Comparison and Visualization. We also

compared the taxonomical structure of 3 real saliva datasets

(Table 3) and 10 simulated datasets (Table 4) by Parallel-META

2.0. All datasets’ community structures were drawn into one tree-

like global view (refer to section 4.1 in ‘‘Methods’’ for details) for

comparison. Abundance values were illustrated in bar-chart of the

global view (Figure 6). Besides, sub-sample view of all samples

could also be linked by the corresponding taxa names in the tree.

Among the 3 real saliva samples, we have found that the most

abundant taxa in sample 1 (healthy saliva sample) included

Flavobacteria, while the most abundant taxa in sample 2 and 3

(decayed saliva samples) included Clostridia and Bacillales. These

results showed that there was a significant difference in most

abundant taxa when comparing healthy and decayed saliva

metagenomic samples, indicating that the microbial community

structures could represent oral health status of the hosts [35].

Functional Analysis
In this part, all 6 real samples (saliva and gut samples in

Table 3) and 3 simulated samples (simulated sample 1, 2 and 3 of

Table 4) were used to test both GO-term based and SEED based

functional analysis. Results in Table 6, Figure 7 and Figure 8
(also refer to supplementary materials Table S3 and Table S4 in

File S1 for detailed statistical information) have shown the

functional structure patterns of these samples as below:

(1) Firstly, results showed that in GO-term based analysis

(Figure 7, Table S3 in File S1), the most abundant terms

of both real and simulated data from oral environment were

consistently Metabolic Process, Biosynthetic Process, DNA metabolic

process, etc., for Biological Process, DNA binding, Catalytic Activity,

Nucleotide Binding, etc., for Molecular Function, and Cytoplasm

for Cellular Component. This indicated that the simulated

data was similar to real data as regard to functional profile.

However, the fact that there exist larger variations among real

samples than those among simulated samples indirectly

proved the needs for real data: the variation in functional

profiles could not yet be fully characterized by simulated data

only. In SEED based analysis results (Figure 8, Table S4 in

File S1), the most abundant functions of both real and

simulated data from oral environment included DNA

Figure 6. Multiple sample comparison by Parallel-META 2.0.
doi:10.1371/journal.pone.0089323.g006
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metabolism, Carbohydrates and Protein Metabolism, showing high

consistency between real samples and simulated samples.

(2) Secondly, real samples from gut environment (Real sample 4,

5, 6) had Carbohydrates, DNA metabolism, Iron acquisition and

metabolism and Amino Acids and Derivatives as most abundant

functions, which had also been observed in Peter J. Turnbaugh et

al., 2009 [33].

(3) Thirdly, functional profiles of simulated samples (Simulated

sample 1, 2, 3) were more similar to real samples (Real sample

1, 2, 3) from oral environment than gut environment samples

(Real sample 4, 5, 6), considering both GO-termed based and

SEED based annotations, especially in DNA Metabolic process,

Catalytic Activity, Biosynthetic Process for GO-term based

annotation, and DNA Metabolism, Carbohydrates, Nucleosides and

Nucleotides for SEED based annotation. These results also

elucidated the consistency between real and simulated

datasets, as well as that between different annotation methods.

Conclusion and Discussions

In this work, we have proposed Parallel-META 2.0, a powerful

metagenomic analysis package based on the joint-force of (a)

advanced and comprehensive methods/databases for taxonomical

and functional analysis of metagenomic samples, (b) High

Figure 7. Functional annotation results by GO-term based method.
doi:10.1371/journal.pone.0089323.g007
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Performance Computing and (c) cutting-edge interactive visuali-

zation technique.

Our preliminary tests on both simulated and real datasets have

shown that this software is not only accurate and fast, but also with

significantly improved user experience to facilitate in-depth

analysis and comparison of microbial community samples.

(1) Overall computing performance. Compared to version 1.0,

Parallel-META 2.0 has enhanced computing engine in 16S/

18S rRNA and gene prediction and sequence alignment

module by in-depth optimization in programming and

algorithm implementation. Moreover, combined with the

improved I/O strategy, Parallel-META 2.0 already has

obvious progress in computing speed compared to the

Figure 8. Functional annotation results by SEED based method.
doi:10.1371/journal.pone.0089323.g008
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previous version. As currently the HDD I/O bandwidth via

SATA bus is a bottleneck in the system, I/O throughput could

be enhanced significantly by Solid State Disk.

(2) Improved taxonomical annotation based on multiple data-

bases. New version of Parallel-META provides a wider range

with 16S and 18S rRNA extraction and analysis for Bacteria

and Eukaryote domains, and multiple reference databases for

better analysis precision, as well as suitable for specialized

users. In addition, multiple-sample comparison enables the

identification of common structure among microbial commu-

nities.

(3) Functional annotation of metagenomic samples. Parallel-

META 2.0 has included functional annotation modules, so

that it could cover a more complete area of metagenomic data

analysis. With the importance of functional interpretation of

metagenome been understood, as well as more and more

WGS (Whole Genome Sequencing) metagenomic sample

datasets been generated, these analyses would become

increasingly important.

(4) Visualization of analysis results. Users experience could be

largely improved by the friendly displayed interactive graphs

from various angles of the microbial communities, including

the global taxonomical structure, comparison on specified

taxonomical levels, phylogenetic relationships, GO-term

based and SEED based annotations.

As such, Parallel-META 2.0 has already served for more than

30 research groups worldwide. And it can be foreseen that this

software could benefit an even broader area of metagenomic

research.

Current Parallel-META is a stand-alone method for analysis of

taxonomical and functional structure of the metagenomic samples.

The efficiency and throughput can be reinforced by clouding

computing in further works. On a broader scale, Parallel-META

2.0 could be combined with metagenomic database for more in-

depth and large-scale data-mining for analysis of metagenomic

samples, by providing efficient method for extracting and

comparing taxonomical or functional features of microbial

communities.

Supporting Information

File S1 Supplementary files Tables S1–S4 for support
information.
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