Hindawi Publishing Corporation

Computational and Mathematical Methods in Medicine
Volume 2014, Article ID 479268, 9 pages
http://dx.doi.org/10.1155/2014/479268

Research Article

Segmentation of Choroidal Boundary in Enhanced Depth
Imaging OCTs Using a Multiresolution Texture Based Modeling

in Graph Cuts

Hajar Danesh,' Raheleh Kafieh,' Hossein Rabbani,' and Fedra Hajizadeh?

! Department of Biomedical Engineering, Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences,

Isfahan 81745, Iran

2 Noor Ophthalmology Research Center, Tehran 1968653111, Iran

Correspondence should be addressed to Hossein Rabbani; h_rabbani@med.mui.ac.ir

Received 20 August 2013; Revised 30 November 2013; Accepted 19 December 2013; Published 11 February 2014

Academic Editor: William Crum

Copyright © 2014 Hajar Danesh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The introduction of enhanced depth imaging optical coherence tomography (EDI-OCT) has provided the advantage of in vivo
cross-sectional imaging of the choroid, similar to the retina, with standard commercially available spectral domain (SD) OCT
machines. A texture-based algorithm is introduced in this paper for fully automatic segmentation of choroidal images obtained
from an EDI system of Heidelberg 3D OCT Spectralis. Dynamic programming is utilized to determine the location of the retinal
pigment epithelium (RPE). Bruch’s membrane (BM) (the blood-retina barrier which separates the RPE cells of the retina from the
choroid) can be segmented by searching for the pixels with the biggest gradient value below the RPE. Furthermore, a novel method is
proposed to segment the choroid-sclera interface (CSI), which employs the wavelet based features to construct a Gaussian mixture
model (GMM). The model is then used in a graph cut for segmentation of the choroidal boundary. The proposed algorithm is
tested on 100 EDI OCTs and is compared with manual segmentation. The results showed an unsigned error of 2.48 + 0.32 pixels for
BM extraction and 9.79 + 3.29 pixels for choroid detection. It implies significant improvement of the proposed method over other

approaches like k-means and graph cut methods.

1. Introduction

Optical coherence tomography (OCT) imaging technique
was introduced by Huang et al. in 1991 [1]. This technique is
employed for its ability in taking cross-sectional images from
microscopic structure of the living tissues. The device has a
resolution on the scale of micrometers. In this technique, a
number of A-scans or linear scans create B-scan or cross-
sectional images [2]. OCT images consist of a great amount
of data; therefore, nonautomated and visual analysis of
such a great amount of data would be troublesome for the
ophthalmologist. The main goal of automatic segmentation
is to assist the ophthalmologist in diagnosis and monitoring
of eye diseases.

Choroid is one of the structural layers located between
the sclera and the retina. This pigmented layer contains many
capillaries that supply feeding of the iris and retinal light

receptor cells [3]. Many diseases such as polypoidal choroidal
vasculopathy and choroidal tumors cause changes in the
structure of this layer [4-8]; therefore, segmentation of this
layer has great importance for ophthalmologists. In retinal
imaging using conventional OCT, wavelength of the light
source is around 800 nanometers, which is not appropriate
for imaging of choroid layer, due to signal transmission
difficulty through retinal pigment epithelium (RPE) layer and
increased depth of imaging [9]. However, increased pixel
density and high signal-to-noise ratio in SD-OCT (spectral-
domain OCT) in comparison to TD-OCT (time-domain
OCT) makes choroidal imaging possible. In SD-OCT, the
structures that are closer to “zero delay line” have higher
signals than those that are farther away. In conventional
OCT, the “zero delay line” is near the inner surface of retina;
however, in EDI-OCT, it is placed near the outer retina
and choroid, which is the key for EDI imaging. In order to
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Retinal layers

FIGURE 1: An example of EDI OCT imagining (b), compared to conventional OCT (a).

increase the quality of EDI-OCT and to reduce “speckles,”
a high number of images (usually 100 images) are averaged
through a software that provides high-quality images with
smoother border [9]. An example of this imaging method
is compared with conventional OCT in Figure 1. However,
another solution for choroidal imaging is a higher wavelength
of approximately 1060 nanometer [10, 11].

In several studies, EDI-OCT has been used to measure
the thickness of the choroid, finding its relation with diseases,
and monitoring the treatment process [12-14]. In most of
these studies, measurement of choroidal thickness is usually
accomplished by manual labeling which is a time-consuming
and tedious process. This problem is much more complicated
when the number of images is numerous. Therefore, the need
for development of an automatic segmentation algorithm on
EDI-OCT arises.

A limited number of studies have already been conducted
about automatic segmentation of these images. Kaji¢ et al.
[15-17] proposed a two-stage statistical model to detect the
choroid boundaries in the 1060 nm OCT images in healthy
and pathological eyes. This model needed extensive training
and the mean error is 13%. Tian et al. [18, 19] found the
choroidal boundary by finding the shortest path of the graph
formed by valley pixels using dynamic programming (DP).
The average of Dice’s coefficient on 45 EDI-OCT images was
90.5%. Lu et al. [20] proposed a technique to segment the
inner boundary of the choroid using a two-stage fast active
contour model. Then a real-time human-supervised auto-
mated segmentation on the outer boundary of the choroid
was applied. The reported Dice similarity coeflicient value on
30 images captured from patients diagnosed with diabetes
was 92.7%.

Many algorithms based on wavelet and graph cut are
already used in segmentation of retinal layers [21]. However,
due to heterogeneity in the choroid layers, such methods
cannot be useful in choroid segmentation. However, because
of distinct difference between texture of choroid and other
retinal layers, an algorithm based on texture classification
can be effective. With this idea, we use a combination
of graph-based methods and wavelet-domain features for
choroidal segmentation. A description of our method includ-
ing detection of Bruch’s membrane (BM) and segmentation
of choroidal-scleral interface (CSI) is provided in Section 2
and the results are presented in Section 3. The results show

the improved robustness of the method compared to other
available algorithms. Finally the conclusion and suggestions
for future works are presented in Section 4.

2. Material and Methods

The proposed choroid segmentation method is tested on
100 randomly selected two-dimensional EDI-OCT images
obtained from 10 eyes of 6 normal subjects by an EDI system
of multimodality diagnostic imaging (wavelength: 870 nm;
scan pattern: enhanced depth imaging; Spectralis HRA +
OCT; Heidelberg Engineering, Heidelberg, Germany) [22].
The study protocol was reviewed in advance by the review
board of Noor Ophthalmology Research Center. Each partic-
ipant was informed of the purpose of the study and provided
a written consent to participate. For evaluation and ruling
out any ocular pathology all patients underwent thorough
ophthalmic examinations including refraction, visual acuity,
slit lamp biomicroscopic examination, IOP measurement by
Goldmann applanation tonometer, and examination of the
fundus with plus 90-D lens. Each dataset consisted of a SLO
image and limited number of OCT scans with size of 496 x
768 (namely, for a data with 31 selected OCT slices, the whole
data size would be 496 x 768 x 31). The pixel resolutions were
3.9 pm/pixel in axial direction and 14 ym/pixel in transversal
direction.

2.1. Overview of Algorithm. In the first step, dynamic pro-
gramming (DP) was applied for boundary detection of RPE
layer. The BM is the blood-retina barrier that separates the
RPE cells of the retina from the choroid and can be segmented
by searching for the pixels with the biggest gradient value
below the RPE. In this stage, we eliminated the pixels above
this boundary form our calculations by making them equal
to zero and focused on segmentation of the lower boundary
of the choroid.

In the next step, discrete wavelet transform (DWT)—
using filter bank and descriptors—was employed to extract
appropriate features from EDI-OCT images. The extracted
features from training images were used to construct a
Gaussian mixture model (GMM). It is assumed that each
extracted descriptor using DWT has a multivariate normal
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FIGURE 2: Choroid segmentation algorithm overview.

C(x)

C(x5)

C(x")

Clxy)

(a)

FIGURE 3: Dynamic programming: (a) one step of cost calculation; (b) graph layers and nodes notation. The highlighted pixels show the

neighbors.

probability density function (pdf) and the number of Gaus-
sian distributions (K) is chosen to be 3, which represent
the area above the BM, choroid, and the area beneath the
CSI. Finally, the relevance of each data to the model is used
in creating the graph for final CSI segmentation. A block
diagram of the algorithm could be found in Figure 2.

2.2. BM Detection. We applied boundary detection algorithm
using DP to detect boundary of RPE layer which is the
brightest part in EDI OCT images. DP is a method based on
optimality [23], which seeks for the best functions in which
the variables are not simultaneously in conjunction with each
other. In simple problem of boundary tracking, the goal is
to find the best path (least expensive) between one of the
possible starting points and one of the possible ending points.

In this step, upper bound of choroid (lower bound of RPE)
can be segmented.

For boundary detection using DP, we are looking for a
dark boundary transmitted from one edge to another edge
in an image (e.g., from column 1 to M — 1 in Figure 3).
DP algorithm associates a cost to each node (brightness of
each pixel) and the partial paths are set according to the cost
(brightness) of the next neighboring node. The algorithm
starts through the columns (column 1to M — 1) and for each
node (from 1 to n), the best path with optimized (lowest) cost
is selected among three neighbor pixels of the neighboring
column (i = -1,0,1 in (1)). Therefore, a cumulative cost
(C(xZ’“)) can be made for a pixel in m + 1th column and
in the kth node, according to the cost of previously selected
nodes (1).
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FIGURE 4: (a) EDI-OCT image of the human eye. (b) Bruch’s membrane.

The following algorithm describes the DP method [24].

(1) Specify initial costs C(xil) of all nodes in the first
graph layer,i = 1,...,nand partial path costs g™ (i, k),
m=1,...,M—-1.

(2) Repeatstep3forallm=1,...,M — 1.

(3) Repeat step 4 for all nodes k = 1,...,n in the graph
layer m.
(4) Let
C (ka“) = i:n_l1i,51,1 (C(x,) +g" (i, k)). 1)

Set pointer from node x}"*' back to node x}'*, where
* denotes the optimal predecessor. Optimality is
defined as minimization of the cost function.

*

(5) Find an optimal node x;"* in the last graph layer M
and obtain an optimal path by backtracking through

the points from x;"* to x,*.
The positions of a sample node C(x}**!) and its neighbors

in the previous (mth) graph layer are shown in Figures 3(a)
and 3(b). The highlighted pixels around C(x,":“) indicate i =
-1,0,1in (1).

It should also be noted that the DP boundary detection
is conventionally looking for the darkest boundary in an
image and for our application (detection of the brightest
boundary) we should inverse the brightness values of the
image. After segmentation of RPE layer, BM can be located
by searching for the pixels with the biggest gradient below
the RPE. Figure 4 shows the result of BM segmentation for a
sample EDI-OCT image. From calculative point of view, DP
is efficient and flexible and can be considered as a powerful
tool even in presence of noise.

2.3. CSI Detection. A novel combination of algorithms is
proposed for discrimination of lower boundary of choroid
(CSI). Among many possible texture descriptors used for
segmentation of images with several textures [24], we show
the ability of wavelet texture descriptors in this work.

The algorithm can then be stated in three steps:

(1) calculate wavelet descriptors for each pixel (Sec-
tion 2.3.1);

(2) create a model of the classes using training images.
(Section 2.3.2);

(3) take a new image and segment it using the learned
model. Use graph cut segmentation to obtain spatially
coherent segmentation (Section 2.3.3).

It is assumed that extracted descriptors using DWT have
a multivariate normal pdf. This assumption can be justified
by the central limit theorem (CLT). In its classical form,
the CLT states that the mean of #n independent identically
distributed random variables, with finite mean and variance,
has a limiting distribution forn — oo that is Gaussian. As an
approximation, for a finite number of observations (n << 00),
it provides a reasonable approximation only close to the peak
of the normal distribution rather than stretching into the tails
(convergence to the limit).

In our datasets of Heidelberg 3D OCT Spectralis, each
image is calculated from the mean value of 100 images taken
at the same time. The mean process dramatically improves the
quality of the information in the images, without introducing
an alteration to the original image or adding any distracting
electronic noise [22]. Therefore, according to the “conver-
gence to the limit” theorem near the peak areas (needed for
GMM assumption), and in accord with linear characteristics
of the wavelet transform, we can assume that each extracted
descriptor using DWT has a multivariate normal pdf.

2.3.1. Wavelet Descriptors. DWT using filter bank and
descriptors is employed to extract features for each pixel of
the image. In other applications of wavelets transform for
texture analysis, most prevalent features are wavelet energy
signatures and their second-order statistics [25, 26]. In this
case, Haar wavelet filters (H(z) = (1 + z)/2 and G(z) =
(z — 1)/2) are utilized for ease of use. Filter bank stages are
repeated (multiresolution approach) for four levels. Since we
are using wavelet frame instead of the standard DWT, the
number of levels can optionally grow. But, with trial and error,
we found that, for levels higher than 4, the results did not
improve and we only faced with more complexity. The energy
of each high-pass filter at different stages of subbands and the
energy of the last stage of the low-pass filter are extracted as
image features (5 features). Extracted features and a training
image with a known segmentation (mask) are then used to
construct GMM for the image.



Computational and Mathematical Methods in Medicine

2.3.2. Gaussian Mixture Model. GMM is a parametric pdf
represented as a weighted sum of Gaussian component
distributions. The idea for clustering with GMMs is the same
as for k-means. In conventional GMM, we make an initial
guess for mean y; and covariance I}, and then try to iteratively
refine them. The number of Gaussian distributions (K) is
chosen to be 3, which represent the area above the BM,
choroid, and the area beneath CSI.

Assume that n-dimensional data constituted K Gaussian
distribution, N;, X,, ..., N, in which N, with the mean (y;)
and covariance I} is considered as follows:

Ry ~ N (g ) - (2)

Considering the weights of each relevant K as my,
(Zf:1 7. = 1), the final pdf is defined as follows:

K
P(xj) = anp (xj | Nk)’ (3)
k=1
in which

P (1 %)

! ! T (4)
= G o (2l ) G- ).
k

Since we are working on wavelet features described
in Section 2.3.1, n should be set to 5. We now assume
that actual values of the observed EDI-OCT images X =
{X,,X,,...,X;,... X} and value of pixels in each image
Xy = {xp,xp...,x)... Xy} are independent. We also
suppose that EDI images have equal size of A x B. With
defining N = M x A x B, we will have the following equations:

ﬁﬁ# 5)

plgnt (zﬂ)n/zlrkll/Z

e (‘%("j ) T (s - P‘k)) ’

where M represents the number of EDI-OCT images used for
training (10 for our case). For each training image, a mask was
made manually which classifies each image into three labels:
the area above the BM, choroid, and the area beneath CSI.

In conventional GMM, the parameters are estimated
using iterative EM algorithm to fit a mixture model to a set
of available data [24, 27].

EM algorithm is rapidly repeated and at each stage,
Gaussian expectation is estimated for each data sample, and
then Gaussian element estimation (maximization) is altered.
If y; and I are in hand as an estimation, we can calculate the
kth Gaussian probability for x;:

KT (6)
Pt Zf:l mp (xj | Ni)

in which x; (probability ratio for N, ) is granted based on sum
of x; (regardless of Gaussian production) balanced with ;.
Therefore, the following equation is defined:

LN
= NZ;ij- (7)
i

In this equation, mean pj is calculated in data series.
Similarly, one can estimate corrected values of g, and I,

N
new __ ijl pjkxj

k - >
ZﬁLij
N new new T (8)
hew _ 2jm1 Pk (% -t )(xj -1
k - N :
21 Pik

With a slight modification to conventional GMM, which
uses EM algorithm to calculate the parameters of each
Gaussian function (including mean and covariance in (8)),
we use the training step for finding the parameters of GMM.
Namely, we use training images with known segmentation
(mask) and calculate the mean and covariance of each section
(for the training data). These parameters are used for all
images in our database (i.e., there is no need to use EM
algorithm for each image separately, which speeds up the
algorithm). Then we only calculate the responsibility factor
by (6) to construct a learned model to be fed to graph cut
segmentation.

When a new test image is considered for segmentation, we
calculate wavelet descriptors for each pixel (and accordingly,
5-dimensional vectors of x; and ). The probability (p) of a
pixel belonging to a particular class of the learned model can
be obtained, afterward. The value of probability (p) is then
used in the construction of a graph cut segmentation.

2.3.3. Graph Cut Segmentation. Graph cut segmentation is
constructed based on a learned model to obtain spatially
coherent segmentation.

The direct use of optimization algorithms of minimum-
cut/maximum flow for graph partitioning was first intro-
duced by Greig et al. [28] in image processing of binary
images. Using graph optimization algorithms, a powerful
method of optimal bordering and region classification in N-
dimensional image data was proposed [29, 30].

This method starts by one or more points representing
“object” and one or more points representing “background,’
determined using interactive or automatic identification. The
overall shape of cost function C is represented as follows [31]:

C (f) = Cdata (f) + Csmooth (f) N (9)

To minimize C(f), a special class of arc-weighted graphs
Gy, = (V U {terminal nodes}, E) is employed. In addition
to the set of nodes V corresponding to pixels of the image
I (Figure 5(a)), terminal nodes (shown by 1, 2, and 3 in
Figure 5(b)) are also added to G,. These terminals are hard-
linked with the segmentation seed points (bold links in



(a)

Computational and Mathematical Methods in Medicine

FIGURE 5: Graph cut classification—example of simple classification. (a) Image with 3 classes. (b) Related graph and terminal nodes. Green
lines show n-links, while red, yellow, and blue curves represent the t-links.

Figure 5(b)) and represent the segmentation labels (1, 2, and
3).

The arcs E in G, can be classified into two categories: n-
links and t-links. The n-links connect pairs of neighboring
pixels whose costs are derived from the smoothness term
Camooth (f)- The t-links connect pixels whose costs are derived
from the data term ¢y, (f). Green lines in Figure 5(b) show
n-links, while red, yellow, and blue curves represent the t-
links. A s — t cut in G, is a set of arcs whose removal
partitions the nodes into three disjoint subsets (1, 2, and 3
in Figure 5). The cost of a cut is the total cost of arcs in
the cut, and a minimum s — ¢ cut is a cut whose cost is
minimal. The minimum s — ¢ cut problem or its dual (the
maximum flow problem) can be solved by various algorithms.
In maximum flow algorithm, maximum amount of water to
sink is delivered using directed arc graphs and the amount
of water flow through each separate arc is determined using
arc capacity or cost. The greatest amount of maximum flow
from s to t saturates a set of graph arcs. These saturated arcs
divide nodes into two separate sections of S and T, related to
minimum cuts [24, 32, 33].

Let each image pixel i, take a binary label L, € {1,2,3}.
The labeling vector L = (L, L,,..., L|;) defines the resulting
binary segmentation.

In this paper, Cg4,, (f) is the distance between each image
pixel and initial class made by GMM in Section 2.3.2. For a
test image, wavelet descriptors are calculated for each pixel
and probability (p) of a pixel belonging to a particular class
of the learned model is obtained. Then Cy,,( f) is created by

Cdata (f) == lOg (p + eps) . (10)

Cqmooth (f) is a matrix of costs which is related to adjacent
pixel values. In this work, we assigned a square matrix with
fixed values (r = 4) and with zeros on diagonal as C,, o (f)
(9). The increase in fixed term (r) would enhance adjacency

constraint constant and therefore would result in a finer
separation:

Csmooth (f) = (11)

3. Results

One hundred two-dimensional EDI-OCT images were
obtained from Heidelberg 3D OCT Spectralis and were used
in statistical analysis to produce the results. For our 100 two-
dimensional dataset, we chose 10 images to train the learned
model. Actually, we can choose any 10 or less images for
training and calculate means and covariances and weights
of GMM and there would be no considerable difference
between these parameters. This step will expedite our algo-
rithm instead of using EM algorithm for each image. The
performance of the method is reported based on its ability in
correct segmentation of the test images. For evaluation of the
proposed method, the manual segmentation of two observers
was used as the gold standard.

For validation purpose, the mean signed and unsigned
border positioning errors for each border were compared
with other algorithms such as graph cut, k-means, and DP
and the results are presented in Tables 1 and 2 for each
boundary. We implemented each of these algorithms and
tested them on our 90 two-dimensional test set. In k-means
algorithm, we selected k = 3 and applied k-means algorithm
on the image, directly. In graph cut method, we used the result
of k-means algorithm to create initial prototype for each
class and Cg,,(f) was calculated by the distance between
each image pixel to initial class made by k-means algorithm.
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TaBLE 1: Summary of mean signed border positioning errors (mean + std).

Avg. obs. versus Avg. obs. versus Avg. obs. versus Avg. obs. versus

Obs. 1 versus obs. 2

our alg. graph cut alg. k-means alg. DP alg.
BM 044+1.18 4.30+0.72 7.73 £3.35 0.44 +1.18 1.12£1.29
Choroid 5.77 £2.77 57.69 £ 6.93 -31.25+£11.51 9.65+5.41 7.65 £ 2.63
TABLE 2: Summary of mean unsigned border positioning errors (mean =+ std).
Avg. obs. versus Avg. obs. versus Avg. obs. versus Avg. obs. versus Obs. 1 versus obs. 2
our alg. graph cut alg. k-means alg. DP alg.
BM 2.48 £0.32 4.51+0.71 7.73 £3.35 2.48 +£0.32 2.64+0.98
Choroid 9.79 +3.29 65.69 + 7.53 33.73+12.23 12.48 + 5.41 8.78 +2.38
TaBLE 3: Improvement of the proposed method compared with other algorithms.
P value, our alg. versus graph cut alg. P value, our alg. versus k-means alg. P value, our alg. versus DP alg.
BM <0.001 <0.001 —
Choroid <0.001 <0.001 <0.01

Camooth (f) was calculated in the same method described in
Section 2.3.3 by small change of selecting » = 3 which could
give the best results. For DP method, the first step is similar
to the proposed method in this paper (we applied boundary
detection algorithm using dynamic programming to detect
RPE layer boundary and eliminated the pixels above this
boundary by making them equal to zero). Then we eliminated
a region beneath the RPE (7 pixels below) and applied DP to
search the image for another time. The results were based on
the whitest route available after elimination of RPE layer.

According to Tables 1 and 2, the signed border positioning
errors were 0.44 + 1.18 pixels for BM extraction and 5.77
+ 2.77 pixels for choroid segmentation, and the unsigned
border positioning errors were 2.48 + 0.32 pixels for BM
extraction and 9.79 + 3.29 pixels for choroid segmentation,
respectively. The errors between the proposed algorithm
and the reference standard were similar to those computed
between the observers. For example, the overall observer
error was 2.64 + 0.98 pixels and 8.78 + 2.38 pixels for BM
and CSI, respectively, which is comparable to the results of
the algorithm. The border positioning errors of the proposed
method showed significant improvement over other algo-
rithms, compared in both of the tables.

To show the statistically significant improvement of the
proposed method over the compared algorithms, Table 3
shows the obtained P values. The values confirm that our
results have a significant improvement. For instance, the
algorithm’s overall P value against k-means and graph cut was
less than 0.001 and against dynamic programming, it was less
than 0.01.

The pixel resolution of our datasets in axial direction
was 3.9 um/pixel. Therefore, mean signed positioning errors
for localization of BM and choroid are 1.71 and 22.50 ym,
respectively. In accord with repeatability measurements for
choroidal thickness of EDI-OCT images [I2], it can be

concluded that the positioning error has acceptable accuracy.
Figure 6 demonstrates two samples showing the performance
of the proposed method. Furthermore, Figure 7 shows the
results of segmentation using the proposed algorithm in
comparison with other methods.

The computational complexity of the proposed algorithm
is around 13 seconds in the case of using the saved parameters
for constructed models; otherwise, if the computation con-
sists of the model construction for one image, it takes around
21 seconds on a PC with Microsoft Windows XP x32 edition,
Intel core 2 Duo CPU at 3.00 GHz, 4 GB RAM.

4. Conclusion

In this paper, a new method for choroid segmentation in
EDI-OCT is introduced. In the first step, RPE boundary was
segmented using DP method and the area above RPE was
eliminated from next steps. Then, the wavelet descriptors
were calculated for each pixel of the training images and
assuming that the pdf of these descriptors are normal, their
parameters were calculated to construct a model.

When a new test image is considered for segmentation,
wavelet descriptors were calculated for each pixel and prob-
ability (p) of a pixel belonging to a particular class of the
learned model was obtained. The value of probability (p) was
then used in the construction of a graph cut segmentation.

The main limitation of this method is the need for
manual segmentation to construct the model. Despite the
fact that only a few training images are sufficient to produce
good results, the manual labeling may be troublesome and
replacing this step with an automatic method can be studied
in future works. For example, in this work we choose
several images as known data and extracted their mixture
model’s parameters for using as parameters of all new data
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FIGURE 6: Two samples showing performance of the proposed method. The green line shows the BM boundary and the red line indicates the

SCI boundary.

(d)

)

FIGURE 7: (a) EDI-OCT image, (b) graph cut result, (c) k-means result, (d) dynamic programming result, (e) our algorithm, and (f) manual

segmentation.

in the database. For each database, arbitrary sample data
can be used for constructing this mixture model (with
known parameters) and then used for all data in database.
However, the automatic version of this method can also been
considered without using a predefined mixture model and by
using EM algorithm for each image.

The new method has better accuracy than previous
methods and the algorithm is tested on a larger dataset com-
pared to older algorithms. The performance of the method
is also fast and the implementation is relatively simple in
comparison to more complicated algorithms.

As a future work, the proposed method should be
tested on EDI images taken from other modalities to prove
its robustness to the imaging technique. Furthermore, a
3D choroidal thickness map can be constructed using 3D
OCT dataset which can assist the ophthalmologist in the

diagnosis of the choroidal diseases. We also like to work
on segmentation of the blood vessels in choroidal layer and
produce a 3D vascular structure to give more information
about distribution of the vessels.
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