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Abstract
Malaria elimination has recently been reinstated as a global health priority but current therapies
seem to be insufficient for the task. Elimination efforts require new drug classes that alleviate
symptoms, prevent transmission and provide a radical cure. To develop these next generation
medicines, public-private partnerships are funding innovative approaches to identify compounds
that target multiple parasite species at multiple stages of the parasite lifecycle. Here, we review the
cell-, chemistry- and target-based approaches used to discover new drug candidates that are
currently in clinical trials or undergoing preclinical testing.

Introduction
Malaria is a devastating infectious disease that is characterized by intermittent high fevers
and, in the case of cerebral malaria, neurological complications such as brain injury and
coma. It affects pregnant women and children disproportionately with 85% of deaths
occurring in children under 5. It is caused by protozoan parasites of the genus Plasmodium,
which are transmitted to humans by the bites of female Anopheles mosquitoes. There are
four main Plasmodium species that cause disease in humans: P. falciparum, P. vivax, P.
ovale and P. malariae. In addition, a simian parasite, P. knowlesi, occasionally infects
humans1. P. falciparum causes the most deaths whereas P. vivax is the most widespread.
There is no sterilizing immunity against malaria and the disease can be fatal, although
symptoms in repeatedly infected individuals tend to decrease over time. Efforts to develop
an effective vaccine have been unsuccessful but drugs are able to cure infections. Malaria
imposes a heavy social burden that has delayed economic development in regions where it is
endemic. It also causes hundreds of thousands of deaths worldwide each year, with estimates
ranging between 660,000 and 1,238,000 in 20102, 3, with the highest mortality occurring in
Africa.

Malaria was once found throughout many regions of the world including North America and
Northern Europe. It was eliminated from North America, Europe and parts of Asia and
South America during the 1950s and 1960s following a global campaign that relied heavily
on the new synthetic insecticide, dichlorodiphenyltrichloroethane (DDT), and powerful new
synthetic drugs, such as chloroquine and sulfadoxine-pyrimethamine. When the parasites
became resistant to these drugs and DDT use was restricted because of environmental and
health hazards, malaria returned to many areas and the number of deaths peaked at 1.8
million in 20043. Nevertheless, because of novel, more effective medicines (BOX 1),
improved vector control, increased funding and public awareness, the mortality rate has
recently declined by ~30%, suggesting that it is time to consider new malaria elimination or
even eradication campaigns. However, malaria is a complex disease and might prove more
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difficult to eradicate than viral diseases, such as smallpox, which have been successfully
eradicated, mainly because effective vaccines exist.

Box 1

Currently used drug regimens

The first-line treatment for P. falciparum infections in regions where chloroquine
resistant parasites are present is a combination therapy of artemisinin derivatives with
partner drugs that ideally have longer half-lives than artemisinin-derivatives. Artemether-
lumefantrine (Coartem) and amodiaquine-artesunate (Coarsucam) are the most widely
used, whereas dihydroartemisinin-piperaquine (Euartesim) and artesunate-pyronaridine
(Pyramax) are the most recently approved77. Several reformulations with doses specific
for children and pregnant women are in clinical trials77. Artemisinin derivatives are
hypothesized to interact with Fe-II species in the parasite’s food vacuole, and early ring
stage parasites combat this by slowing down hemoglobin digestion55. Artemisinins are
fast acting and very potent against blood-stage parasites and show activity against early
sexual stages of the parasite, which is important for blocking transmission. Their major
limitation is a short half-life, which is why they are partnered with longer lasting drugs.

Chloroquine, a 4-aminoquinoline, is still the recommended treatment for P. vivax
infections because resistance has not fully developed in contrast to P. falciparum111. In
areas where chloroquine resistant P. vivax is endemic, artemisinin combination therapies
are recommended for first-line treatment (except artesunate and sulfadoxine-
pyrimethamine, which is ineffective owing to resistance), in particular those with partner
drugs with long half-lives (e.g. dihydroartemisinin and piperaquine and artesunate and
amodiaquine). In all cases, a 15-day course of primaquine is required to prevent relapse
and provide a radical cure.

For travelers visiting areas with endemic malaria transmission, the CDC recommends
atovaquone-proguanil (Malarone), choloroquine, doxycycline or mefloquine, with
specific recommendations depending on individual and regional factors.

All species of the parasite have a complicated lifecycle that involves molecular interactions
with both the vertebrate and invertebrate host (BOX 2). Although the parasite transitions
between several developmental forms in the human host, all disease symptoms are caused
by the repeated lysis and invasion of erythrocytes by the asexual blood-stage parasites.
Therefore nearly all past and current therapies target the blood-stage parasite.
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Box 2

The Plasmodium life cycle- multiple opportunities for intervention

Plasmodium spp. have a complicated life cycle that is not well characterized at the
molecular level. Human infection begins after transmission of sporozoites into the
bloodstream, following the bite of an infected female Anopheles mosquito. Motile
sporozoites migrate to the liver and take up residence in liver hepatocytes. For all
Plasmodium spp., parasites incubate and multiply forming liver schizonts, which
eventually burst, releasing thousands of merozoites into the bloodstream 2–16 days after
initial infection112. P. vivax and P. ovale can remain dormant in the liver as hypnozoites,
but can re-emerge and begin a blood-stage infection months to years after initial infection
(relapsing malaria). Once they reach the blood stream merozoites attach and invade red
blood cells and through DNA replication and schizogony produce 8–32 new merozoites
per red blood cell. This 48-hour growth cycle is followed by red blood cell rupture and
merozoite re-invasion, expanding the infection further and leading to symptoms of the
disease. This cycle of asexual reproduction can persist indefinitely in the absence of
chemotherapy.

In a process that is not completely understood, a small fraction of the haploid asexual
parasites differentiate into male and females gametocytes within the red blood cell113. It
is possible that secreted parasite factors induce this differentiation114, 115. These
asymptomatic, non-replicating forms can persist for weeks and are responsible for
malaria transmission. After ingestion of gametocytes by a mosquito during a blood meal,
they differentiate into male and female gametes that fuse to form a zygote in the midgut
of the mosquito. Meiosis occurs in the zygote, which then develops into a motile ookinete
that migrates through the gut wall and eventually forms an oocyst. In the oocyst multiple
rounds of DNA replication take place producing thousands of sporozoites116. These
sporozoites migrate to the salivary glands and are transmitted to the next human host
during a blood meal. Remarkably, few of the molecular regulators that control this
intricate cycle are known—indeed, the factors that determine if a parasite becomes male
or female are unknown.

Although effective antimalarials are currently available (BOX 1) that could be used in
eradication campaigns, there are two major problems. The first is the potential emergence of
resistance to artemisinin and its derivatives, which are the most effective drugs available
today. Artemisinins (for example artemether and artesunate) comprise the only known drug
class that works effectively against multidrug resistant parasites although reports of
prolonged parasite clearance times in artemisinin treated patients (BOX 3) have raised
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concerns that the fragile gains of the last few years might be lost. The second problem is that
only one drug, primaquine, can completely eliminate P. vivax and P. ovale and thus provide
a radical cure. P. vivax and P. ovale infections are challenging to treat because they form
dormant liver stages (hypnozoites) that are refractory to most drugs. Primaquine, an 8-
aminoquinoline, requires repeated dosing (up to 15 days) and is toxic to individuals with
glucose-6-phosphate dehydrogenase deficiency4, a common condition in malaria endemic
regions. This limits the use of primaquine by the over 2.85 billion people at risk for P. vivax
infection in Central and Southeast Asia, and in Central and South America5. Therefore new
drugs with activity against all stages of the parasite life cycle and with new mechanisms of
action are needed to help fulfill the ultimate goal of elimination6, 7.

Box 3

Artemisinin resistance

The first signs of artemisinin resistance came from a study conducted in 2008, in which
parasite clearance times after initial artesunate monotherapy were slower in patients from
the Eastern Thai-Cambodian border (84 hours) than from the Thai-Myanmar border in
the West (48 hours)117. Furthermore, the proportion of slow-clearing infections (defined
as a parasite half-life of ≥6.2 h) on the Thai-Myanmar border increased from 0.6% in
2001, to 20% in 2010 approaching the rate of 42% observed in Cambodia between 2007
and 2010118. This suggests resistance has spread and is now present in western Thailand
as well. At present, the genes which confer this delayed clearance are unknown, although
studies have suggested that a region of chromosome 13 is involved119, 120. Further work
indicated that four single-nucleotide substitutions on chromosomes 10, 13, and 14 are
strongly correlated with delayed parasite clearance times121. These parasite loci seem to
be under positive selection in these regions and could thus be responsible for resistance,
although further studies will be needed to narrow down the exact genes involved. It has
been proposed that parasite resistance is caused by an allele that down-regulates
metabolism in the early stages of the erythrocytic life-cycle and increases it during the
later stages, which would allow parasites to circumvent the drug and survive for long
enough for the short-lived artemisinins to become degraded122. Although this is
disturbing, there has been no clear increase in mortality in regions where reduced parasite
clearance rates are observed. The spread of artemisinin resistance from the Thai-
Cambodia border (as was seen with choloroquine and sulfadoxine-pyrimethamine) would
be devastating for malaria treatment worldwide.

Concerns about artemisinin resistance have led universities and research institutes, funding
agencies, governments, non-governmental organizations, the military and public-private
partnerships to work together to find possible replacement medicines. Although several
drugs are active against blood stage parasites, the ultimate goal is to develop a new
compound that blocks all stages of the parasite life cycle, including transmission and the
liver stages. In addition, because compliance is an issue, the ideal drug would be potent
enough to work in a single, curative dose — described as a Single Exposure, Radical Cure
and Prophylaxis (SERCaP) treatment8, 9 and inexpensive to manufacture ($0.15/dose),
especially as many antimalarials treatments are paid for by nonprofits and governments.
This target product profile has provided a framework for drug-discovery campaigns.

In this Review, we discuss the cell-, chemistry- and target-based approaches that are
currently leading the way to the discovery of the next generation of antimalarial drugs. We
will describe compounds that are in the drug development pipeline (Table 1) and the
methods available to discover novel chemically validated targets and novel chemical drug
classes with broad activity against multiple stages of the parasite life cycle.
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Finding new drug candidates
Diverse strategies exist for the development of novel antimalarial drugs. Although efforts
have been made to improve existing molecules (for example by modifying a scaffold to
work against parasites that have acquired resistance to the parent scaffold), most new classes
of antimalarial compounds have come from high-throughput screens. In this approach, a
large compound library is screened to identify compounds that are active against the parasite
in what is called a “phenotypic” or “whole-cell” assay (see below; Figure 1). Alternatively,
the library can be screened for activity against “targets,” which typically are proteins that are
crucial for parasite survival. Such screens often use biochemical assays (for example to
detect ATP hydrolysis in a kinase activity assay). After screening, the most promising
scaffolds are identified through cheminformatic analysis. Further selection is based on
potency, cost, ease of synthesis, toxicity and novelty (Figure 1). Once scaffolds are selected,
additional derivatives are often synthesized and tested against the whole parasite or the
specific protein target. These tests can reveal Structure Activity Relationships (SAR), which
predict the effect of chemical modifications on the properties of the molecule (for example
its bioavailabilty and plasma concentrations). Several rounds of iterative SAR analyses can
lead to candidates for efficacy testing and eventually lead compound identification. The type
of assay and the number of compounds that are screened is typically balanced with cost.
Until recently, malaria drug discovery has focused on finding replacements for compounds
that are active against blood-stage P. falciparum, such as artemisinin. Now, with the
development of cellular screens that can identify compounds active against all stages of the
parasite lifecycle10–15, as well as assays available to test the stage specificity of candidates
(Figure 2), the focus of the field has shifted.

Whole-cell based approaches
Cellular screening is the traditional approach for identifying compounds with antimicrobial
activity16. This involves exposing the microorganism (in this case a culture of the parasite)
to the test compound (a pure chemical compound or a natural product extract) and after a
short incubation period, the culture is examined to determine if the compound is capable of
killing the microorganism. Although it might seem straightforward, the challenge is to
execute the assay reproducibly and cost-effectively for a very large number (typically
millions) of compounds in a very small test volume. Technological advances in liquid
handling, image analysis, assembly of pure chemical libraries and high-throughput
automation now allow the screening of millions of individual compounds in 384 or 1536
well plates in a way that would have been unimaginable 20 years ago17. In the last 5 years,
high-throughput, cellular-based screens have identified hundreds of previously unknown
chemical compounds that have the potential to treat malaria.

Blood-stage screens
The first large-scale cellular screens were conducted by groups with the capacity for high-
throughput screening: The Genomics Institute of the Novartis Research Foundation (GNF),
GlaxoSmithKline (GSK) and St. Jude Children’s Research Hospital (SJCRH) beginning in
200818–20. These screens identified compounds that inhibit proliferation of P. falciparum
blood-stages using a 384 or 1536-well format (Figure 2). Because parasites grow in
anucleated human erythrocytes, increases in nucleic acid content in the well over a 72 hour
period can be used as a read-out for parasite growth. Here, fluorescent DNA-binding dyes
identify wells containing compounds that inhibit parasite growth19–21. Alternatively,
parasite viability can be measured based on the activity of parasite lactate dehydrogenase18.
Using these approaches, over 4 million chemicals have been screened in both academic and
commercial settings and between 0.4% and 1.0% of the compounds showed activity against
P. falciparum blood stages18–20.
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Because many interested researchers may not have access to sophisticated screening
equipment, such as ultra-accurate liquid dispensing and robotic compound plate storage, the
results from many of the large-scale, blood-stage screens, including specific structures of the
effective chemicals and their inhibition constants, have been made available online (https://
www.ebi.ac.uk/chemblntd)22. This includes data from a collection of 13,000 compounds
designated the Tres Cantos Antimalarial set (TCAMS)18. Based on these public screening
results, a selection of 400 unique compounds with blood-stage antimalarial activity was
created. These compounds have been resynthesized and this “malaria box” of potential
chemical starting points can be obtained from Medicines for Malaria Venture (MMV)22.
The malaria box concept allows biologists who can not resynthesize compounds to
participate in the drug discovery process and to help discover how the compounds are
working. MMV requests that results of tests using the malaria box are made public and
encourages collaboration between groups.

Drug candidates from blood stage screens
One of the first novel drug classes identified using modern cellular screening methods were
the spiroindolones. The lead for this class, a racemic spiroazepineindole23 (Figure 3), was
identified in a screen of ~10,000 natural compounds for their activity against proliferating,
blood-stage P. falciparum. Several hundred derivatives, including various enantiomers, were
synthesized and further evaluated in blood-stage parasite proliferation tests, pharmacokinetic
tests and in animal models of malaria. The most promising molecule, KAE609 (also called
NITD609)24, is potent enough to cure P. berghei-infected mice with a single oral 100 mg/kg
dose and prevents transmission25, as indicated by reduced oocyst numbers in a standard
membrane-feeding assay (Figure 2). The spiroindolone class has a novel mechanism of
action, which was identified by in vitro evolution and whole-genome scanning. It is believed
to target the outer membrane transporter, PfATP424, which was initially annotated as a
calcium ion pump but now is reported to be important for maintaining sodium homeostasis
in the parasite26. Inhibition of this enzyme by KAE609 presumably increases intracellular
sodium concentration leading the parasite to swell up and die. KAE609 is the first candidate
in 20 years with a novel mechanism of action to enter into clinical trials. Through the
combined efforts of a global consortium (the NGBS consortium: the Novartis Institute for
Tropical Diseases; GNF, the Biomedical Primate Research Center and the Swiss Tropical
and Public Health Institute), and with the help of industry and private-public partnerships
(specifically the Wellcome Trust and MMV), KAE609 has progressed very quickly from the
screening stage in 2007 to clinical trials27, where it is now in Phase II (http://www.mmv.org/
research-development/rd-portfolio).

GSK also identified chemical classes for further development by structural clustering of the
lead compounds from the TCAMS. By filtering for properties such as high bioavailability
and parasite potency28, 47 scaffolds were identified, five of which were chosen for SAR
analysis and lead identification, and the rest were made publicly available with an invitation
for collaboration28. One of these scaffolds (represented by TCMDC-139046 in Figure 3)
contains an indoline core29 and is a known inhibitor of the human serotonin receptor (5-
hydroxytryptamine subtype 2c), limiting its potential usefulness as a antimalarial drug
because of likely adverse side-effects. However, through divergent SAR analysis the team
was able to create additional compounds with selective and potent activity against P.
falciparum and with reduced activity against the human receptor, although in vivo efficacy
still needs to be improved. A second class, the cyclopropyl carboxamides30, have potent in
vitro activity against P. falciparum and at least one (GSK1057714) has in vivo activity in the
P. falciparum SCID mouse model (Figure 2)31. However, in vitro resistance against these
compounds emerged rapidly, raising concerns about resistance development in the field.
Therefore, if these are to enter into development, further optimization will be needed.
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Other leads from blood-stage screens
Since the first high-throughput screens using blood-stage parasites, several other screens
have been implemented that focus on specialized compound libraries or parasite lines. In a
first example of such a focused approach, a screen of a commercially available kinase
library32 using a parasite proliferation assay33 identified 3,5-Diaryl-2-aminopyridines as a
new class of antimalarial compound. One member of this series, MMV390048 (previously
named compound 1534), cures 100% of P. berghei-infected mice (Figure 2) after a single 30
mg/kg dose. Although the cellular target remains unpublished, MMV390048 (Figure 3) has
progressed to preclinical trials because of its high antiparasitic potency (25 nM IC50), 7–8
hour half-life and good oral bioavailability.

In a second example, genetically modified parasites were used to identify compounds active
against PfABCG2, one of the parasite’s ABC transporters35. A library of 2,816 approved
drugs was screened against wild-type P. falciparum and against a recombinant strain lacking
PfABCG2. This screen identified the antihistamine ketotifen as a potential antimalarial. The
IC50 for the mutant strain was higher than the IC50 for the wild-type strain, suggesting that
PfABCG2 is involved in the antimalarial activity of ketotifen. Previous studies with
ketotifen showed that it has some anti-relapse activity in P. cynolmolgi-infected monkeys36,
and causal prophylaxis against P. yoelli-infected mice37 (Figure 2). Furthermore it reduces
oocyst formation in both P. falciparum and P. yoelli mouse models35. Recently, the
ketotifen metabolite norketotifen (which has improved pharmacokinetic properties) was
shown to be active against both blood- and early-liver stages38. Thus, further lead
optimization of ketotifen might identify new clinical candidates.

Liver stage screens
Recent progress has been made in the development of high-throughput screens for the
identification of compounds that are active against the sexual and liver stages of the parasite
life cycle39. It can be argued that these are the most important life-cycle stages when it
comes to eradication because of the population bottleneck that occurs during these stages15.
Specifically, there may be billions of parasites in a human blood stage infection, but only a
limited number (<50) of ookinetes, hypnozoites or early liver forms exist during
transmission and reinfection. Resistance is thus less likely to emerge. Since the first report
of a liver stage screen40, several groups have established liver-stage assays (Figure 2). For
example, high-content imaging has been used to determine the efficacy of drugs with known
blood-stage activity on P. yoelli-infected hepatocytes41. One candidate that was identified in
this screen was GNF179, a member of the imidazolopiperazine class. This compound is
believed to act through the cyclic amine resistance locus protein (Pfcarl; Pf3D7_0321900),
which was identified after in vitro evolution and whole-genome scanning. Pfcarl contains
several transmembrane domains but its function and whether or not it is the actual target of
GNF179 remain unknown. Further lead-optimization of the imidazolopiperazine class led to
KAF156 (also called GNF156, Figure 3) as a clinical candidate that is currently in Phase II
clinical trials42, 43. KAF156 is slightly less potent than KAE609 but it provides prophylactic
protection in animal models and has activity against gametocytes (http://www.mmv.org/
research-development/rd-portfolio). Similar liver-stage screens with other libraries have
been run44, 45 but have not yet yielded new preclinical candidates.

Radical cure assays
For P. vivax and P. ovale infections, a subset of parasites can remain undetected in the liver
in a dormant state, called a hypnozoite, for months to years before re-activation, which
results in a blood stage infection. Thus, this developmental stage is an important parasite
reservoir, especially for maintaining transmission of P. vivax and P. ovale in endemic
countries. In previous eradication campaigns, regions where P. falciparum had been
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eliminated P. vivax persisted at low levels46 presumably due to the hypnozoite reservoir
seeding new infections. This highlights that in terms of a radical cure, it is crucial that the
drug is capable of eliminating this reservoir.

The radical cure activity of primaquine, the only currently known drug capable of
eliminating hypnozoites, was identified in the 1950s by dosing hundreds of P. cynolmolgi (a
hypnozoite producing simian strain) infected monkeys with various aminoquinoline
derivatives47 and determining which animals no longer relapsed. Primaquine is a prodrug
that must be metabolized to become active. Because it is unclear which of the many
metabolic products work against hypnozoites, its mechanism of action remains unknown48.
There have been reports of primaquine resistance49, 50, which could help in identifying the
primaquine target. However the amount of primaquine resistance remains controversial
because it is difficult to rule out incomplete patient adherence to the 15-day dosing schedule
or patient metabolic deficiencies as a cause for low drug potency. As there are no validated
targets for radical cure compounds, target-based screens cannot be initiated.

The development of cellular screens that detect activity against hypnozoites are difficult and
has been hindered by the fact that P. vivax cannot be maintained in cell culture. Recently, a
low-throughput in vitro assay (Figure 2) was developed using the P. cynomolgi monkey
model where P. cynomolgi sporozoites from mosquitoes fed on infected monkeys are used
to infect primary monkey hepatocytes followed by image analysis to determine infection
levels11. This assay can distinguish compounds that are active against “small-form”
parasites (which are believed to be the dormant hypnozoites) from compounds that only
prevent infection or parasite proliferation in the liver. However, validation of this model is
difficult: P. cynomolgi sporozoites do not freeze well, and obtaining fresh ones is
challenging given constraints on primate research. Furthermore, molecular markers that
distinguish a hypnozoite from an early liver schizont do not yet exist and it has not yet been
demonstrated that clearing small forms in vitro predicts anti-hypnozoite activity.
Nevertheless, this is a promising first step to an assay that examines compounds targeting
this important developmental stage

Transmission screens
Because infectious gametocytes (infectious to the mosquito) can persist in the patient long
after symptoms have resolved, a good lead compound should also kill gametocytes in order
to disrupt transmission. If the gametocytes remain viable and mosquitoes are present, then
the person can infect his neighbors as well as re-infect himself. Several groups are
developing high-throughput screens to identify compounds active against gametocytes
(Figure 2). These assays are particularly difficult because the process of gametocytogenesis
is not well understood. Because gametocytes do not divide during the 12 days it takes them
to mature from the early to the late stage, of which the latter is transmissible, methods based
on the detection of inhibited parasite proliferation cannot be used. Therefore, alternative
high-throughput techniques to detect gametocyte death have been developed. Several of
these assays use overall ATP hydrolysis to measure viability, with loss of this activity used
as an indicator for gametocyte death10. Alternatively, it is possible to selectively count
parasites expressing a gametocyte-stage specific GFP tag by flow cytometry12. The first
gametocyte screen was conducted using alamar blue13, an oxidation-reduction indicator that
both fluoresces and changes color in response to chemical reduction of growth medium that
occurs when gametocytes are metabolically active, and other screens have been
implemented that involve lactate dehydrogenase51. Because these assays only attempt to
predict whether a compound might block transmission by killing gametocytes, effort has
been devoted to finding more predictive assays that measure viability in later stages, such as
the ookinete 52. The gold standard test is feeding mosquitoes on infected, treated blood
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(standard membrane feeding assay for P. falciparum), or on infected, treated mouse (direct
feeding assay) (Figure 2). These assays (reviewed in 53) are difficult to automate.
Interestingly, primaquine is the only drug known to block transmission in humans but given
that it is a prodrug, it functions poorly in cellular assays and even in the standard membrane
feeding assay.

Medicinal chemistry-based approaches
Directed, chemistry-based approaches base the design of new compounds on known
chemical structures of antimalarials that have been successful in the clinic. The compounds
are modified to optimize their therapeutic properties and to reduce limitations to their use
(for example resistance, bioavailability) using SAR and whole-cell or biochemical assays.
Although this approach has been successful, (one example is the synthetic ozonides, which
are based on artemisinin (see below)), the major limitation is that no model compound exists
that acts during all stages of the parasite life cycle and thus a template for a SERCaP
molecule is lacking.

Synthetic ozonides
One of the best examples of the chemistry-based approach is the development of the
synthetic ozonides. Ozonides (synthetic peroxides) retain the endoperoxide bridge that gives
artemisinin its potent blood-stage activity but also contain a bulky amantadine ring54, which
increases their stability in plasma. It is hypothesized that their activity results from the
peroxide bond being reduced by ferrous iron and heme, which are liberated through the
digestion of hemoglobin by the parasite 55. This reduction produces carbon-centered radicals
that alkylate heme and parasite proteins, ultimately leading to parasite death. The first-
generation synthetic ozonide, OZ27754, is as potent as artesunate in vitro and has increased
activity in the P. berghei mouse model, with the ability to completely cure mice with three
10 mg/kg oral doses. OZ277 (a 1,2,4-trioxolane) was the first synthetic ozonide evaluated in
the clinic but after the phase II results showed only 70% efficacy after 7 days of treatment,
its development was deprioritized56. Nevertheless, RBx11160, as it is now known, has been
approved in India since April 2012 as Syrniam (a combination with piperaquine)57.

A newer generation synthetic ozonide, OZ439 (Figure 3), has now been developed; OZ439
is potent and fast-acting, as well as being pharmacologically active for longer and having
improved bioavailability compared to the current artemisinin derivatives and OZ27758.
Importantly, OZ439 is able to cure and prevent P. berghei blood-stage mouse infections
with a single 30 mg/kg dose and blocks mosquito infection (transmission) in the in vitro
membrane feeding assay59. Encouraging results from Phase I clinical trials confirm this
single-dose potency, and combined with its longer half-life, this synthetic compound class is
very attractive60. However, as with artemisinins, ozonides are only active against blood
stages and as their activity is based on the endoperoxide bridge found in artemisinins, they
might be less effective against artemisinin-resistant parasites, although whether parasites are
truly resistant is a matter of debate (see Box 3).

Another synthetic ozonide chemical class, the 1,2,4,5-tetraoxanes, which also contain the
endoperoxide bridge, are also being developed61. The lead compound, RKA182, reduces P.
berghei parasitemia in mice to undetectable levels 24 hours after treatment. This compound
is currently in preclinical trials and although it has greater stability than OZ27761, its
antimalarial activity is inferior to OZ43962.
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Other improvements on known scaffolds
There are also efforts to design new versions of primaquine (the only 8-aminoquinoline in
clinical use) that lack some of its undesirable toxic properties, such as inducing hemolytic
anemia in patients with glucose-6-phosphate deficiency4. Tafenoquine is a 3-phenoxy-
substituted 8-aminoquinoline (previously named WR238605) that is 4–100 times more
potent than primaquine and has a longer half-life63. It was identified in 1993 and it is in a
dose range phase II trial as a single dose anti-relapse agent. Similarly, NPC1161C64 and its
enantiomer NPC1161B, both 8-aminoquinolines, seem to be promising candidates but it is
unclear whether these closely related molecules will have similar levels of side effects as
primaquine. Furthermore, assays to measure primaquine resistance are lacking65 and the
genes that confer resistance are unknown65, which might pose problems in the future for
drugs that are designed using primaquine as a scaffold. Another disadvantage of this class is
that some patients do not respond to primaquine therapy, possibly owing to differences in
primaquine metabolism66.

Substantial effort has also been devoted to the development of novel antimalarials based on
the pyridone scaffold of endochins, whose antimalarial activity was first recognized in the
1940s67. Endochins have been optimized extensively to improve their oral pharmacokinetic
properties and have now yielded the new preclinical candidate ELQ-30068. Based on their
structure (quinolone-3-diarylethers), it is likely that these target mitochondrially-encoded
cytochrome bc1, similar to atovaquone.

Hybrid molecules
Another rational chemistry-based approach is to design hybrid molecules that combine
several chemical groups that provide stability, solubility, potency or other attractive
features69. Two molecules, each with their own antimalarial activity, can be covalently
linked, producing a single hybrid molecule with dual activity. The need for parasites to
digest human hemoglobin in asexual blood stages has always represented a vulnerability for
the parasite that has been targeted by drug designers. Furthermore, the parasite must also
convert the resulting reactive heme molecule to nonreactive hemozoin. Dual-function
acridones contain a heme-targeting acridone group that provides potent blood stage activity
and a chemosensitizing component that counteracts resistance to existing aminoquinoline
antimalarial drugs70. The lead compound, T3.5, shows synergy with chloroquine,
piperaquine, quinine and amodiaquine in vitro, when used to treat aminoquinoline-resistant
parasites. In combination with primaquine, it also reduces parasitemia in P. yoelli-infected
mice70. Similarly, ferroquine is an organometallic compound composed of a lipid-targeting,
ferrocenyl group covalently linked to a 4-aminoquinoline and a basic alkylamine71.
Ferroquine is designed to simultaneously disrupt membranes and to prevent hemozoin
formation72. Although interesting from a chemical biology and chemical synthesis point of
view, the same antimalarial effect of hybrid molecules might be achieved with a
combination therapy. Furthermore, some hybrids have the same liabilities as their
component molecules (e.g. the 4-aminoquinolines’ hERG channel activation liability 73,
which for some drugs, has been implicated in cardiac arrhythmias74).

Target-based approaches
Target-based drug discovery is another popular approach for lead identification, although its
popularity seems to be waning owing to disappointing results of this approach in finding
next generation antibacterial drugs75. Targets are typically proteins with essential cellular
functions, the inhibition of which results in cell death. Target molecules can be identified
using chemical inhibition studies (a chemically-validated target). Alternatively, a target can
be chosen because it is expected to be essential for parasite viability, which is usually
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determined by genetic knockdown experiments (a genetically-validated target) or by the fact
that it is highly conserved and is therefore likely to have an essential function. Once a target
is selected, the recombinant protein is produced and a biochemical assay is developed that
can be used to identify compounds that inhibit the target’s function. The process can be
further enhanced if crystal structures of the protein are available to guide the design of
potential inhibitors and to increase selectivity and specificity against the parasite protein,
relative to the host protein.

Key targets
Examples of chemically-validated targets in P. falciparum include dihydrofolate reductase
(DHFR) and cytochrome bc1, which are inhibited by the antifolates (pyrimethamine and
proguanil) and atovaquone, respectively. These drugs work well clinically and
pyrimethamine is currently used in combination therapy with artesunate and sulfadoxine2.
Inhibition of DHFR prevents folate synthesis, which is essential for DNA replication in the
parasite. DHFR inhibitors show specificity for parasite over human DHFR. Because DHFR
targeting has been successful in the past, an in silico method was developed to design new
drugs that are capable of binding to the DHFR enzyme bearing mutations that confer
resistance to pyrimethamine and proguanil76. Co-crystal structures of DHFR complexed
with its substrate, known inhibitors and lead candidates were used to guide the development
of a lead that binds to both wild-type DHFR and the mutated form. This lead, P218 (Figure
3) is specific for Plasmodium DHFR and has an IC50 in the nanomolar range against P.
falciparum expressing wild-type or mutant DHFR. This diaminopyridine was designed so
that it binds DHFR in the same place as the natural substrate (dihydrofolic acid), in the hope
that resistance mutations that emerge would not be tolerated. P218 has now advanced to pre-
clinical trials77.

The mitochondrial enzyme dihydroorotate dehydrogenase (DHOD) (Figure 3) has long been
recognized as a potential antimalarial target because it catalyzes the fourth step in the
essential de novo pyrimidine biosynthesis pathway78,79. The first high-throughput screen to
directly measure activity against recombinant DHOD was conducted in 200580 and although
this screen identified several potential DHOD inhibitors, they lacked adequate activity in
parasite proliferation assays. A new chemical class from the original screen, the
triazolopyrimidines, was identified with potent activity in whole-cell assays (P. falciparum
IC50 = 79nM) and >5000 fold specificity for parasite over human DHOD, yet this class was
inactive in the P. berghei in vivo model81. After a series of chemical modifications81, 82 and
analysis of drug-enzyme co-crystal structures to further optimize binding, a potent lead was
discovered that has an IC50 of 40–50 nM against drug-sensitive and drug-resistant P.
falciparum, including those resistant to chloroquine, atovaquone, and the antifolate,
pyrimethamine83. The molecule, DSM265 (Figure 3), shows a similar potency as
chloroquine in the humanized SCID mouse model. DMS265 is the first DHOD inhibitor to
enter pre-clinical trials83.

A similar discovery effort identified the carboxamide chemical class as DHOD inhibitors.
Recombinant DHOD from P. falciparum, P. berghei and P. vivax were screened against the
208,000 Genzyme compound library and hits were validated in cell proliferation assays
against P. falciparum84. Further optimization resulted in a lead (Genz667348) that is
efficacious in the P. berghei blood-stage model and is undergoing further development for
preclinical trial selection85. Although the triazolopyrimidines and the carboxamides both
target DHOD, structural analysis of the drug binding pocket suggests these two classes bind
to overlapping yet distinct sites on DHOD83.

While these former approaches used biochemical assays, an in silico molecular docking
approach was used to identify potential inhibitors that disrupt the interaction between the
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carboxy terminal tail of myosin A and the myosin tail interacting protein (MTIP) of the
parasite. This interaction is required for erythrocyte invasion86 and is thus essential.
Potential inhibitors were identified using an algorithm that computationally docked 300,000
possible inhibitors to the crystal structure of MTIP. After ranking, 15 promising molecules
with the appropriate druglike properties were physically obtained and subsequently tested
for their ability to block parasite proliferation. Further optimization of a urea-pyrazole
scaffold has yielded a molecule (21A092) that has advanced to preclinical studies87.
However, given the high rate of positives random compounds show in cellular proliferation
screens it is possible that the parasiticidal activity of this class is a result of binding to
another cellular target.

New Target discovery
It is likely that a number of new chemically-validated targets will be available for target-
based screening campaigns in the future. These are the proteins that were identified as
targets of the promising compounds identified in the aforementioned cellular screens.
Although discovering how a compound acts in the cell has traditionally been very
challenging in malaria parasites, targets can now be identified by creating parasites that are
resistant to a compound, and then comparing the genomes of resistant progeny clones to the
genomes of their sensitive parent clones41, 88. This method has led to the identification of a
handful of novel24, 89, 90 and previously known targets91, 92. Interestingly, the protein
biosynthetic pathway appears to be a rich source of novel, chemically-validated targets with
three tRNA synthetases having been identified as targets of antimalarial compounds89, 90, 93,
some (for example the natural products cladosporin and halofuginone) with demonstrated
activity across multiple stages89, 94. It is interesting to note that a number of the targets that
have been discovered by this approach (e.g. PfATP4, PfCARL, lysyl tRNA synthetase) were
not on lists of the most desirable targets predicted based on structure-based drug-ability and
essentiality95, and that few proteins, which were hypothesized to be good targets, have
yielded compounds that have progressed into development with the exception of the well
known antimalarial targets, DHOD, DHFR and cytochrome bc1 (see above). Although many
hypothetical targets can look attractive from a structural biology point of view, it is possible
that some of these proteins are simply too abundant in the cell and thus the inhibition of all
cellular copies is difficult to achieve at physiologically-relevant inhibitor concentrations.

Natural products, new formulations and combination therapies
Two of the most effective antimalarials, artemisinin and quinine, are natural products
derived from traditional herbal remedies that are used to treat fevers. A third, atovaquone, is
a synthetic version of the natural product lapichol96. There are other fever-reducing folk
remedies that could yield a next-generation antimalarial. For example, the bark of the plant
Nauclea pobeguinii, from the Democratic Republic of Congo, can substantially reduce
parasitemia in mice infected with rodent malaria97 and has shown efficacy in man in phase
IIb clinical trials98. It is interesting to note that the chemical structure of a possible active
ingredient, strictosamide, is similar to that of the spiroindolones99. A second natural product
from the Argemone mexicana plant, has also shown efficacy in a Phase II clinical trial100.

Drug formulation, for example in a pill or as a liquid suspension, can affect the drug’s
usefulness. Thus, efforts have been made to reformulate traditional antimalarial compounds,
including antibiotics. For example, an artemether/lumefantrine tablet works well with adults,
but may be rejected by children because of the bitter taste. Thus, sweet-tasting liquid
formulations needed to be designed for children101. In addition, antimalarials cannot be
given ethically as monotherapies because of the risk of resistance emergence, so the choice
of partner drugs must be carefully considered and is often determined by how long and when
a compound is active and whether parasite resistance is likely to develop. More effective
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medicines can thus be created by the combination of new antimalarial compounds or the
novel combination of traditional approved drugs. Multiple novel combination therapies,
including pyronaridine-artesunate102, azithromycin-chloroquine103, dihydroartemisinin-
piperaquine104 and sulfadoxine-pyrimethamine + amodiaquine (SP+AQ)105 are in clinical
trials. It is possible that a SERCaP medicine could be created by formulating a medicine that
contains three different molecules that are independently active against blood, liver and
transmission stages.

Future perspectives
Malaria elimination will ultimately require an integrated strategy, including new and old
drugs, vaccines, vector control and public health measures. Although the task seems
daunting, new scientific discoveries could rapidly change the outlook. For example,
traditionally, vector control strategies have depended on pesticides (indoor residual spraying
and insecticide treated nets), and although these interventions decrease the number of
malaria infections, they are insufficient for elimination in endemic regions106. New vector
control strategies such as genetically modified mosquitoes and more recently, the
colonization of mosquitoes with Wolbachia (which renders them refractory to Plasmodium
spp. infection107) could help with elimination. An effective vaccine would also be very
helpful, however, there is currently no vaccine available, and the most developed vaccine
(RTS,S) showed disappointing preliminary results in Phase III trials, which reported a
16.8% vaccine efficacy that declined to 0% over 4 years108, 109. Although these trials
provided a proof-of-principle for blood-stage vaccines, second generation vaccines with
greater efficacy are urgently needed. Pre-erythrocytic vaccines, attenuated parasites, and
multisubunit vaccines are all being explored110.

Even though elimination could potentially be accomplished with the existing arsenal of
drugs, it might be less costly if more effective drugs that interrupt transmission, were
available. Although target-based drug discovery could be a useful approach for finding a
SERCaP drug, it should be noted that currently known targets fall short of the SERCaP
requirements. Furthermore, cellular screens that could lead to the identification of small
molecules with SERCaP activity are difficult to implement and are not available to the
average researcher, nor can they be used routinely during lead optimization steps. One
source of problems is that often the organisms used for testing (such as P. vivax sporozoites)
or specialized assays are located thousands of miles away from the chemical libraries and hi-
tech screening equipment. Nevertheless, the recent progress suggests that a SERCaP could
realistically be developed, especially now that funding agencies have made this a priority.
Although special challenges might be associated with eliminating metabolically quiescent
hypnozoites and very late stage gametocytes, targets central to all stages of the life cycle
could nevertheless exist.

Considering the high mortality and morbidity caused by malaria, there is no question that
new drugs are needed. It is an exciting time for malaria drug discovery; the combination of
new and innovative screens to identify compounds with broad-range activity is hoped to
yield new insight into chemicals with broad-range activity. With the support of various
funding agencies the time is ripe to take advantage of these opportunities and to discover
drugs that will lead the way to the global eradication of malaria.
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Glossary

3D7 parasites A chloroquine-sensitive P. falciparum clone commonly used in the
laboratory and whose genome was completely sequenced

Causal prophylaxis The prevention of a blood-stage infection by a therapeutic that
prevents sporozoites from invading or developing within the liver

Cheminformatic
analysis

Computational analyses using systematic or common chemical
names, used to group scaffold families and discover known
activities, toxicities and sometimes targets

Enantiomers Molecules that are structurally equivalent, but are mirror images of
one-another and therefore not super-imposable. It is common for
one enantiomer of a drug to have more activity than the other

Gametocyte This is the sexual stage of parasite that develops from asexual
parasites and differentiates into gametes in the mosquito. They are
thus the parasite forms responsible for transmission

High-content
imaging

Automated microscopy, which collects images of cellular
monolayers stained with antibodies. Computer algorithms are then
used to automatically identify features such as number of cells in
mitosis, number of cells, size of cells, or aberrant shape

Eradication Eradication is the complete removal of malaria parasites so that
there is no transmission worldwide

Elimination Elimination means no local transmission of malaria

Lead compound This is a chemical compound often discovered in a screen that has
pharmacological or biological activity. Its chemical structure is
used as a starting point for chemical modifications that improve
potency, selectivity, or pharmacokinetic parameters

Hypnozoite The dormant liver stage form of the parasite that forms when some
P. vivax and P. ovale sporozoites invade hepatocytes. The
hypnozoite does not replicate but can become activated weeks,
months or years later, resulting in a blood-stage infection

Merozoite This is the infectious parasite that is released when a blood-stage
schizont ruptures. The merozoite can bind to and invade an
erythrocyte in a matter of seconds

Pharmacophore The core of a molecule that has unique atoms and has specific
pharmacological properties

Ookinete This is the motile parasite form that develops from the zygote.
Ookinetes are tetraploid as a result of meiosis in the zygote and
develops into an oocyst on the midgut wall

Radical cure Treatment that eliminates the hypnozoite form of the parasite and
thus prevents relapse with P. vivax or P. ovale infections

Scaffold This is the fixed part of a lead molecule on which chemical
functional groups are substituted or exchanged

Schizonts Malaria parasites that have completed the process of DNA
replication and syncytial nuclear division but which are still
contained within a single red cell or hepatocyte
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Single Exposure,
Radical Cure and
Prophylaxis
(SERCaP)

Treatment that would only need to be administered in one dose
and which would eliminate blood-stage parasites (alleviating
symptoms of malaria), and kill hypnozoites, preventing new
infection from developing

Sporozoite The motile infectious form that is transmitted from the mosquito to
the human, where they migrate from the dermis to a blood vessel
and eventually invade a liver cell

Standard
membrane-feeding
assay

An assay used to determine if a blood culture contains
gametocytes that are infectious to mosquitoes, in which
mosquitoes feed on human blood infected with P. falciparum
parasites that is covered with parafilm is used

Structure-activity
relationship (SAR)

Relationship between the chemical structure of a molecule and its
biological activity. The analysis of SAR allows scientists to
identify the chemical groups responsible for a compound’s
biological activity

Target product
profile

This is a set of guidelines that describes the ideal product. For
antimalarial drugs, it might include pharmacokinetic and
pharmocodynamics parameters, oral bioavailability, cost, potency,
and activity against different lifecycle stages
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Key points

• Although malaria continues to endanger 40% of the world’s population, and is
estimated to be responsible for up to a million deaths per year, the number of
cases reported by the World Health Organization has declined.

• Some fear that these fragile gains will be reversed if parasites become resistant
to artemisinins, currently the only class of antimalarial that works effectively
against all drug-resistant parasite strains. Ever slowing response times to
artemisinin monotherapies and the risk that these compounds loose effectiveness
has spurred new search for replacement therapies.

• The World Health Organization and several non-profit, non-governmental
organizations have made the elimination of malaria a long term public health
goal. This has generated interest in developing novel antimalarial compounds
that can not only eliminate the symptoms of malaria, but remove all parasites
from the body and prevent the spread of malaria.

• In recent years sophisticated and powerful cellular and phenotypic screening
methods have identified drug candidates active against different stages of the
parasite’s lifecycle and at least two of these novel classes of antimalarials are
being tested for efficacy in humans.

• For known, validated antimalarial “targets”, structure guided drug design has
yielded drug candidates with better potency and activity against drug resistant
malaria parasites.

• Insightful chemical design has also resulted in new drug candidates that have
improved potency, or remain for a longer period of time in the patient’s
bloodstream.
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Figure 1. Drug development strategy for the identification of novel antimalarials
At the screening-stage millions of compounds can be screened (1,000 – 2,000,000
compounds per screening campaign). When hits are identified, (on average, a hit rate of
1.0% is observed) they are ranked based on a number of criteria (such as potency, ease of
synthesis, known limitations to their use, novelty) to determine a possible lead compound.
These compounds are tested in transmission and radical cure assays which are low
throughput, time consuming and expensive and are therefore only applied to a handful of
compounds. Following lead selection, multiple chemical derivatives of the lead are
synthesized with the goal of maximizing potency and bioavailability while reducing cross-
reactivity with possible human targets (lead optimization). The best candidate is selected for
preclinical testing, an expensive and time-consuming process that involves assessing safety
and finding the optimal doses that can be used in phase I human trials.
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Figure 2. Assays available for determining the stage of activity and potency of potential
antimalarial compounds
To detect likely prophylactic activity, P. berghei or P. yoelli sporozoites are seeded onto
human hepatoma cells and then the infection rate is imaged41 or detected enzymatically123.
To detect prophylactic in vivo activity, rodent malaria sporozoites are injected into a mouse
shortly before or after the mouse has been treated with the compound. The infection can be
visualized with luciferase (with genetically modified parasites) or by measuring reduction in
blood stage parasitemia and/or improved survival. The radical cure potential of a compound
is tested using the hypnozoite-forming monkey model, P. cynolmolgi11. In the in vitro assay,
P. cynolmolgi sporozoites are seeded onto primary monkey hepatocytes and imaged to
determine the ratio between large, rapidly developing schizonts and dormant “small forms”
(thought to be hypnozoites). Radical cure agents will eliminate all parasites including
hypnozoites, whereas prophylactic compounds will act against growing schizonts only. In
the in vivo model, monkeys are infected with P. cynolmolgi sporozoites followed by
treatment with a compound that eliminates all blood stage parasites (e.g. chloroquine) and
then by a potential radical cure compound124. The monkeys are then monitored over several
months to measure reductions in the frequency of hypnozoite-caused relapses. The IC50 of
P. falciparum blood stages is typically measured in a parasite proliferation assay20. P. vivax
blood stage sensitivity is determined using a schizont maturation assay using parasites taken
directly from infected patients125. The in vivo efficacy of blood-stage compounds is
typically measured in mice infected with P. berghei or P. yoelli, although SCID mice can be
infected with P. falciparum126. Transmission-blocking activity can be assayed in vitro by
looking either at the viability127 or the development128 of purified P. falciparum
gametocytes or ookinetes52. The ability of gametocytes to infect mosquitoes is measured
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using a standard membrane feeding assay (with P. falciparum)129,130 or by direct feeding
from an infected mouse(with P. berghei or P. yoelli)53. After feeding the number of oocysts
per mosquito midgut is counted to determine drug efficacy.
Notes: Pf, P. falciparum; Pv, P. vivax; Pb, P. berghei; Py, P. yoelli; Pc, P. cynomolgi.
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Figure 3. Chemical structures of new antimalarial candidates
Lead compound chemical structures developed through optimization of chemical classes
identified using A) cellular-based screens B) target-based screens or C) chemistry-based
approaches. For the cellular screen, the compound classes are novel and all are derived from
leads that have potent activity against parasite blood stages. DSM265 and P218 were
derived from target-based screens against PfDHOD and PfDHFR respectively. OZ439 was
rationally designed to have the parasite killing activities of artemisinins, but with a longer
half life. References: TCMDC-13904629; NITD609 (KAE609)23, 24; GNF156 (KAF156)42.
GSK105771431; MMV39004834; DSM26583; P21876; OZ43958.
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