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Background. While increasing evidence links environments to health behavior, clinicians lack information about patients’ physical
activity levels and lifestyle environments. We present mobile health tools to collect and use spatio-behavioural lifestyle data for
personalized physical activity plans in clinical settings.Methods. The Dyn@mo lifestyle intervention was developed at the Sainte-
Justine University Hospital Center to promote physical activity and reduce sedentary time among children with cardiometabolic
risk factors. Mobility, physical activity, and heart rate were measured in free-living environments during seven days. Algorithms
processed data to generate spatio-behavioural indicators that fed a web-based interactive mapping application for personalised
counseling. Proof of concept and tools are presented using data collected among the first 37 participants recruited in 2011. Results.
Valid accelerometer data was available for 5.6 (SD = 1.62) days in average, heart rate data for 6.5 days, and GPS data was
available for 6.1 (2.1) days. Spatio-behavioural indicators were shared between patients, parents, and practitioners to support
counseling. Conclusion. Use of wearable sensors along with data treatment algorithms and visualisation tools allow to better
measure and describe real-life environments, mobility, physical activity, and physiological responses. Increased specificity in
lifestyle interventions opens new avenues for remote patient monitoring and intervention.

1. Introduction

The rising prevalence of obesity and cardiometabolic risk
observed among youth has led to predictions of decreased life
expectancy among the next generation of North Americans,
a first in history [1]. The American Heart Association has
reclassified obesity as a “major, modifiable” risk factor for
coronary heart disease (CHD) and diabetes [2]. This con-
dition is modifiable through dietary and physical activity
changes [3].

Classical clinical interventions promoting a healthy life-
style are based primarily on counseling not always tailored to
individual’s profile and on structured exercise programs that
have proven to be complex, costly tomaintain, and have long-
term poor adherence. Sustainable interventions need to focus
on interindividual specificity [4, 5] and the development of
personalized activity plans [6]. Advances in mobile health
and wearable devices offer new ways to collect and interpret
data on environments, behaviours, physiology and well-
being. Recently, a clinical cardiac rehabilitation intervention
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among adults using a wearable Electrocardiogram (EKG),
a Global Positioning System (GPS) receiver, and a smart-
phone for real-time data transmission on exercise sessions
[7] showed significant improvements in walking distance,
depression, and the physical component of the SF36 general
health questionnaire. To our knowledge, no clinical lifestyle
intervention targeting children and youth has integrated the
use of GPS, accelerometers, and heart rate monitors. This
paper describes the use of multiple technologies to integrate
real-life information in tailored clinical lifestyle interventions
in youth. Proof of concept and feasibility is illustrated using
baseline data collected among the 37 first participants of the
Dyn@mo intervention.

2. Methods

2.1. The Dyn@mo Intervention. The Dyn@mo lifestyle inter-
vention (Sainte-JustineUniversity Hospital Center,Montreal,
Canada) targets children and adolescents aged 6 to 17 years
old with cardiometabolic risk factors, such as obesity, hyper-
tension, disorders in glucose regulation, or dyslipidemia.
Its primary goal is to promote physical activity and reduce
sedentary time to improve children’s cardiometabolic profile.
To do so, the intervention relies on gathering data onmobility
and physical activity using wearable sensors. These data
provide a detailed picture of real-life conditions and physical
activity levels, improving the health care professional’s ability
to tailor counseling. This paper presents these tools and
baseline pilot data—that is, GPS and accelerometry collected
for seven days after the first visit—among the first 37 patients
who enrolled in the Dyn@mo program between March and
November 2011.

The intervention comprises several clinical encounters
and regular followup by phone and email. On three occasions
(0, 12 months, and 24 months), children are equipped with a
heart rate monitor, a GPS receiver, and an accelerometer to
collect heart rate, daily mobility, and physical activity data
during a 7-day period (results presented here use baseline,
that is, data collected for seven days after first visit at 0
month). Four to six weeks later, patients, families, and profes-
sionals visualise resulting indicators which could be called
a “spatio-behavioural diagnosis” using a map-based inter-
active web application. The next sections present the tools
developed for such continuous monitoring and analysis of
real-time data, including (i) the data collection tools and
methods, (ii) the data treatment expert system, and (iii)
the map-based interactive web application for rendering of
spatio-behavioural information to patients and caregivers.
Then, data obtained from the 37 first patients enrolled in
the program are presented, along with some exploratory sta-
tistics linking spatial, behavioural, and environmental char-
acteristics.

2.1.1. Data Collection Tools and Methods. During an initial
visit at the clinic, patients provide home and school addresses
and report some of their regular destinations. This infor-
mation is integrated in the spatio-behavioural web applica-
tion. Patients are equippedwith aGPS receiver, an accelerom-
eter, and a heart rate monitor. They are instructed on

device usage—wearing the accelerometer at the hip, the heart
rate monitor on the chest during all waking hours, and
carrying the GPS device with them at all times and charg-
ing it overnight. A return envelope is provided to send the
devices back through regular mail after completion of the 7-
day period. The monitoring hardware configuration includes
a Trimble Juno SC GPS unit (http://www.trimble.com/), an
ActiGraph ActiTrainer activity monitor (http://www.theacti-
graph.com/), and a Polar Wearlink Heart transmitter chest
monitor with wireless link to the activity monitor receptor.
TheGPS device has amanufacturer-reported spatial accuracy
of 1–3meters and is configured to collect location information
over an epoch of one second. Collected coordinates are
saved in an ArcGIS shapefile (.shp) format by a coding
procedure that was developed under ArcPad and installed on
the Trimble device within the Windows Mobile 6 platform.
Shapefiles are compressed and stored on local memory every
hour. The ActiTrainer accelerometer is configured to record
counts for each axis at a one minute epoch. The HR monitor
records heart beats per minute. Data are saved on the local
memories of the GPS device for GPS tracking and of the
physical activity monitor for HR and accelerometry. Upon
reception of the devices at the clinic, data files are uploaded
on a desktop computer for further processing.

2.1.2. Data Treatment Expert System. An expert panel com-
posed of epidemiologists, kinesiologists, pediatricians, car-
diologists, geomaticians, and geographers worked on defin-
ing relevant indicators to support the lifestyle promotion
intervention. The indicators were classified as follows: (a)
physical activity and sedentary behaviour indicators, (b)
spatial indicators and (c) combined indicators of physical
activity and spatial behaviour, and finally (d) usage/device
performance indicators.

An ArcGIS ArcToolBox was developed using Python
language to automatise data treatment, that is, to derive indi-
cators from raw GPS, accelerometry, and heart rate data files
and generate a synthetic XML output file for web integration.
TheXMLfile contains data to be visualised through the online
application, including geographic information of activity
locations [8], GPS tracks of trips, accelerometry-related
information, and HR data. The procedure is automated—
an analyst runs the ArcToolBox on the raw data, which
generates the XML file. Further qualification of detected
activity locations can be made through the web application.

Raw data files are validated and cleaned prior to indicator
construction. Poor quality datapoints are eliminated and
missing GPS data are imputed according to specific rules
outlined below. Accelerometry periods of 60 consecutive
minutes with zero counts or more are considered as nonva-
lid/nonwear time [9, 10]. Days with less than 10 hours of valid
accelerometry measures are discarded [11]. GPS data points
are cleaned according to measures of precision related to
the configuration of the satellites (dilution of precision, DOP
values) and speed (values with horizontal DOP > 8 or vertical
DOP > 15 or positional DOP > 13 and speed > 130 km/h
are removed). Given that GPS tracks are rarely continuous
because of loss of signal due to nonvisibility of satellites,

http://www.trimble.com/
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Figure 1: Interactive application for spatio-behavioural data visual-
ization: patients’ residential neighbourhood and mapping of oppor-
tunities.

particularly when inside homes or buildings, missing GPS
data points are imputed according to time and proximity
rules. Data points are interpolated for gaps of 2 to 60minutes.
No interpolation is done if the gap is over 60minutes, except if
the two observed consecutive points are less than 100m apart.
Raw GPS tracks are processed to identify activity locations
and related visits.

2.1.3. Map-Based Interactive Web Application for Counseling.
A web-based application supports data handling, data visu-
alisation, and tailored counseling. Developed in a html and
Flash programming environment, it runs on a IIS 7.0 web
server with a Microsoft SQL Server 2008 database deployed
on the hospital’s internal servers. After login, a caregiver
has access to his/her patient’s files. An administration page
provides information on patient’s intervention in terms of
upcoming, planned, or completed meetings, advancement
of data collection and upload, state of activity profile, and
counseling reports. A web form allows registration of basic
information including home and school address. Maps of the
home and school areas are automatically generated, to facili-
tate validation of locations by participants. A complementary
mapping module documents relevant activity locations, such
as actual places used for physical activity, or potential activity
places, that is, sport centers, community centers, outdoor
recreational areas, friend’s homes, and so forth. The inter-
active map allows searching destinations through a textual
search box connected to the GoogleMap API which will sug-
gest results, or directly through the placement of a marker on
the map. An infowindow allows collecting qualitative infor-
mation for a documented location. This allows the mapping
of “opportunities” for physical activity which can be enriched
by contributions of the child, the family, and the caregiver.

Expert-system generated indicators of physical activity,
spatial information or combinations thereof are visualised
through an interactive module through tables, graphs, or
maps (see example of visual presentation of patient’s res-
idential neighbourhood and opportunities in Figure 1 and
additional graphs andmaps in Figure 2).This visual interface
is used by health care professionals to better understand the

Figure 2: Interactive application for spatio-behavioural data visu-
alization: GPS tracks, activity locations, and corresponding physical
activity levels. NB: map indicates GPS tracks for one day automat-
ically detected activity locations. Upper graph indicates physical
activity levels during the day in relation to location (track). Lower
graph shows time spent per physical activity level for each day.

child’s spatio-behavioural dynamics, and as a tool to commu-
nicate with the child and its family members and tailor physi-
cal activity counseling. All visual information such asmaps or
graphs as well as complementary text such as goals and objec-
tives can be saved and reorganised at will in the evaluation
report module.The report becomes part of the patient’s file. It
is saved on a secure server, printed and handed to the family.

2.2. Participants and Measurements. The discussed tools and
methods are illustrated using baseline data from the 37 first
participants aged 6 to 17 who were enrolled in the program
between March and November 2011. All patients had a
specific cardiovascular risk factors (e.g., diabetes, hyper-
cholesterolemia, hypertension, obesity, etc.). Patients and
parents signed an informed consent authorising data use for
research purposes. The Dyn@mo intervention and its related
research program were approved by the Sainte-Justine hospi-
tal ethics committee. Physical activity and spatio-behavioural
indicators were compiled and compared between primary
school-aged and secondary school-aged children. Residential
neighbourhood variables were further compiled within a
Geographic Information using a 500 meter network-buffer
centered on place of residence. Variables of interest included
2006 Census-derived population density, proportion of
immigrants, proportion of population with a university
degree, household income, greenness using Landsat TM-5
satellite images and computing the Normalised Difference
Vegetation Index (NDVI) [12], and street connectivity
[13, 14], that is, the number of four-way intersections per
square kilometer. All these variables have been associated
with physical activity or walking in previous studies [15, 16].

3. Results

Summary statistics are provided in Table 1. Among the 37 ini-
tial participants, three had abnormally high accelerometry-
derived step counts (above 55,000 steps a day in average) and
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Table 1: Summary baseline statistics of Dyn@mo participant (𝑛 = 34).

Variable 𝑁 Min Max Average Std dev.
Individual profile

Age 34 6 17 11.1 3.1
BMI 34 21.7 60 32.2 7.3
BMI for age/gender percentile 34 94.8 99.9 98.59 1.26
zBMI 30 1.96 4.79 3.16 0.71

Neighbourhood characteristics
Population density (km2) 34 0.9 74735 7330 13551
Immigrants (%) 34 0 71 18 21
With university degree (%) 34 0 55 19 13
Household income ($) 34 35.125 140.495 73.983 25.480
Greenness (mean NDVI) 34 −0.25 0.239 0.006 0.132
Street connectivity (4+ way intersections) (km2) 34 0 85.05 19.89 23.19
Home-school road network distance (m) 34 139 24.428 5.800 6.697

Device usage
Nb of valid accelerometer days (>10 h) 34 1 8 5.59 1.62
Average time with accel. data per valid day 34 10:35 15:08 12:54 0:59
Nb of days with heart rate data 34 3 8 6.47 1.19
Nb of days with GPS data 33 1 11 6.1 2.1
Daily average GPS time/recorded (hh:mm) 33 01:09 19:04 11:47 04:55
Daily average GPS time/corrected (hh:mm) 33 07:01 23:54 17:10 04:55
Daily average missing GPS time (hh:mm) 33 00:05 16:58 06:49 04:09

Physical activity
Average number of steps per day

All days 34 3.060 12.344 7.596 2.315
Weekdays 34 2.334 13.488 7.771 2.497
Weekend days 28 1.219 15.900 6.609 2.924

Time sedentary (hh:mm)
All days 34 07:27 12:35 10:41 01:08
Weekdays 34 07:27 13:23 10:49 01:14
Weekend days 28 06:21 12:36 10:19 01:25

Time in light activity (>760 and <1951 counts/min)
All days 34 00:35 02:39 01:36 00:33
Weekdays 34 00:27 02:41 01:35 00:35
Weekend days 28 00:21 02:49 01:36 00:37

Time in moderate to vigorous activity (>1951 counts/min)
All days 34 00:07 01:17 00:36 00:19
Weekdays 34 00:07 01:22 00:38 00:20
Weekend days 28 00:00 01:46 00:25 00:19

Number of days with >30min of moderate to vigorous activity 34 0 7 2.91 2.08
Heart rate (beats per minute)

All days 34 20 104 80.8 21.8
Weekdays 34 24 106 81.8 21.7
Weekend days 28 0 110 74.5 30.3

Spatial behaviour
GPS: weekly average of number of activity locations 33 1 21 6.42 5.16
GPS: weekly average of visits 33 1 52 17.18 12.095
Activity space size (km2)

All days 33 .0 1.094 25.69 (median) 246.1
Weekdays 32 .0 1.036 18.28 (median) 232.9
Weekend days 29 .0 316 1.69 (median) 67.7
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Table 2

Primary school children Secondary school children
𝑡 Ind. samples 𝑡-test sig.

Average (age < 12) 𝑛 Average (age ≥ 12) 𝑛

Home-school distance (meters) 2.491 19 9.991 15 −3.615 0.002
Accel: average steps per valid day (weekdays) 8.983 19 6.237 15 3.507 0.002
Accel: average steps per valid day (weekends) 7.997 15 5.008 13 3.174 0.004
Accel: moderate to vigorous PA time (weekdays) 00:45 19 00:29 15 2.356 0.026
Accel: moderate to vigorous PA time (weekends) 00:30 15 00:19 13 1.489 0.152
Activity space size (km2) (GPS) (weekdays) 26.5 17 169.5 15 −1.687 0.113
activity space size (km2) (GPS) (weekends) 26.3 16 50.8 13 −0.906 0.378

were considered as outliers and removed from accelerometry
analysis. Among the 34 remaining patients, 24 were females,
and 10 males. Average standardised Body Mass Index (zBMI
according toWHOgrowth curves) was 3.16 (SD= 0.711). BMI
for age classified 33 out of 34 patients as obese (i.e., above the
95th percentile) and one patient as overweight (between the
85th and 95th percentile).

3.1. Device Usage/Performance. Days with at least 10 hours
of valid accelerometry measures were retained. Three partic-
ipants provided less than 4 valid days, 27 participants 5 days
or more, 22 participants 6 days or more, and 11 participants
provided valid accelerometry data for the full seven-day
period. On average, a valid day included a total of 12 hours
54 minutes of wear time (SD = 59 minutes). Among the 34
participants, 33 had GPS data. Valid interpolated GPS data
covered the full seven-day period for some 18 participants,
6 days for 3 participants, 5 days for 4 participants, and less
than four days for three others. After data correction and
imputation, cumulated GPS data was available on average
for 17 hours and 10 minutes per day. GPS data was mostly
imputed while being at home or at school (72%). Heart rate
data was available for 34 participants. Only one participant
provided less than 4 valid days, 31 participants 5 days ormore,
27 participants 6 days or more, and 24 participants provided
heart rate data for the full seven-day period.

3.2. Sensor Results

3.2.1. Physical Activity. Accelerometry-derived data show
7,596 steps per day in average (SD = 2, 315), with an average
of 7,771 (2,497) steps recorded during weekdays and 6,609
(2,924) steps recorded during weekend days (nonsignificant
difference, 𝑃 = 0.577). Accelerometry count data revealed
that participants spent an average of 10 hours 41 minutes in
sedentary (<760 count per minute, CPM), one hour and 36
minutes in light (between 760 and 1951 CPM), and 36minutes
in moderate to vigorous physical activity (MVPA, above 1951
CPM). MVPA time during weekend days was significantly
lower compared to week days (25 versus 38 minutes per day,
𝑃 = 0.01).

3.2.2. Heart Rate. Heart rate data showed some inconsisten-
cies, particularly some very low counts (minimum heart rate
beats of 20 beat per minute). The average recorded that heart

rate was 80 beats per minute. Because of low observed values,
reliability of these measures is questioned.

3.2.3. Spatial Behavior. Thirteen participants lived within
1 km from their school, 15 within 1.6 km, 18 within 3 km,
and 8 more than 10 km away. GPS data processing revealed
that participants visited some 6.42 distinct activity locations
on average and visited these locations in average 17.18 times.
When establishing the convex hull polygon encompassing all
GPS data points collected in a day—a measure of the area
covered by a participant through his/her daily travelling—the
median activity space area was 18.3 km2 for week days, and
1.7 km2 for weekend days. Some participants covered relative
large areas with maximum values at 1,094 km2 and 316 km2,
respectively. Participants also lived in areas with a range of
density and socioeconomic profiles, as indicated by relatively
large standard deviations in neighbourhood SES measures
(See Table 1).

Exploratory statistics of bivariate associations between
physical activity and spatial behaviour showed that the aver-
age number of steps was negatively associated with home-
school distance during weekdays (−0.399, 𝑃 = 0.020), but not
during week-end days (−0.117, 𝑃 = 0.553). Yet, when sepa-
rating primary school aged children (11 and younger) from
high-school aged children (12 and up), correlations became
nonsignificant within each group, possibly due to a too
small sample. Table 2 shows significant differences in spatio-
behavioural measures between these two groups. High-
schoolers attend schools further away from home, cumulate
less steps daily both duringweek days andweekenddays, have
shorter times of MVPA, and have larger activity spaces than
their younger counterparts.

4. Discussion

This paper presents a series of tools supporting the Dyn@mo
lifestyle intervention of the Sainte-Justine University Hospi-
tal Center, which targets lifestyle changes among children
and youth with cardiometabolic risk factors. These tools
include an objective seven-day evaluation of children’s daily
mobility and physical activity using three wearable sensors:
a GPS receiver, an accelerometer, and a heart rate mon-
itor. A semiautomated algorithm processes collected data
to derive relevant indicators on patients’ health behaviour,
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mobility, and life geographies. A web-based application
further allows handling, visualization, and sharing of data
between patients and their health practitioners. These novel
tools and corresponding indicator statistics facilitate the
integration of objective behavioural and physiological mea-
sures, as well as the patient’s environmental constraints and
opportunities, for a personalized, tailored lifestyle interven-
tion.

With high levels of compliance and good data coverage
over a 7-day period, this study demonstrated that wearable
devices could be used in a clinical lifestyle intervention
to collect real-life data among children. Furthermore, data
processing algorithms allowed indicator construction and
data restitution through an interactive mapping and graph-
enabled web application. These tools and data provide infor-
mation on patients’ day-to-day environmental constraints
and opportunities and can thereby contribute to lifestyle
counseling.

More precisely, the use of a GPS device proved useful to
document spatial behaviour and reveal the types of urban
environments participants were exposed to in their everyday
geographies. Combined to accelerometry data, it further
allowed to situate physical activity, that is, understand when
and where health behaviours such as sedentary behaviour
or MVPA were occurring. The mapping of activity locations
and trips, along with an interactive mapping capacity for
identification of resources, further provided ways to visualize
accessibility to opportunities, such as sports clubs or parks or
other physical activity installations.

4.1. Limitations. A series of limitations apply to the tools and
methods used to support the Dyn@mo lifestyle intervention.
The analysis and interpretation of accelerometry data to
evaluate active living and physical activity require further
refinement. We used cut-off points recommended by the
Actilife 4.3 User’s Manual [17], yet, the distinction between
nonwear time and sedentary time, the derivation of step
counts, or transformation of accelerometry counts into levels
of physical activity or energy expenditure estimates—that
is, in part, establishing valid age- and BMI-specific cut-
off points—remain contentious issues in pediatrics. Recent
proposals have been made for nonwear/sedentary wearing
time and could be tested [18], and comparative analyses
have assessed the performance of different cut-off points and
predictive equations of energy expenditure among children
and youth [19]. However, although pediatric obesity is on
the rise and a major concern, relatively few accelerometry
validation studies have been done among obese children [20–
22]. Concerning the use of a GPS device, issues related to
battery life, manipulation errors, or device limitation such
as nonfix or imprecision in measurement, are well described
[23, 24]. However, statistics showed good wearing times and
satisfying collection of GPS tracks. Another limitation per-
tains to the use of the chest-mounted heart ratemonitor. Data
analysis clearly revealed measurement errors, with abnor-
mal values—nonlife supporting—beat per minutes recorded
among some participants. Adequate wearing of such devices
may be problematic for longer periods and in free-living
environments. For example, it is recommended to wet the

electrode area of the chest belt for proper functioning. This
may generate discomfort or electrode contact issues which
may reduce compliance or bias the readings towards lower
numbers. Alternatively, ways of providing instructions on
wearing and handling procedure may need to be improv-
ed.

Future of wearable sensors for clinical interventions: use
of GPS for understanding spatial behaviour and exposure to
environments is relatively new but rapidly gaining momen-
tum [25]. Pilot and feasibility studies have demonstrated the
capacity of GPS to locate health behaviours, with a potential
to better understand environmental influences [26]. For
example, GPS units have been used to track travel patterns
among adolescents [27, 28], analyze walking among adults
[29], analyze bicycling routes in relation to existing road
infrastructures [30], mobility patterns among older adults
[31, 32], link mobility with mental health outcomes [33, 34],
analyze active transportation [35–37] or relations between
PA, and the built environment [38, 39]. GPS data have
also been used to validate parent-reported questionnaires
on children’s activity locations [40], with results showing
significant placemisclassifications in parent-reported activity
locations and times, thus underscoring the usefulness of GPS
systems for obtaining reliable information on activities and
locations. Along that line, novel map-based questionnaires
also allow the collection of regular destinations for improved
exposure assessment and may be used in place of or in
complement to GPS tracking [41].

Yet, use of GPS devices to support clinical lifestyle inter-
ventions is still rare. Recently, a clinical cardiac rehabilitation
intervention used a wearable Electrocardiogram (EKG), a
GPS receiver, and a smartphone for real-time data transmis-
sion to monitor walking-based exercise sessions in real-time
[7]. Participants showed statistically significant improve-
ments in walking distance, depression, and the physical
component of the SF36 general health questionnaire. Use
of wearable sensors was however limited to short periods—
exercise times—and on adult patients only.

Further research will need to explore how GPS- and
complementary sensor based spatio-behavioural indicators
such as those proposed here are associated to cardiometabolic
profiles. This would reinforce the validity of using such
lifestyle indicators for intervention. Measures of accessibility
to food sources or opportunities for physical activity in proxi-
mity to regular destinations could further serve to anal-
yse actual health behaviour and cardiometabolic profile
[42].

4.2. Data Capture, Data Processing, and Applications. Chal-
lenges in mobile health arise along the three phases of what
can be seen as a three-tier continuumgoing fromdata capture
to data processing to data usage.

Beyond measurement validity issues, challenges in data
capture include practical considerations such as relatively
short continuous sensing time linked to poor battery capac-
ities, particularly for GPS; difficulty of manipulation; a rela-
tively poor integration of sensors generally implying to wear
several distinct devices; and a relative lack of integrated com-
munication protocols which limits linkage between sensors
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or between sensors and cellphone networks, which limits
real-time tracking and feedback to the user. In order to
address some of these issues, team members have developed
a novel integratedmultisensor device containing a GPSmod-
ule, a triaxial accelerometer, and two means of communi-
cation: a GPRS module for cellphone network data trans-
mission and an ANT+ module for local 2.4GHz data trans-
mission, which allows addition of external sensors such as
accelerometers or continuous glucose monitors, or home-
based sensors such as RFID tags. Real-time data transmission
capacities allow distant patient monitoring, or feedback
through web or mobile applications. Whereas increasing
ubiquity of smartphones—which provide a series of embed-
ded sensors—may represent an important potential in the
future [43, 44]. Yet, various issues including relatively poor
battery life or unknown validity of embedded sensors in
addition to continuous updates of new hardware/software
configurations clearly limit current applicability in clinical
settings.

Data processing is key because continuous monitoring
generates large amounts of raw data, which need to be
transformed and synthesized to be useful, both for the patient
and the clinician. For example, there is a need for clear docu-
mentation of how raw GPS data is transformed into spatio-
temporal indicators, how raw accelerometry data is trans-
formed into energy estimates. Physical activity estimates
should not be based on undocumented procedures pro-
viding proprietary “counts” of physical activity. More re-
search—and documentation—in the creation of useful spa-
tial/behavioural/physiological indicators is needed and will
require multidisciplinary perspectives including contribu-
tions from nonhealth fields such as geography, computer
science, or engineering. To support increasing real-time data
streams coming from a variety of sensors, novel information
system architectures also need to be developed. Sound and
secure cloud architectures will help move toward big real-
time data which in turn will then support the development
of advanced machine learning algorithms for improved per-
formance.

Among the applications of such systems, feedback loops
to the user cannot only improve health management but also
further data collection—for example, using web or mobile
based prompted recall applications [45–47].

Further research should evaluate patients’ and physicians’
perception and usage of such tools and methods and better
assess how sensor-based information is best put at use.
Caution is required, because although the potential is pro-
mising, both across age groups and across health domains,
unintended harmful consequences can arise. Yet, because
such development require large ranges of expertise, research
funding schemes also need to be able to support interdis-
ciplinary teams reaching beyond the sole domain of popu-
lation health or clinical research, to computer science and
engineering.
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