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Peroxisome proliferator-activated receptors (PPARs) are transcription factors that belong to the superfamily of nuclear hormone receptors and
regulate the expression of several genes involved in metabolic processes that are potentially linked to the development of some diseases such as
hyperlipidemia, diabetes, and obesity. One type of PPAR, PPAR-, is a transcription factor that regulates the metabolism of lipids, carbohydrates,
and amino acids and is activated by ligands such as polyunsaturated fatty acids and drugs used to treat dyslipidemias. There is evidence that
genetic variants within the PPARa gene have been associated with a risk of the development of dyslipidemia and cardiovascular disease by
influencing fasting and postprandial lipid concentrations; the gene variants have also been associated with an acceleration of the progression of
type 2 diabetes. The interactions between genetic PPARa variants and the response to dietary factors will help to identify individuals or
populations who can benefit from specific dietary recommendations. Interestingly, certain nutritional conditions, such as the prolonged
consumption of a protein-restricted diet, can produce long-lasting effects on PPARa gene expression through modifications in the methylation
of a specific locus surrounding the PPARa gene. Thus, this review underlines our current knowledge about the important role of PPAR-a as a

mediator of the metabolic response to nutritional and environmental factors. Adv. Nutr. 4: 439-452, 2013.

Introduction

The prevalence of chronic diseases of metabolic origin such
as hyperlipidemia, diabetes, and obesity has increased in recent
decades worldwide. These disorders have a complex etiology in-
volving genetic, environmental, and nutritional factors. There is
evidence that a group of nuclear receptors, called PPARs, are in-
volved in these diseases (1-5). PPARs are well-characterized type
II nuclear receptors identified in vertebrates that contain a cys-
teine-rich Zn finger-motif DNA binding domain (6,7). The
PPAR family consists of 3 members: PPAR-a, PPAR-6 (also
called PPAR-B), and PPAR-y (NR1C1, NR1C2, and NR1C3,
respectively). PPAR-« was first described as a receptor that is
activated by peroxisome proliferators, hence its name (8-11).

PPAR-« can be activated by certain natural and synthetic
ligands such as PUFAs, eicosanoids, and hypolipidemic drugs
(fibrates) and then modulates DNA transcription by binding
to specific nucleotide sequences located in the regulatory re-
gions of target genes known as peroxisome proliferator re-
sponsive elements (PPREs)° (12,13). DNA binding requires
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that a heterodimer containing PPAR-a and retinoic X re-
ceptor « interact with a PPRE that contains a consensus
sequence (AGGTCA N AGGTCA) consisting of 2 direct
repeating half-sites spaced by 1 nucleotide (14,15). When lig-
ands bind to PPAR«, conformational changes in PPARa- ret-
inoic X receptor « induce the active transcriptional complex
to assemble with coactivator proteins either sequentially
or into preassembled subcomplex modules. Therefore, co-
activator complexes that acetylate (steroid receptor coacti-
vators, p300) nucleosomes for chromatin remodeling and
mediator components contact PPAR-« to facilitate the re-
cruitment of the basal transcription machinery with RNA pol-
ymerase 11 for transcription of specific target genes (16,17)
(Fig. 1).

It is known that activation of PPAR-« by its ligands can
modify multiple biological processes in the cell that are impor-
tant, particularly in the mechanisms associated with body en-
ergy production, as well as in the inflammatory response,
among others. Thus, in the current review, we focus on how
PPAR-« can control these metabolic functions, showing an
integrated understanding of 3 biological aspects of PPAR-c,
its metabolic function, its most studied genetic variants,
and the transgenerational reprogramming and how these
aspects interact with environmental factors to carry out
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Figure 1 Schematic
representation of PPAR-a
target gene transcription
dependent on ligand binding
and recruitment of
coactivators. PPAR-a can be
activated by certain ligands,
such as PUFAs, 16:00/18:1-
GPC, and fibrates, which
modulate transcription of
PPAR-« target genes.
However, DNA binding
requires the formation of a
heterodimer containing PPAR-
« and retinoic X receptor
(RXR) a that is able to interact
with peroxisome proliferator
responsive elements. The
assembly of this heterodimer
with coactivator proteins
facilitates the recruitment of N
the basal transcription
machinery with RNA
polymerase Il for transcription
of specific target genes. APO,
apolipoprotein; BAF60,
Brahma-related gene 1/
Brahma -associated factor 60;
CD36, Cluster of
Differentiation 36; CPT-1,
Carnitine palmitoyltransferase
l; CYP, cytochrome P-450;
FGF21, fibroblast growth
factor 21; HMGCAS2,
hydroxymethylglutaryl CoA
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synthase 2; p300, histone acetyltransferase p300; PGClea, peroxisome proliferator-activated receptor gamma coactivator 1-a; PPRE,
peroxisome proliferator responsive element; RNA POLII, RNA polymerase II; SRC, steroid receptor coactivator; SREBP1-c, sterol regulatory
element binding protein 1¢; SW1/SNF, switch/sucrose nonfermentable chromatin-modifying complex.

its metabolic role. In the past decade, genetic and genomic
studies have provided evidence of the biological significance
of PPAR-a genetic variants and their interactions with some
diet components or hypolipidemic drugs, such as fenofibrate,
to modulate metabolic phenotypes in humans because they
are PPAR-a ligands. Finally, we consider the long-term conse-
quences are in transgenerational environmental reprogram-
ming of metabolism depending on nutritional status that may
alter the epigenetic modifications of PPAR-a regulatory se-
quences that will influence the expression of its target genes.

Natural and synthetic PPAR-« ligands

PPAR-a is a receptor for a structurally diverse group of
compounds, including natural and synthetic ligands. Within
the PPAR-« ligand-binding domain, there is a large pocket
~1400 um’ into which the molecule ligand is bound. The
ligand adopts a conformation within the receptor that allows
formation of hydrogen bond interactions; these interactions
stabilize the receptor in a configuration that leads to the tran-
scriptional activation of PPAR-« via recruitment of coactivator
proteins (18).
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Among the natural PPAR-« ligands, some cells are able to
generate an endogenous ligand, the phospholipid 1-palmi-
toyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC),
which is synthesized by the enzyme fatty acid synthase
(19). In addition, other natural ligands such as PUFAs are
provided by the diet (linoleic, a-linolenic, y-linolenic,
and arachidonic acids), which bind to PPAR-« at physio-
logic concentrations (12). It has been demonstrated that
phytanic acid, a branched-chain fatty acid generated from
phytol present in dairy products, is also a natural ligand of
PPAR-« (27,28). It is well-known that dietary PUFAs have ef-
fects on diverse biological processes such as insulin action,
cardiovascular function, neural development, and immune
function, some of them mediated via PPARa. Additionally,
dietary PUFAs activate both directly and indirectly other tran-
scription factors such as liver X receptor, hepatocyte nuclear
factor-4, and sterol regulatory element binding protein, which
mediate to some extent other biological processes affecting the
expression of specific genes (Fig. 1) (20,21).

Hostetler et al. (22), using direct fluorescence binding and
fluorescence displacement assays, demonstrated that PPAR-«



exhibits high affinity (1-4 nmol/L K values) for unsaturated
long-chain fatty acyl-CoAs as well as unsaturated long-chain
fatty acids commonly found in mammalian cells; these
high-affinity ligands elicited conformational changes in
PPAR-« structure that correlated functionally with coacti-
vator binding. In contrast, saturated long-chain fatty acids
were not or were only very weakly bound (22). In addition,
Lin et al. (23), using a fluorescence-based method for mea-
suring the dissociation constants (K4) to characterize the
interactions of PPAR-a with various natural ligands such
as oleic acid, linoleic acid, linolenic acid, arachidonic acid,
and leukotriene ITB4 (Kd values of 5.9, 4.8, 7.9, 17.3, and
60.8 nM, respectively), revealed that PPAR-« interacts with af-
finities in the nanomolar range with these ligands.

It has been suggested that activation of PPAR-« in the
liver during fasting is due to serum FFAs that are released
from adipose tissue; however, recent evidence indicates
that circulating FFAs fail to activate hepatic PPAR-«, whereas
it can be activated by dietary fatty acids and fatty acids gener-
ated via de novo lipogenesis (19,20,24,25). In fact, it has been
shown that the effects of dietary fatty acids on hepatic gene
expression are quantitatively almost entirely mediated by
PPAR-a (26).

PPAR-« also binds to eicosanoids such as 8-hydroxyeicosa-
tetraenoic acid, with an affinity estimated in the range of 100
nM (12). Other natural compounds such as polyphenols have
been described as ligands of PPAR-« (29,30). Resveratrol, a
natural polyphenol found in grapes, peanuts, and berries,
and some of its derivatives and analogs, activate PPAR-¢,
resulting in brain protection against stroke (31-33); for in-
stance, the derivate compound phosphate 15 has a potency
higher than that of the drug ciprofibrate (33). Studies in
HepG2 cells treated with genistein, another polyphenol that
is the main soy isoflavone, induced the expression of PPAR-
a at both messenger RNA (mRNA) and protein levels and en-
hanced expression of genes involved in fatty acid catabolism
through activation of PPAR-a (34). Additional PPAR-« lig-
ands from diet with hypolipidemic activity have been re-
ported, such as the natural carotenoid abundant in seafood,
astaxanthin, and the active compound extracted from the to-
mato, 9-oxo0-10(E),12(E)-octadecadienoic acid (35,36).

PPAR-« can be also activated by synthetic ligands such as
hypolipidemic drugs that include bezafibrate, fenofibrate, clo-
fibrate, and Wy14643 that induce up- and downregulation of
expression of several genes involved in B-oxidation and lipid
metabolism (10,37). PPAR-a exhibits Ky values for bezafibrate
and their CoA thioesters (bezafibroyl-CoA) in the same range
(Kgq = 13.1 and 2.7 nM, respectively) as for unsaturated long-
chain fatty acids (22), whereas for fenofibrate is in the micro-
molar range (10-20 uM), indicating a lower affinity (38,39).
Wyl4643 is a potent ligand that has a binding affinity to
PPAR-a¢ higher than that for the endogenous ligand 16:0/
18:1-GPC (K; = 11.06 vs. K; = 33.20 nM, respectively); this
may result in competition and a rapid displacement of the nat-
ural by the synthetic ligand (19). The piperidine synthetic ag-
onists bind to PPAR-« very strongly with K; values of 74 nM
for CP-865529, 24.5 nM for CP-775146, and 10.8 nM for

CP-868388. These compounds have been very useful in
acute preclinical models for treating dyslipidemia (40).

Metabolic functions of PPAR-«

PPAR-a is highly expressed in brown adipose tissue, the
liver, and, to a lesser extent, in the kidney, skeletal muscle,
heart, and small and large intestines (41—43). PPAR-a func-
tions as a lipid sensor in the liver and recognizes and responds
to the influx of fatty acids by stimulating the transcription of
specific genes (44). Studies performed using PPAR-a—null
mice (knockout mice) have demonstrated that PPAR-« con-
trols the expression of numerous genes related to lipid metab-
olism in the liver, including genes involved in mitochondrial
B-oxidation, peroxisomal B-oxidation, fatty acid uptake and
binding, and lipoprotein assembly and transport. In con-
ditions such as starvation that lead to an increased demand
for the oxidation of fatty acids, PPAR-« is essential for the
upregulation of the expression of the genes coding for the
enzymes necessary to fulfill the energy needs in these circum-
stances (45-49). However, if plasma FFAs do not activate he-
patic PPAR-a during fasting and the production of the
endogenous ligand (16:0/18:1 GPC) is controlled by fatty
acid synthase during feeding, it remains unclear what the
mechanism is for activation of PPAR-a—dependent gene
regulation in a condition of high energy demand (50).

The genes involved in lipid and lipoprotein metabolism
in humans and regulated by PPAR-« include the apolipo-
protein (Apo) genes such as APOAI, APOA2, and APOAS5,
the genes involved in fatty acid oxidation (acyl-CoA oxidase,
CPT-I, and CPT-II), those required for the desaturation of
fatty acyl CoA (delta-6-desaturase), and genes involved in
HDL metabolism (PLTP) and ketone body synthesis (HMGCS2)
(51-54). PPAR-« does not merely serve as a transcriptional ac-
tivator of fatty acid catabolism but plays a much broader role
in lipid metabolism (24,55). In this regard, PPAR-a agonists
also enhance the activity of the sterol regulatory element bind-
ing protein 1c promoter because it contains a PPRE located at
-453 bp in the human gene. Sterol regulatory element binding
protein 1c is a transcription factor that plays a key role in the
regulation of the gene expression of lipogenic enzymes and is
essential for the genomic actions of insulin on the metabolism
of both carbohydrates and lipids, depending on nutritional
status (55).

Because PPAR-a is involved in ensuring energy availability
during fasting and starvation, it plays a prominent role in the
starvation response. This response is mediated in part by fibro-
blast growth factor 21, an endocrine regulator of the body’s
adaptation to fasting that is produced in the liver in response
to PPAR-a (56,57). The function of fibroblast growth factor
21 is to both stimulate lipolysis of white adipose tissue to supply
fatty acids to nonadipose tissue organs and to control ketogen-
esis in the liver (56) to obtain energy from fatty acids (Fig. 1).

In addition to its regulation of lipid metabolism, recent ev-
idence shows that PPAR-« also regulates the metabolism of
amino acids in the liver. It was found that PPAR-a decreases
the mRNA expression of enzymes involved in the metabolism
of amino acids when comparing the expression of mRNA
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from wild-type versus PPAR-a—null mice (58). Further-
more, in PPAR-a—null mice, fasting decreases the plasma
levels of the gluconeogenic amino acid alanine and the ke-
togenic amino acid tyrosine. The amino acids linked to the
urea cycle, which include aspartate, arginine, and citrul-
line, are increased in PPAR-a knockout mice compared
with wild-type mice (59). In a model of dyslipidemia and in-
sulin resistance, however, the PPAR-a agonist Wy14643 pro-
duces significant alterations in the plasma levels of both
amino acids and nitrogen-containing metabolites, suggesting
important effects on amino acid mobilization and catabolism
(60).

On the other hand, PPAR-« is also known to modulate the
transcription of genes involved in pathways of inflammatory
response. This nuclear receptor modulates anti-inflammatory
activity via downregulation of the activator protein-1 and
nuclear factor-«B signaling pathways through a direct pro-
tein-protein interaction with p65 and c-Jun. In addition,
experimental evidence suggests that PPAR-« activation at-
tenuates or inhibits several mediators of vascular damage,
including lipotoxicity, inflammation, reactive oxygen species,
endothelial dysfunction, angiogenesis, and thrombosis
(61-64). Moreover, activation of PPAR-« has been demon-
strated to inhibit tumor growth and angiogenesis through
suppressing hypoxia-inducible factor la signaling in cancer
cells (65).

Recently, another role of PPAR-a was found by directly
regulating the transcription of cytochrome P-450 3A4, the
major human drug-metabolizing enzyme. Activation of
PPAR-« by the synthetic and endogenous ligands Wy14643
and 16:0/18:1-GPC, respectively, increases the expression of
a distinct set of cytochrome P-450 enzymes, including 3A4,
1A1, 1A2, 2B6, 2C8, and 7A1 in primary human hepatocytes
(66).

PPAR-« genetic variants associated with meta-
bolic phenotypes in humans

The human PPARa gene is located on the chromosome
22q13.3 and spans 93.15 kb. Genetic variants in both the
DNA-binding and ligand-binding domains that influence
the transcriptional activity of human PPAR-a were described
previously (67-71). Single nucleotide polymorphisms (SNPs)
within this gene are associated with metabolic features such as
dyslipidemia and cardiovascular risk factors (72) and also
influence both fasting and postprandial lipid concentrations
(73) and the progression of type 2 diabetes (74,75) (Fig. 2,
Table 1).

Metabolic phenotypes associated with the L162V
genetic variant

A leucine-to-valine change in codon 162 (L162V, rs1800206),
represented by a C to G substitution at the DNA-binding do-
main, encodes for a more active PPAR-a depending on the
concentration of the ligand. In transfection assays performed
in vitro, this variant is unresponsive to a low concentration of
ligand compared with the wild type; however, in the presence
of a high concentration of the synthetic ligand Wy14643
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Figure 2 Location and associated effects of PPAR-a variants.
Environmental factors such as diet and drugs may interact with
PPARa genetic variants to modulate metabolic parameters. The
L162V single nucleotide polymorphism (SNP) in the PPARa
coding region has been associated with an increase in TG, total
cholesterol (TC), LDL, ApoB, ApoC3, the risk of type 2 diabetes
(T2D), and a decrease in HDL. There is an interaction between
the SNP V227A or L162V with PUFA intake that is associated with
a decrease in the levels of HDL, ApoA1, TGs, and ApoC3. In
addition, the intron 7 G > C variant is associated with the
fenofibrate response, dyslipidemia and risk of nonfatal
myocardial infarction. The domains represented in the figure are
activation function-1 (AF-1), DNA binding domain (DBD), and
ligand binding domain (LBD). LDL-C, low density lipoprotein-
cholesterol.

(>25 uM), the transcriptional activity of the 162V allele
is higher compared with that of the 162L allele (67,69).
The L162V polymorphism has been associated with in-
creased levels of TGs, total cholesterol (TC), LDL choles-
terol, and apoAl and apoB in whites (69,73,76-78).

The potential modulating the phenotype-associated ef-
fects of this polymorphism on lipid metabolism depends
on several factors such as the disease state, advanced age,
and sex. In 2373 subjects (1128 men and 1244 women)
from the Framingham Offspring Study, the V162 allele was as-
sociated in men with increased serum concentrations of TC,
LDL cholesterol, and apoB (P = 0.0012, P = 0.0004, and
P =0.009, respectively); in women, a similar trend was ob-
served, but these findings did not reach statistical significance
(P =0.18 for TC and HDL cholesterol) with the exception of
serum apoB (P = 0.03) (79). In 610 young healthy white sub-
jects (average age, 24 y), men heterozygous for L162V showed
78% higher TG concentrations and 20% lower HDL levels
than those homozygous for the common ancestral allele.
However, no significant associations between PPAR-a geno-
type and lipids were shown in women (80). A Danish study
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Ref.
106
121
121

P value
0.03
0.02
0.001
0.0002

OR (95% Cl)

Metabolic effects

PPAR-a-3’UTR C>T X long-chain n3 fatty acid
intake in African Americans participants

1 TC

| LDL-C
After fenofibrate treatment:

| LDL-C
After fenofibrate treatment:

112

Minor allele frequency, %
African Americans

0.3 in whites, 285 in

CEU* 200
CEU* 142

Study population

selected from the ARIC Study
ancestry) from GOLDN study

cestry) from GOLDN study
861 subjects (white and nearly all of European

10,134 whites and 3480 African Americans were
861 subjects (white and nearly all of European an

! Apo, apolipoprotein; SNPs, single nucleotide polymorphisms; TC, total cholesterol; TG, triglyceride; TRL, triglyceride-rich lipoprotein.

2 P value adjusted for alcohol consumption and waist-to-hip ratio.

® Hazard ratio.
* White population from HapMap International Project (http://hapmap.ncbinlm.nih.gov/).

Table 1. (Continued)
3'UTR C > T (rs3892755)

SNP
rs135550
159626730

of middle-aged (n = 5799; average age, 46 y) carriers of 162V
showed 60% higher fasting serum TG concentrations (81).
Moreover, in healthy men, the 162V allele was associated
with higher fasting TC (P = 0.003), LDL cholesterol (P =
0.001), and apoB (P = 0.004), but not with postprandial
parameters (73). In contrast, in subjects with type 2 diabe-
tes (n = 129), but not in healthy men (n = 2508; 50-61 y
old), carriers of the 162V allele had 9% higher plasma TC
(P = 0.04) (69).

The minor allele frequency for L162V is lower in African
Americans (1.5%) and Asians (2.5%) compared with whites
(varies from 6.1% to 10.6%) (69,78,80,82—84). In the African-
American population (n = 335), carriers of the 162V allele
have higher levels of plasma apoC3 (P = 0.0005) and TG
(P =0.009) than 162L homozygous individuals (82). A study
of an admixed population of 570 subjects from Brazil
showed an association with dyslipidemia when 2 SNPs, the
162V and intron 7G > C polymorphism, were present in
the PPAR« gene (rs4253778); carriers of the intron 7C allele
showed a 1.56-fold increase in the risk of presenting with
high blood lipids. In addition, haplotype analysis regarding
L162V and intron 7G > C showed a significant association
with dyslipidemia and LDL cholesterol levels. Carriers of the
L-C haplotype were at an increased risk of dyslipidemia com-
pared with carriers of the most common L-G haplotype
(OR = 1.56, P = 0.021), and carriers of the V-C haplotype
showed lower LDL cholesterol levels compared with L-G hap-
lotype carriers (mean difference = —23.17 mg/dL, P = 0.044)
(85).

In addition, some studies have reported that the presence
of the 162V allele influences the progression of type 2 diabe-
tes. A study of the STOP-NIDDM trial (N = 413) showed
that L162V modulates the progression to type 2 diabetes.
Subjects with impaired glucose tolerance carrying the 162V al-
lele have a 1.9-fold (95% CI: 1.05, 3.58) increased risk of the
development of diabetes (74). A haplotype that comprises
L162V and 2 more PPAR-a SNPs (rs135539 A > C in intron
1 and rs4253778 G > C in intron 7) significantly influences
the age at which type 2 diabetes develops in European subjects
(n = 912). Individuals with the C-V-C haplotype (intron
1-L162V-intron 7) had an accelerated onset of diabetes
of ~10 y (P = 0.03) compared with subjects with the com-
mon A-L-G haplotype (75).

Metabolic phenotypes associated with the V227A
genetic variant

The PPAR-« variant V227A (rs1800234) that is located in
the hinge region between the DNA binding and ligand bind-
ing domains of the PPAR-a gene was identified in a Japanese
population with a frequency of 5.0% (70,86,87) and in a
Chinese population with a frequency of ~4% (88). This poly-
morphism attenuates the transcription of cytochrome P-450
4A6 (~35%-56%) and the mitochondrial 3-hydroxy-3-
methylglutaryl-CoA synthase genes in the presence of fibrate
ligands. A 2-hybrid assay revealed that the variant 227A en-
hanced the recruitment of corepressors with an ~2-fold
greater avidity than the variant 227V and also induced a
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defective release of the nuclear corepressor 1 from PPAR-«
in the presence of Wy14643 and a-linolenic acid (89).

Unlike the L162V variant, the effect of V227A seems to be
more evident in women than in men (86,88). Among women
(n = 194), the mean serum TC and TG levels in carriers of the
227A allele were lower than in noncarriers (P = 0.046 and P =
0.038, respectively), and a stronger association between this
SNP and TC concentration was observed in women youn-
ger than 45 y of age than in the total group of women (P =
0.023) (86). In addition, significant interactions between
the V227A polymorphism and alcohol drinking habits
were found for TC and TG when excluding subjects with
possible familial hypertriglyceridemia (=518 mg/dL), sug-
gesting that the PPAR-« activity in the 227A carrier group
with no alcohol drinking may be higher than in the wild-
type group, but it may become reduced in subjects who
consume alcohol (70,90).

Metabolic phenotypes associated with the intron
7 G > C genetic variant

The intron 7 polymorphism (rs4253778) located in a non-
coding region of PPAR« has a reported allelic frequency of
13.4%—18.2% in European populations (83,91,92). The 7C al-
lele is associated with a significantly earlier age at diagnosis of
increased TC, LDL cholesterol, and risk of nonfatal myocardial
infarction in white subjects with type 2 diabetes participating
in the prospective population-based Genetics of Diabetes Au-
dit and Research in Tayside, Scotland (Go-DARTS) study (N =
1810) (83). In contrast, in 358 subjects (178 with a confirmed
diagnosis of coronary artery disease and 180 without a history
of that disease), C allele carriers had significantly lower TC and
LDL cholesterol levels (93). However, the presence of the C al-
lele showed a positive association with dyslipidemia, defined as
a plasma cholesterol concentration =200 mg/dL, a TG con-
centration =180 mg/dL, or the intake of lipid-lowering drugs
in an Indian population (94). Inconsistencies in relation to
lipid parameters associated with intron 7G > C polymorphism
have been described; however, differences maybe associ-
ated with dietary habits, the proportion of ancestral com-
ponents, and the disease status of the populations studied
(72,83,85,93,95). In addition, it has speculated that this SNP
could be in allelic association with an unidentified variant in a
regulatory region of the PPAR« gene that affects its transcrip-
tional activity (91). Under this possibility, population stratifi-
cation could alter the linkage disequilibrium between these
genetic variants. Therefore, the discrepancy in results may
be explained in part by differing environmental factors, ge-
netic backgrounds, medications prescribed, and concentra-
tions of saturated and polyunsaturated fats in the diet.

Other PPAR-a variants involved in metabolic
responses

PPAR-a genetic variants also participate in developing
adaptive metabolic responses. Populations living in extreme
environments, such as Tibetans, exhibit physiological traits
adapted to a high altitude: decreased arterial oxygen content,
increased resting ventilation, lack of hypoxic pulmonary
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vasoconstriction, and reduced hemoglobin (96). PPAR-«
is involved in hypoxia signaling via upregulation of its
downstream target Pdk4, restricting entry of glycolytic in-
termediates into the tricarboxylic acid cycle (97). A recent
genome-wide scan in Tibetans identified a haplotype of
PPAR-« (consisting of 139 SNPs) that was significantly as-
sociated with a decreased hemoglobin concentration phe-
notype that is unique to this high-altitude population (P <
0.0009) (98). The putatively advantageous PPAR-a haplo-
type is correlated with increased serum FFA concentrations,
suggesting a possible decrease in the activity of fatty acid ox-
idation (P < 0.01) (99).

In healthy men who were given a single oral fat load pri-
marily composed of saturated fatty acids, lower postprandial
TG (P = 0.008) and cholesterol (P = 0.039) responses were
observed in the small triglyceride-rich lipoprotein fraction
by the noncoding variant 140+5435T > C (rs135549) (73).

Interaction between the PPAR« gene and diet

It is well-known that the variability in the interindividual
response to any type of dietary intervention and many fac-
tors including age, sex, physical activity, alcohol, smoking,
genetic factors, and others influence this response. This in-
teraction between genetic variability and the response to di-
etary factors will help to identify individuals or populations
who can benefit from specific dietary recommendations
(100). Therefore, environmental factors such as diet interact
with the genetic background to modulate metabolic param-
eters. The effect of PPAR-« polymorphisms on the relation-
ship between diet and metabolic components has been
evaluated (Fig. 2).

The interaction between the L162V polymorphism and
the consumption of saturated fat in 632 unrelated men
from Quebec explains 2.71% of the variance in waist circum-
ference (P = 0.01) (78). PUFAs can interact directly with
PPAR-e, acting on cis-regulatory elements of genes and turn-
ing mRNA synthesis on or off (101). A study of 1003 male
and 1103 female participants in the Framingham Study con-
suming their habitual diets showed a significant gene-nutrient
interaction between L162V and total PUFA intake with
plasma TG (P < 0.05) and apoC3 (P < 0.05) concentrations.
The 162V allele was associated with greater plasma concentra-
tions of TG and apoC3 in subjects consuming a diet low in
PUFAs (<6% of energy), whereas when PUFA intake was
high, carriers of the 162V allele had lower TG and apoC3, in-
dicating a significant dose-response relationship between
PUFA intake and serum TG concentrations depending on
the genotype (102). Additionally, L162V and dietary fat intake
interaction has effects on the peak particle diameter of LDL,
a risk factor for cardiovascular diseases. V162 carriers with
higher saturated fat intakes had smaller peak particle diame-
ters of LDL than those with lower intakes (103).

Furthermore, in healthy white men from Quebec, carriers
of the 162V allele had lower apoA1 concentrations after a high
PUFA diet (P = 0.02) (104). In addition, subjects that followed
a low-fat diet for 8 wk and then were supplemented daily with
5 g of fish oil for 6 wk showed a significant genotype-diet



interaction on the plasma C-reactive protein concentration
(P =0.01) (105). However, a statistically significant inter-
action was observed between the V227A polymorphism,
dietary PUFA intake, and serum HDL cholesterol in Chi-
nese women (n = 751, P = 0.049). In women who carried
the 227A allele, increasing dietary PUFA intake was associated
with lower serum HDL cholesterol concentrations (88).

The effect of PPAR-« genetic variants between PUFA in-
take and lipid measures shows differences among ethnic
groups. Differences in allele frequencies of PPAR-a SNPs
among populations and the variation of genetic structures
of the PPAR-«a locus in diverse ethnic groups may influ-
ence genotype-diet interactions. For instance, in the large
biethnic (10,134 whites and 3480 African Americans) ARIC
study, a significant interaction between the PPAR-a 3'-UTR
(untranslated region) G > A (rs6008259) and n6 fatty acid (li-
noleic acid) intake with total serum cholesterol (P = 0.03) and
LDL cholesterol concentrations (P = 0.03) in white partici-
pants was detected. Additionally, interactions by genotype be-
tween long-chain n3 fatty acid (EPA + DHA) intake with TC
(P = 0.03) and LDL cholesterol (P = 0.02) were observed in
African Americans for the 3'-UTR C > T (rs3892755)
(106). The functional consequences of both UTR alleles
are unknown.

In addition, an interaction has been demonstrated be-
tween the PPAR-y Prol2Ala (rs1801282) and PPAR-«
L162V genotypes with dietary intake of fatty acids on plasma
lipids (107,108). In the RISCK study (parallel-design, ran-
domized, controlled trial) 466 subjects were genotyped; at
baseline, there was no significant interaction between the
PPAR-a L162V and PPAR-y Prol2Ala genotypes on plasma
lipid concentrations. However, after the dietary intervention,
there was a genotype interaction that significantly influenced
LDL cholesterol (P = 0.0002), particularly the small dense
LDL proportion of total LDL (P = 0.005) (107).

PPAR-« and fenofibrate treatment response in
metabolism

Fibrates, amphipathic carboxylic acids that include gem-
fibrozil, bezafibrate, clofibrate, and fenofibrate, are synthetic
PPAR-« ligands that bind to and activate PPAR-« transcrip-
tional function, leading to the modulation of the expression
of its target genes. Fibrates are effective in reducing TG and
raising HDL cholesterol levels, which reduce cardiovascular
disease risk in people with diabetes (109). In fact, recent
studies of fibrate trials (Bezafibrate Infarction Prevention
study, Helsinki Heart Study, Veterans Affairs High-Density
Lipoprotein Cholesterol Intervention Trial, and Fenofibrate
Intervention and Event Lowering in Diabetes) support the ev-
idence that patients with insulin resistance (as occurs in dia-
betes and/or metabolic syndrome) benefit from therapy that
includes fibrates (110-112). People with type 2 diabetes have
low HDL cholesterol levels and high TG levels, both of which
are associated with a higher risk of coronary heart disease
(109,112-114). Fenofibrate modifies lipid parameters by
changing LDL particle morphology, increasing HDL choles-
terol, and reducing TGs. In addition, fenofibrate reduces

systemic inflammatory markers independent of its ef-
fects on lipid metabolism (114-116). Administration of
fenofibrate to patients with hyperlipidemia decreases plasma
concentrations of proinflammatory mediators such as IL-6,
TNF-a, interferon-v, fibrinogen, and C-reactive protein
(117).

However, there is significant interindividual variation
in response to fenofibrate (118). The association between
PPAR-a 7G > C polymorphism and the reduction in plasma
TGs in response to fenofibrate treatment (micronized fenofi-
brate, 200 mg/d for at least 3 y) was evaluated in subjects with
type 2 diabetes participating in the Diabetes Atherosclerosis
Intervention Study. The frequency of the 7G > G genotype
was higher in high TG responders (relative reduction of TG
levels >30% after treatment) than in low TG responders
(85% vs. 69%, P < 0.05) (119).

Findings in families from the GOLDN (Genetics of Lipid-
Lowering Drugs and Diet Network) study (861 participants
who received 160 mg micronized fenofibrate once daily for 3
wk) showed rare variations (minor allele frequency >1%, 13
variants) in the PPARa gene that are associated with a re-
duced treatment response. After adjusting for baseline, fast-
ing TG concentration when carrying at least 1 rare variant
was associated with a low fenofibrate response [OR = 6.46
(95% CI: 1.4, 30.8); P = 0.02] (120). Among the rare SNPs
identified, 1 variant in intron 1 lies 35 base pairs upstream
of exon 2 near 2 putatively conserved transcription factor
binding sites and located in a region where chromatin modi-
fication marks have been identified: H3K4mel and H3K4me3
(120).

In addition, in 861 subjects, Frazier-Wood et al. (121) iden-
tified PPAR« variants associated with fenofibrate response
with respect to reductions in LDL cholesterol (rs135550
and rs135549) and TGs (rs4253701) and changes in the con-
centration of plasma inflammation markers. Furthermore, the
PPAR«a gene variant rs9626730 showed an association with
fasting IL-2 [(P = 0.0002; q = 0.018); q value represents P value
corrected for the number of tests run], and 4 other SNPs
showed suggestive associations with TNF-c. This highlights
the importance of genetic variation in PPAR-« in protecting
against the effects on inflammatory markers.

In contrast, studies have not shown a significant associa-
tion between the postfenofibrate treatment level of TGs and
the L162V polymorphism in hypertriglyceridemic subjects
(122), nondiabetic hyperlipidemic subjects (123), and sub-
jects with type 2 diabetes (119).

PPAR-« in transgenerational environmental
reprogramming of metabolism

In eukaryotic cells, DNA is packaged into chromatin, and
covalent modifications on the histone proteins of the chro-
matin or on the nucleotide bases of the DNA can influence
the expression of genes. When these modifications are her-
itable from 1 cell generation to the next, such modifications
are referred to as epigenetic modifications and can bring
about lasting changes in gene expression (124-126). Epigenetic
alterations that arise around the time of conception or during

PPAR-a: and metabolic response 447



- Paternal or maternal protein restriction
FO (low protein diet)

PATERNAL PROTEIN RESTRICTION MATERNAL PROTEIN RESTRICTION

@ 1 @

CHCH; CHCH, > Hy -
i PO AP PR

PUTATIVE

ENHANCER

REGION

hyper-methylation of putative enhancer

PPAR
PROMOTOR
REGION

hypo-methylation of promoter region

¥ mRNA PPARG

Y

prone to develop obesity ?

T mRNA PPARG

T mRNA AOX

Figure 3 The effect of diet on PPAR-a expression mediated by
changes in DNA methylation. Paternal protein restriction (low-
protein diet) results in changes in cytosine methylation at a
putative enhancer for PPARa, and these changes correlate with
the downregulation of this gene in the offspring (127). In
addition, hypomethylation of the PPAR-a promoter induced by
maternal protein restriction during pregnancy is correlated with
an increase in the expression of PPARa and its target gene acyl-
CoA oxidase (129).

early embryogenesis are amplified during development by cell
division and somatic maintenance and thus affect a high pro-
portion of cells in the fully grown organism (124). One impli-
cation of epigenetic inheritance systems is that they provide a
potential mechanism by which parents could transfer infor-
mation to their offspring about the environmental conditions
that they experience (127).

These epigenetic modifications can alter the expression
of specific genes, such as PPAR-«, depending on the type
of diet consumed. For instance, in rats fed a protein-restricted
diet throughout pregnancy, PPAR-a gene methylation was
20.6% lower (P < 0.001), resulting in an 10.5-fold higher
expression in the liver of the offspring after weaning, com-
pared with dams fed a control diet (128). In a genomic
screen for transgenerational effects of paternal diet, the ex-
pression of hundreds of genes changed in the offspring of
males fed a low-protein diet with upregulation of genes
coding for lipid and cholesterol biosynthetic pathways. Ep-
igenomic profiling in the livers of offspring identified changes
in cytosine methylation at a putative enhancer for PPAR«, and
these changes correlated with the downregulation of this gene
(127). This transgenerational effect on liver metabolism was
not linked to changes in DNA methylation in the sperm of
the males under various dietary regimes.

In addition, hypomethylation of the PPARx promoter
induced in the F1 offspring generation by maternal protein
restriction during pregnancy was transmitted to the F2 off-
spring generation. As a result, hypomethylation tended (P <
0.1) to increase the expression of PPARa and its target
gene acyl-CoA oxidase in the F1 and F2 males (129) (Fig. 3).
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Thus, environmental factors such as nutritional condition
can generate long-lasting effects on gene expression associated
with a specific chromatin state; however, despite considerable
progress during recent years, many questions remain regard-
ing the mechanisms that are involved in how the environment
triggers these alterations in the epigenome.

Conclusions

Recent studies demonstrate that the role of PPAR-« is not
limited only to metabolism; however, its expression in pri-
marily metabolic tissues (brown adipose tissue, liver, and
kidney) and its role in the regulation of energetic homeosta-
sis enable its function as a controller of metabolic adaptation
under different nutritional states. For instance, PPAR-« is
involved in the homeostasis of lipids in the fasted state as
well as during the acute postprandial response to dietary fat.

Lifestyle, drugs, and dietary modifications, including
consumption of foods that can activate PPAR-a;, can affect
its metabolic responses; however, the specific response will
depend on the interactions between these factors and the
genetic variants. Therefore, environmental factors and ge-
netic background should be considered to determine the
effect of different polymorphisms on disease risk. In addition,
it is important to note that diet can have long-lasting effects on
PPAR-« gene expression, and parental exposures may induce
other epigenetic effects in addition to the current genetic and
environmental factors underlying complex diseases.

Currently, the PPAR-a genetic variants studied and asso-
ciated with clinical and biological effects are few; however,
the expanding use of next-generation DNA sequencing tech-
nologies, including chromatin immunoprecipitation followed
by DNA sequencing and global DNA methylation analysis, will
allow the identification of additional variants and epigenetic
modifications that may interact with some dietary nutrients
leading to particular metabolic responses that are associated
with the development of some diseases.
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