Table 2.
True Phylo |
QuartetS |
QuartetA |
QuartetM |
Quartet-Net |
Neighbor-Net |
Neighbor-Joining |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Split | Wei | Split | Wei | BV | Split | Wei | BV | Split | Wei | BV | Split | Wei | BV | Split | Wei | BV | Split | Wei | BV |
ab |
1 |
ab |
1.08 |
100 |
ab |
1.09 |
100 |
ab |
1.12 |
100 |
ab |
1.08 |
100 |
ab |
0.76 |
80 |
ab |
0.41 |
56 |
abc |
4 |
abc |
4 |
100 |
abc |
4 |
100 |
abc |
4 |
100 |
abc |
4 |
100 |
abc |
4 |
100 |
abc |
4 |
100 |
abd |
1 |
abd |
1.03 |
100 |
abd |
1.03 |
100 |
abd |
1.03 |
100 |
abd |
1.02 |
100 |
abd |
1.32 |
50 |
|
|
|
abcd |
4 |
abcd |
3.99 |
100 |
abcd |
3.99 |
100 |
abcd |
3.99 |
100 |
abcd |
3.99 |
100 |
abcd |
4.17 |
100 |
abcd |
3.97 |
100 |
abce |
1 |
abce |
1.01 |
100 |
abce |
1.02 |
100 |
abce |
1.01 |
100 |
abce |
1.01 |
100 |
abce |
0.86 |
46 |
|
|
|
abcg |
1 |
abcg |
1.03 |
100 |
abcg |
1.03 |
100 |
abcg |
1.03 |
100 |
abcg |
1.02 |
100 |
abcg |
0.89 |
54 |
|
|
|
aefg |
1 |
aefg |
1.02 |
100 |
aefg |
1.03 |
100 |
aefg |
1.02 |
100 |
aefg |
1.02 |
100 |
aefg |
1.39 |
50 |
|
|
|
abcde |
1 |
abcde |
1.08 |
100 |
abcde |
1.09 |
100 |
abcde |
1.12 |
100 |
abcde |
1.07 |
100 |
abcde |
0.76 |
67 |
abcde |
0.39 |
46 |
abcdg |
1 |
abcdg |
1.07 |
100 |
abcdg |
1.08 |
100 |
abcdg |
1.11 |
100 |
abcdg |
1.07 |
100 |
abcdg |
0.71 |
68 |
abcdg |
0.39 |
54 |
abceg |
2 |
abceg |
2.07 |
100 |
abceg |
2.09 |
100 |
abceg |
2.12 |
100 |
abceg |
2.07 |
100 |
abceg |
2.36 |
47 |
|
|
|
acefg |
2 |
acefg |
2.06 |
100 |
acefg |
2.07 |
100 |
acefg |
2.11 |
100 |
acefg |
2.06 |
100 |
acefg |
2.23 |
8 |
|
|
|
adefg |
1 |
adefg |
1.08 |
100 |
adefg |
1.09 |
100 |
adefg |
1.12 |
100 |
adefg |
1.07 |
100 |
adefg |
0.76 |
73 |
adefg |
0.43 |
44 |
a |
10 |
a |
10.31 |
100 |
a |
10.15 |
100 |
a |
10.17 |
100 |
a |
10.43 |
100 |
a |
10.07 |
100 |
a |
9.42 |
100 |
b |
6 |
b |
6.25 |
100 |
b |
6.11 |
100 |
b |
6.07 |
100 |
b |
6.33 |
100 |
b |
7.62 |
100 |
b |
7.15 |
100 |
c |
10 |
c |
10.26 |
100 |
c |
10.11 |
100 |
c |
10.12 |
100 |
c |
10.38 |
100 |
c |
10.05 |
100 |
c |
9.40 |
100 |
d |
4 |
d |
4.21 |
100 |
d |
4.06 |
100 |
d |
4.08 |
100 |
d |
4.26 |
100 |
d |
6.02 |
100 |
d |
6.82 |
100 |
e |
10 |
e |
10.28 |
100 |
e |
10.14 |
100 |
e |
10.16 |
100 |
e |
10.41 |
100 |
e |
10.12 |
100 |
e |
9.43 |
100 |
f |
6 |
f |
6.25 |
100 |
f |
6.11 |
100 |
f |
6.06 |
100 |
f |
6.34 |
100 |
f |
7.22 |
100 |
f |
7.11 |
100 |
g |
10 |
g |
10.31 |
100 |
g |
10.16 |
100 |
g |
10.18 |
100 |
g |
10.44 |
100 |
g |
10.14 |
100 |
g |
9.47 |
100 |
|
|
|
|
|
|
|
|
|
|
|
ac |
0.08 |
99 |
abdfg |
0.04 |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
abcdf |
0.08 |
97 |
ag |
0.04 |
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
acdeg |
0.02 |
74 |
ae |
0.03 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
acdef |
0.03 |
66 |
abdef |
0.04 |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ae |
0.04 |
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
abdeg |
0.03 |
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ag |
0.04 |
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
abdfg |
0.04 |
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
acdfg |
0.02 |
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
abdef |
0.04 |
59 |
|
|
|
|
|
|
af | 0.03 | 58 |
The column “True Phylo” denotes the underlying truth and the columns “QuartetS”, “QuartetA”, “QuartetM”, “Quartet-Net”, “Neighbor-Net”, and “Neighbor-Joining” denote the reconstructed results by each method respectively. In addition, “Wei” denotes the average weight of the corresponding split over 100 runs; “BV” denote bootstrap value.