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ABSTRACT
Pollinator decline has been linked to landscape change, through both habitat frag-
mentation and the loss of habitat suitable for the pollinators to live within. One
method for exploring why landscape change should affect pollinator populations
is to combine individual-level behavioural ecological techniques with larger-scale
landscape ecology. A modelling framework is described that uses spatially-explicit
individual-based models to explore the effects of individual behavioural rules within
a landscape. The technique described gives a simple method for exploring the effects
of the removal of wild corridors, and the creation of wild set-aside fields: interven-
tions that are common to many national agricultural policies. The effects of these
manipulations on central-place nesting pollinators are varied, and depend upon
the behavioural rules that the pollinators are using to move through the environ-
ment. The value of this modelling framework is discussed, and future directions for
exploration are identified.

Subjects Agricultural Science, Animal Behavior, Conservation Biology, Ecosystem Science,
Computational Science
Keywords Bumblebee, Honeybee, Behavioural ecology, Movement ecology, Simulation, Random
walk, Foraging distance, Behavioural rules, Pollinator biology, Ecosystem services

INTRODUCTION
Pollinators provide vital ecosystem services in both wild habitats and the agricultural

landscape, where they contribute enormous economic value to the production of crop

species (Morandin & Winston, 2006; Gallai et al., 2009). In addition to managed pollination

by honeybees, it is being increasingly acknowledged that unmanaged wild species may

be providing a vast amount of pollination within the managed environment (Winfree et

al., 2007; Holzschuh, Dudenhöffer & Tscharntke, 2012; Garibaldi et al., 2013). However,

it is acknowledged that many species of pollinator are in decline (Biesmeijer et al., 2006;

Goulson, Lye & Darvill, 2008). Considerable scientific effort is currently being devoted to

understanding this decline (Potts et al., 2010), in an effort to identify strategies for both

arresting and reversing it (Brown & Paxton, 2009; Winfree, 2010).

How to cite this article Rands (2014), Landscape fragmentation and pollinator movement within agricultural environments: a
modelling framework for exploring foraging and movement ecology. PeerJ 2:e269; DOI 10.7717/peerj.269

mailto:sean.rands@bristol.ac.uk
mailto:sean.rands@bristol.ac.uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.269
http://dx.doi.org/10.7717/peerj.269
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com
http://dx.doi.org/10.7717/peerj.269


Land-use change is frequently considered to be a major contributor to pollinator decline

(Potts et al., 2010), through both habitat fragmentation (but see Hadley & Betts, 2012)

and the loss of habitat suitable for pollinators (Fischer & Lindenmayer, 2007). Many

regional agricultural management schemes aim to counteract this, through the creation

of wild habitat within the agricultural landscape. This is presumed to be beneficial to

pollinators, through providing either wild refuge areas, or providing corridors to facilitate

movement (e.g., Batáry et al., 2011; Ernoult et al., in press). These landscape manipulations

may therefore be beneficial to enhancing pollination within the landscape. Patches of

wild refuge and set-aside land have been demonstrated to enhance biodiversity with

the agricultural environment (van Buskirk & Willi, 2004; Orłowski, 2010; Carvalheiro et

al., 2011; Norfolk et al., 2013). However, the value of corridors is debatable: corridors

can both aid pollinators to move through the environment (such as through giving

visual signposting or an obstruction-free route) and hinder their movement (such as

by providing physical barriers) through the environment (Collinge, 2000; Fried, Levey &

Hogsette, 2005; Davies & Pullin, 2007; Beier & Noss, 2008; Öckinger & Smith, 2008), and

may even be harmful if they allow the spread of invasive species (Procheş et al., 2005).

Even if a corridor is demonstrated to be a useful feature to add to the environment, the

corridor on its own may not provide extra value to the landscape, as the composition of the

landscape adjacent to the corridors may also contribute to how well they function (Baum et

al., 2004).

Because the evidence is relatively mixed for the value of these mitigation strategies, we

therefore need to better understand the effects that these different environmental manip-

ulations have on the pollinators that live within them. As well as observational studies

comparing existing manipulations, we can conduct experimental manipulations (Jenerette

& Shen, 2012). We can also investigate the biology and effects of the manipulations using

theoretical models, which allow us to explore many different scenarios without conducting

expensive and time-consuming field trials. Careful model formulation allows us to identify

aspects of the biology of the pollinating species that may impact on how they interact with

the environment. In particular, as urged by Lima & Zollner (1996), we can tie concepts

from behavioural ecology with landscape ecology, to better inform how organisms are

interacting with the habitat in which they live.

Techniques such as resource-selection function models use characteristics of the

environment and the physiology and potential nesting locations of pollinating species

of interest, and have been used to identify the likely site of foraging (Forester, Im &

Rathouz, 2009; Lonsdorf et al., 2009; Henry et al., 2012). However, further realism can

come if we tie spatially-explicit landscapes with well-developed concepts from behavioural

ecology. Individual-based models of movement within a landscape allow us to model

the movement path of individuals, based on their internal state (e.g., physiological

requirements) and their capacity to perceive and move through the environment, and

can accommodate external factors such as structure of the environment (Nathan et al.,

2008; Martin et al., 2013). Spatially-explicit individual-based models (McLane et al., 2011)
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have been used to explore diverse questions in behavioural ecology (e.g., Rands et al.,

2004; Rands et al., 2006; Rands, 2012). We would expect that the foraging decisions and

movements of pollinators will be affected by local resource availability, resource quality,

and the ease of locating resources and moving through the environment. In turn, these

can be tied to the physical composition of the landscape. All of these factors will be

changing dynamically, and will be subject to weather, interference from other foragers,

and anthropogenic change within the environment. Spatially-explicit individual-based

techniques are therefore ideal for exploring the effects of habitat fragmentation and

change on the behaviour of pollinators nesting within the environment, as they allow

us to consider the effects of behavioural rules within a spatially complex environment.

Here, I develop a framework for considering pollinator movement within the

environment, using a spatially-explicit individual-based model of the behaviour of a

central-place forager that is nesting within its environment. I build on the spatially-explicit

models presented by Rands & Whitney (2010) and Rands & Whitney (2011), which simply

considered the proportion of resources available within a maximum foraging range to a

nest, and the effects that the ratio of resources had upon mean uptake rates experienced by

the pollinators. Although they considered the effects of behavioural preferences on intake,

these initial models did not consider how pollinators moved through the environment.

Considering behavioural movement rules is important, but this consideration is frequently

missing from landscape ecology models (Bélisle, 2005). In this framework, I consider a

landscape that can be seen as a mixture of foraging opportunities, rather than as a series of

connected patches. The structure of the landscape will affect how a pollinator experiences

foraging sites, and it is possible that specific behavioural rules will mean that the pollinator

is less likely to reach some areas of the landscape if their movement rules do not allow

them to reach that area. Understanding these local effects is important, because many

important pollinators do not travel far (Zurbuchen et al., 2009), and are constrained to

remain near their nest. I develop a framework for an agricultural field system where fields

are surrounded by strips of wild land, and consider how pollinators following some simple

behavioural rules might move through this environment. I then explore whether landscape

manipulations (removing corridors, and adding ‘set-aside’ wild land) have effects upon the

amount of movement and the behavioural choices made by foraging pollinators within the

landscape. I also consider the special case for specialist pollinators that are unable to forage

outside the wild regions of the environment, and consider how landscape manipulation

can affect their movement.

METHODS
The field-based landscape within these simulations is initially generated as a grid-based

Voronoi tessellation, described in detail in Rands & Whitney (2011), where an initial grid

of square cells is seeded with a given number of field seeds. Fields are then calculated

by allocating individual cells in the grid to the field characterised by the seed closest to

that cell. Field edges, considered as ‘wild’ land, are cells that have at least one immediate

neighbour that belongs to a different field, following Rands & Whitney (2011). Any part of
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the environment that is not a field edge is considered to be a field, and contains cultivated

land (considered as monoculture, following Rands & Whitney, 2010; Rands & Whitney,

2011). This means that all the fields of cultivated land are separated from each other by

field edges, which could be considered as hedgerows, or wild strips, or any other form of

non-cultivated component of the landscape. The nests of the pollinators (I am assuming

these to be a central-place foraging pollinator that returns to a nest, such as solitary bee or

bumblebee) are assumed to be located within the field edges, as the cultivated component

of the landscape may be too disturbed to allow a nest to survive. The (x,y) coordinates of

the nest are taken to be the initial starting position of a foraging pollinator.

The state of an individual foraging pollinator is defined by its position (in (x,y)

coordinates) and its current direction of travel, which is equal to the direction it moved

in from the previous to current square. An individual can move in any of the four

directions available by moving to a grid square sharing a side with the current position.

The neighbouring square that would be entered if the pollinator continued in its current

direction of travel is defined as the ‘forward’ square, and the pollinator is defined as

travelling ‘forward’ into it. The neighbouring square if the pollinator rotated 90◦ clockwise

from its current direction of travel is the ‘right’ square (and the pollinator travels

‘right’). Similarly, the squares that would be entered if the pollinator rotated 180◦ and

270◦ clockwise are the ‘backwards’ and ‘left’ squares respectively (with the pollinator

travelling ‘backwards’ and ‘left’).

I assume movement follows a correlated random walk. If we initially ignore the contents

of the grid, the unadjusted probabilities that the pollinator moves either forwards or

backwards are pF and pB. I assume that the pollinator’s unadjusted tendency to deviate

from going forwards is symmetrical, so the chances of moving to the squares on the left

or right sides have equal probabilities, both pS, where pF + pB + 2pS = 1. However, the

probabilities that the pollinator moves into neighbouring squares is also influenced by

the pollinator’s tendency to switch between habitat types. I assume that the content of

its current location is ccurrent, and the contents of the neighbouring squares forward,

backward, left and right of the current square are cF,cB, cL and cR respectively. I then

assume an adjusted preference mi for entering square i where switching habitat type incurs

a reduction r, such that

mi =


pi if ci = ccurrent,

rpi if ci ≠ ccurrent.

The actual probability ai that an individual moves in direction i is calculated as

ai = mi/(mF + mB + mL + mR). Using these four probabilities of movement, the pollinator

then randomly picks its direction of movement for the period.

All simulations were written in C++ (available in Supplemental Information 1) and run

using XCode 4 and 5 (Apple, Inc., Cupertino). Random numbers were generated within the

simulations using a Mersenne twister algorithm (Matsumoto & Nishimura, 1998).
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Figure 1 Illustration of how set-asides were added into the landscape. The left hand panel shows a 101 × 101 cell landscape generated using 30
randomly placed field seeds, where white cells represent agricultural crops and black cells represent wild land or hedgerows. Set-aside fields are
added by randomly selecting fields containing agricultural crops, and resetting the cells within the field as wild land. Moving from left to right, each
successive panel has two additional agricultural fields redesignated as set-aside. Note that this is a simplified sketch: the results described consider a
larger landscape and add more than two fields at each assay point.

Model 1: effects of movement choice
1000 environments were independently generated. Each environment was 1000 × 1000

uniform squares with an edge length of one grid unit, and had a random number of fields

(chosen from the range [101, 200]) seeded within the environment using randomly chosen

coordinates. Voronoi-tessellated field boundaries were then created using the algorithm

described in Rands & Whitney (2011), assuming that field edges were of a single thickness:

this meant that every cell in a hedgerow was connected via at least one of its edges to

another hedgerow cell (see Fig. 1 for an example).

For each environment, a switching reduction r was randomly selected from (0, 1),

and a random constant v was randomly selected from (0, 1). Single model runs were

then calculated using the environment field description, each with systematic alteration

of pF where pF ∈ {0.25,0.375,...,0.875},pS = ((1 − pF)/3) + (v(1 − pF)/6), and

pB = 1 − pF − 2pS. In each model run, a pollinator that started at the nest was followed

for 1000 timesteps. Over these timesteps, I recorded the maximum distance the pollinator

travelled from the nest, the number of times it switched between habitat types, and the

proportion of time it spent in the hedgerow habitat type. These calculations were repeated

over all of the 1000 environment types generated.

Model 2: effects of altering the probability of switching foraging
habitat
The modelling of the environment was similar to Model 1. However, rather than system-

atically altering pF , r was systematically altered, where r ∈ {(2/3)0,(2/3)1,...,(2/3)13
}. For

each environment, pF was randomly chosen from (0.25, 1), pS = ((1 − pF)/3) + (v(1 −

pF)/6) where v was randomly chosen from (0, 1), and pB = 1 − pF − 2pS.

Model 3: effects of including set-asides
The modelling of the environment was similar to Model 2, but within each environment,

r was randomly chosen value within (0, 1). For each environment, a basal landscape of

fields with hedgerows was created as described in Model 1, and pollinator movement

statistics were calculated. Five of the fields were then randomly selected as set-asides, and
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all the squares within these set-aside fields were filled with wild hedgerow vegetation (see

Fig. 1 for a sketch of how this was implemented), and pollinator movement statistics

were calculated. Five more fields were then filled as set-asides (giving the environment

ten set-asides in total), with movement statistics calculated. This addition of five set-aside

fields with movement calculations was repeated until fifty of the original fields had been

filled as set-asides.

Factorial sensitivity analysis (Hamby, 1994) was also conducted, by systematically

increasing the number of set-asides over the range (0,5,...,50) whilst varying (a) pF over

(0.1,0.2,...,0.9); (b) pS over (0,0.05,...,0.45) whilst setting pF = (1 − 2pS)× (random

value from range [0,1]); and (c) r over (0,0.1,...,0.9). 1000 different randomised sets of

the parameters that were not being investigated within each set were generated as described

in the main Methods section. For each of these parameter sets, one individual pollinator

was moved through the generated environment for all possible combinations of the pair of

parameters that were being investigated.

Model 3a: effects of including set-asides when pollinators do not
change habitat
This model was identical to Model 3, but r = 0, meaning that the pollinators did not swap

habitats, and therefore did not move into fields that were not set-aside. Only the maximum

geometric distance from the nest was calculated.

Model 4: effects of removing hedgerows
The modelling of the environment and calculation of movement was calculated in a similar

way to Model 3. However, rather than filling fields as set-asides, the basal environments

were altered by cumulatively removing the hedgerows between fields. An individual

hedge was considered to be the grid squares designated as hedgerow that fall between

two identifiable field seeds, similar to a vertex in a Voronoi tesselation. Movement statistics

were calculated for the basal environment and then after every four consecutive hedgerow

removals, meaning that movement statistics were calculated after 0,4,...,40 hedges were

removed (see Fig. 2 for a sketch of how this was implemented). Factorial sensitivity analysis

(Hamby, 1994) for the effects of pF , pS and r on Model 4 were conducted in a similar

way to those described above for Model 3, but by systematically increasing the number

of hedgerows removed over the range (0,4,...,40) rather than the number of set-asides

present.

Model 4a: effects of removing hedgerows when pollinators do not
change habitat
This model was identical to Model 4, but r = 0, meaning that the pollinators did not swap

habitats, and therefore could become more limited in their movements as the removal of

hedgerows fragmented the corridors within the landscape. Only the maximum geometric

distance from the nest was calculated.
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Figure 2 Illustration of how hedgerows were removed from the landscape. The left hand panel shows a 101 × 101 cell landscape generated using
30 randomly placed field seeds, where white cells represent agricultural crops and black cells represent wild land or hedgerows. Hedgerows are
removed by randomly selecting adjacent fields, and removing the cells between them that were initially designated as hedgerows. Moving from left
to right, each successive panel has four additional hedgerows removed.

Statistical analysis
Using lme4 0.999999-0 (Bates, Maechler & Bolker, 2012) in R 2.15.1 (R Development Core

Team, 2012), the three measures of movement (maximum distance from nest, number

of habitat changes, and amount of time in wild habitat) were modelled separately as

linear mixed models against the variable being systematically changed in each model, with

simulation run (with a specific fixed set of randomly generated environmental parameters)

considered to be a random factor. Models including the systematically altered variable were

compared with the equivalent null models missing the variable, and these were compared

using a likelihood ratio test. If this test was significant, post-hoc pairwise Tukey tests were

conducted using multcomp 1.2–12 (Hothorn, Bretz & Westfal, 2012) to explore the shape of

the relationship.

RESULTS
Model 1: effects of movement choice
As would be expected, increasing the likelihood of choosing to move forward during a

period (pF) increased the maximum distance away from the nest that an individual reached

(Fig. 3A, Table 1). Although there were differences in the number of times the forager

switched environment (Table 1), this trend had no obvious pattern (Fig. 3B, Supplemental

Information 10). There was a tendency for the proportion of time spent in the wild

environment to reduce as the probability of moving forwards increased (Table 1), but

this reduction was small (Fig. 3C).

Model 2: effects of altering the probability of switching foraging
habitat
Increasing the probability of switching foraging habitat during a period (r) led to a small

increase in the maximum distance travelled away from the nest (Fig. 4A, Table 1). As

would be expected, increasing the probability of switching led to an increase in number of

switches (Fig. 4B, Table 1). There was a reduction in the time spent in ‘wild’ habitat (Fig.

4C, Table 1): foragers were much more likely to spend time in the ‘wild’ habitat if they were

not likely to switch habitat, presumably because they began their foraging trip within the

‘wild’ habitat.
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Figure 3 Box plots showing trends for Model 1. Box plots show the effects of changing the probability
of moving forwards in a period (pF) on the median value of: (A) maximum distance travelled away from
the nest in 1000 movements; (B) the number of times the forager changes habitat; and (C) the proportion
of time the forager spends in the ‘wild’ habitat.

Model 3: effects of including set-asides
Increasing the number of set-aside fields within the habitat had little effect upon the

maximum distance foragers travelled away from their nest (Fig. 5A, Table 1), but led to

a decrease in the time they switched between habitats (Fig. 5B, Table 1) and an increase

in the time they spent within the ‘wild’ habitat (Fig. 5C, Table 1). Sensitivity analyses are
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Table 1 Overall changes in mean summary statistics of pollinator movement for the different models. ⇑⇑/⇓⇓: strong increase/decrease across the
range of the parameter changed, with most post-hoc comparisons significant (see Supplemental Information 10); ⇑/⇓: moderate increase/decrease
across the range of the parameter changed, with some post-hoc comparisons significant; (⇓): significant decrease in response to parameter being
changed only significant at one extreme end of range considered; —: no obvious pattern in response to parameter being changed, regardless of
significance (or lack of significance) in post-hoc comparisons. Statistics reported are for likelihood ratio tests.

Maximum distance
from nest

Number of habitat
changes

Proportion of time
spent in wild habitat

Model 1: increasing pF ⇑⇑ χ2
5 = 4768.9,p < 0.001 — χ2

5 = 14.4,p = 0.013 ⇓ χ2
5 = 91.1,p < 0.001

Model 2: decreasing r ⇑⇑ χ2
13 = 542.2,p < 0.001 ⇑⇑ χ2

5 = 10446.0,p < 0.001 ⇓⇓ χ2
13 = 4213.7,p < 0.001

Model 3: increasing set-aside number (⇓) χ2
10 = 71.5,p < 0.001 ⇓⇓ χ2

10 = 1225.0,p < 0.001 ⇑⇑ χ2
10 = 3154.0,p < 0.001

Model 3a: increasing set-aside number with no
movement into cultivated fields

⇑⇑ χ2
10 = 1146.8,p < 0.001

Model 4: increasing number of hedgerows
removed

— χ2
10 = 56.5,p < 0.001 ⇓ χ2

10 = 90.5,p < 0.001 (⇓) χ2
10 = 52.5,p < 0.001

Model 4a: increasing number of hedgerows
removed with no movement into cultivated fields

— χ2
10 = 22.2,p = 0.014

presented in Supplemental Information 2–5: trends for two parameters combined follow

what is expected when each of the parameters are considered individually, and there appear

to be no unexpected interactions between parameters.

Model 3a: effects of including set-asides when pollinators do not
change habitat
Increasing the number of set-aside fields within the habitat led to a slight increase in the

distance travelled from the nest when the foragers were constrained to remain within the

‘wild’ habitat (Fig. 5D, Table 1).

Model 4: effects of removing hedgerows
Although there was an effect of increasing the number of hedgerows removed from

the environment upon the maximum distance a forager travelled away from its nest

(Table 1), this effect did not yield an easily describable trend (Fig. 6A, Supplemental

Information 10). Increasing the number of hedgerows removed led to a slight decrease

in the number of times the forager changed habitat (Fig. 6B, Table 1) and the time spent

in the ‘wild’ habitat (Fig. 6C, Table 1). Sensitivity analyses are presented in Supplemental

Information 6–9: trends for two parameters combined follow what is expected when

each of the parameters are considered individually, and there appear to be no unexpected

interactions between parameters.

Model 4a: effects of removing hedgerows when pollinators do not
change habitat
As for Model 4, although there was an effect of removing hedgerows on the maximum

distance a forager moved when it was constrained to stay within the ‘wild’ habitat

(Table 1), the trend seen was not a simple increase or decrease (Fig. 6D, Supplemental

Information 10).
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Figure 4 Box plots showing trends for Model 2. Box plots show the effects of changing the probability of
switching foraging habitat during a period (r) on the median value of: (A) maximum distance travelled
away from the nest in 1000 movements; (B) the number of times the forager changes habitat; and (C) the
proportion of time the forager spends in the ‘wild’ habitat.

DISCUSSION
Movement rules
Movement rules are important in determining where and how far pollinators travel. In

the first two models, I demonstrate this using two simple behavioural rules based on

simple random walks and habitat preferences (where the habitat preference results echo

those described by Rands & Whitney (2010)). Many other behavioural rules for moving
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Figure 5 Box plots showing trends for Models 3 (panels A–C) and 3a (panel D). Box plots show the
effects of changing the number of set-aside fields in the foraging environment on the median value of:
(A) maximum distance travelled away from the nest in 1000 movements; (B) the number of times the
forager changes habitat; (C) the proportion of time the forager spends in the ‘wild’ habitat; and (D)
the maximum distance travelled away from the nest when the forager never crosses into the ‘non-wild’
habitat.

through landscapes are possible (Getz & Saltz, 2008), and understanding the movement

process itself is arguably a key consideration in formulating realistic and useful models of

animal movement within the environment (Schick et al., 2008). However, I chose to use

naı̈ve directed random walks in this example for the sake of keeping this initial framework

simple.

More realistic rules are likely to involve some degree of state-dependence, taking into

account dynamic changes in both the external environment and the internal state of the

moving individual (Rands et al., 2004; Rands et al., 2006; Nathan et al., 2008; Martin et al.,

2013). Taking a behavioural ecology approach, ideally we want to identify a behavioural

rule-set that optimises the fitness of an individual, based on how its actions are influenced

by internal state and the environment (Houston & McNamara, 1999). Both of these may

change dynamically in response to the actions conducted. Furthermore, we may also need

to consider how the movement rules are constrained by the behavioural mechanisms that

can be used (McNamara & Houston, 2009), which may not be able to exactly enact the exact

optimal behaviour identified (Rands, 2011). The modelling framework discussed here uses

a toy example of the movement behaviour used by individuals, but could be refined to

consider an optimal rule-set (or indeed could be used to identify those rule-sets which

allow individuals to respond appropriately to their current environment, such as shown
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Figure 6 Box plots showing trends for Models 4 (panels A–C) and 4a (panel D). Box plots show the
effects of changing the number of hedgerows removed from the foraging environment on the median
value of: (A) maximum distance travelled away from the nest in 1000 movements; (B) the number of
times the forager changes habitat; (C) the proportion of time the forager spends in the ‘wild’ habitat;
and (D) the maximum distance travelled away from the nest when the forager never crosses into the
‘non-wild’ habitat.

by Morrell, Ruxton & James (2011)). If the framework was being used to identify optimal

rules, it would be essential to identify an appropriate currency to optimise: see Rands &

Whitney (2008) and Charlton & Houston (2010) for discussion of which currencies may be

appropriate to central-place nesting pollinators.

To fully understand movement through the environment, we need to consider the

behavioural rules shown by individuals at the small, local scale (such as within patches of

flowers, where pollinators are choosing how they move between individual flowers) and

at the larger landscape scale: the framework I present here is more suited to the latter of

these. Much empirical and theoretical work has been devoted to understanding finer-scale

local rules, and many experiments picking apart choice behaviour have been done within

confined apparatus that may be constraining the rule set open to the pollinator. Many

central-place foragers are known to trapline, where they form and then maintain an

established route of visitation during a foraging bout, which may act to optimise the

amount of resource they are returning to their nest (Lihoreau et al., 2012). This has

been demonstrated to both enhance the resources gained by the forager (Ohashi &

Thomson, 2009; Reynolds, Lihoreau & Chittka, 2013), and possibly enhance the pollen

flow between the plants visited (Ohashi & Thomson, 2009). Memory and the requirement
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for environmental sampling should therefore also be considered within a realistic model of

pollinator movement.

The effects of landscape manipulation
The framework presented gives a clean and simple method for exploring the effects

of landscape manipulation on the movement behaviour of pollinators. Increasing the

number of set-asides gave an increase in the amount of time spent in ‘wild’ habitat, and a

decrease in the amount of habitat switching (Model 3). This is unsurprising, given that the

amount of wild land in the immediate environment of the pollinator was being increased,

with the accompanying increase in the average number of wild squares neighbouring a

focal wild square. The effects of removing wild strips was slight (Model 4), and had little

effect upon the maximum distance travelled from the nest.

Therefore, although the modelling technique was relatively simple, it is likely that the

movement rules used were too simple to accurately reflect what might be happening when

pollinators are responding to anthropogenic change. Given more suitable behavioural

rules, the framework could be used to investigate the effects of field shape, as it has been

demonstrated that field shape is a factor that can affect the presence of invertebrates in an

agricultural environment (Yaacobi, Ziv & Rosenzweig, 2007; Orrock et al., 2011). It would

be relatively easy to manipulate simplified raster-based landscape information (such as the

UK mapping data used by Rands & Whitney (2011)) to explore the effects of landscape

manipulation within a specific agricultural environment.

Landscape manipulation and specialist pollinators
I also considered the effects of environmental manipulations on the travelling distance of

specialist pollinators that were unable to move into the cultivated landscape (Models 3a

and 4a). Including set-aside wild fields slightly increased the distance travelled, but the

removal of corridors had subtle and mixed effects. Arguably, the rules used in this model

were too simple to characterise the behaviour of these pollinators: being constrained

to forage on a particular species of plant does not mean that movement needs to be

constrained to the areas in which those plants grow. Our movement rules therefore need

to consider whether managed features of the landscape have similar effects in different

species. For example, hedgerows have many differing physical and ecological effects on the

agricultural landscape (Forman & Baudry, 1984). Although they are relatively undisturbed

relative to the surrounding landscape (therefore potentially acting as wild refuge zones),

they can also act as physical barriers to dispersal (Joyce, Holland & Doncaster, 1999; Wratten

et al., 2003). Furthermore, if landscape structures are known to impede the movement of

pollinators, we still need to be careful to ensure that a barrier is not labelled as impassable

without good experimental evidence (Zurbuchen et al., 2010).

In the model, I characterise the environment as being composed of two environment

types: agricultural crop, and wild flowers, and assume the pollinator is switching between

the two, partially influenced by learned preferences and neophobia (Rands & Whitney,

2010; Rands & Whitney, 2011). Different floral species may be more or less attractive

depending upon their spatial distribution and proximity (Nattero et al., 2011; Hanoteaux,
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Tielbörger & Seifan, 2013), and creating a spatially realistic model that accounts for the

distribution of multiple forage types may require us to understand all the switches in

preference that could occur when a pollinator is able to move from one forage type to

another. This may in turn require a lot of careful experimentation considering all possible

preference switches: it is unlikely we can make simple predictions without doing this given

the vast number of floral factors that affect pollinator preference behaviour (Glover, 2007;

Willmer, 2011), or at least understanding better the choice rules that individual pollinators

are using. Integrating our understanding of how pollinators are influenced at the local scale

with our understanding of their landscape-scale movement is still a greatly unexplored

question (Mayer et al., 2011), and there is much scope for combining methodologies such

as that presented here with field and laboratory experiments. Similarly, models should

also take account of the effects of pollinators on floral resources at the local scale, as this

interaction has implications for community ecology and biodiversity (Jeltsch et al., 2013;

Qu et al., 2013).

CONCLUSIONS
The effects of habitat loss and fragmentation can be explored using a simple spatially-

explicit individual-based modelling framework that combines sensible behavioural rules

and suitable landscape information; however, suitable rules need to be identified. The

approach linking behavioural ecology and landscape ecology that was envisioned by

Lima & Zollner (1996) is still relatively unexplored, and we still need to see stronger links

between models of movement and landscape ecology, with the results of these models

being fed back into experimental manipulations. Ultimately, these can be used to inform

conservation strategies (Knowlton & Graham, 2010) and aid our management of the

vital pollination services provided by the animals living at the hearts of our agricultural

landscapes.
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