
way, have been discovered recently. These advances 
may be in part attributed to high-throughput systems 
biology techniques including genomic, proteomic, miR-
NA and siRNA screens, as well as through various con-
firmatory methods using quantitative polymerase chain 
reaction, microscopy, and animal models. Collectively, 
these studies have provided insights into novel drug 
targets that could boost host innate immunity or could 
potentially serve as broad-spectrum anti-virals against 
RNA respiratory viruses.
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INTRODUCTION TO SYSTEMS BIOLOGY 
AND INTERFERONS
Virus-host studies of  a wide range of  viruses have identi-
fied many host changes that occur upon infection, includ-
ing the induction of  a variety of  anti-viral pathways. For 
example, these include autophagy, apoptosis, endoplas-
mic-reticular stress, nuclear-factor kappa B (NF-kB) and 
proteasomal degradation pathways as well as the topic of  
this review, interferon signalling. Some of  these studies 
have utilized global genomic, transcriptomics and pro-
teomic technologies and have led to the characterizations 
of  “infectomes”, “interactomes” and “interferomes”.  
One of  the great advantages to systems biology tools is 
that they can provide a relatively unbiased “bottom-up” 
discovery approach such as with global transcriptome 
and siRNA screens. These have proven useful in the 
characterization of  innate immune responses. Biological 
tools for detection of  specific subsets of  the cell are also 
continually being developed, including probes for specific 
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Abstract
Interferon production is an important defence against 
viral replication and its activation is an attractive thera-
peutic target. However, it has long been known that 
viruses perpetually evolve a multitude of strategies to 
evade these host immune responses. In recent years 
there has been an explosion of information on virus-
induced alterations of the host immune response that 
have resulted from data-rich omics technologies. Un-
ravelling how these systems interact and determining 
the overall outcome of the host response to viral infec-
tion will play an important role in future treatment and 
vaccine development. In this review we focus primarily 
on the interferon pathway and its regulation as well as 
mechanisms by which respiratory RNA viruses interfere 
with its signalling capacity.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Many novel regulators of innate immune sig-
nalling pathways, such as the interferon signalling path-
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classes of  enzymes, methods to detect different protein 
post-translational and epigenetic modifications, and sub-
cellular fractionation techniques. As will be discussed be-
low, many studies have begun to characterize gene tran-
scription programs in response to viruses, have identified 
novel anti-viral proteins and regulators of  interferon pro-
duction and have experimented with novel approaches to 
treatment of  viral infection.

The study of  interferons (IFN) is one of  the oldest 
known family of  proteins with anti-viral properties. They 
are produced and released in response to pathogens, 
such as viruses and bacteria, and function in establish-
ing an anti-viral state in host cells and activating immune 
cells (for review see[1]). Type Ⅰ interferons in humans 
include IFN-α, IFN-β, IFN-e, IFN-k and IFN-ω and 
are classified as such by their ability to bind the IFNAR1-
IFNAR2 interferon receptor complex[2]. IFN-γ is a type 
Ⅱ interferon and signals through the IFNGR1-IFNGR2 
receptor complex. A third class of  interferons, type Ⅲ, 
has been proposed and would likely contain IFN-λ1, -λ2 
and -λ3, which are also known as interleukin-29 (IL-29), 
IL-28A and IL-28B, respectively, and bind IFNLR1 (also 
known as IL-28 receptor-α, IL-28Rα) and IL-10Rβ[3]. Ef-
fects of  interferons are numerous and depend on down-
stream signaling pathways. The canonical activation of  
Janus-Kinase-Signal Transduction Activator (JAK-STAT) 
signalling[4], for example, induces a variety of  interferon-
stimulated genes (ISGs) of  which some have known anti-
viral activities. Activation of  mitogen-activated protein 
kinases[5] has also been shown to have anti-viral as well 
as anti-proliferative effects. In contrast, phosphatidylino-
sitol 3-kinase activation[6] induces cell proliferation and 
increased protein synthesis (for review see[7]). Autophagy 
has also been described as an inducer of  interferon[8,9] as 
well as being induced by interferons[10,11]. The interactions 
and cross-regulation of  these pathways are complex and 
are not well defined but overall, the ability of  the host to 

mount an effective interferon response typically plays a 
significant protective role against viral pathogenicity. 

Regulation of  the interferon signalling pathway is in-
fluenced by multiple cellular regulatory systems including 
phosphorylation, ubiquitination and miRNA silencing. In 
addition, viral components such as viral proteins and viral 
RNA can also significantly impact interferon production 
by the infected host cell. Systems biology approaches 
have substantially contributed to understanding the inter-
actions of  these various regulatory networks, the overall 
outcome of  their actions, and their impact on respiratory 
virus replication. For example, it is becoming increasingly 
popular to combine various omics technologies such as 
transcriptome and proteomic screens with functional 
validation using techniques such as siRNA screens, pPCR 
and microscopy imaging.

REGULATION OF INTERFERON 
INDUCTION
Activation of viral pattern recognition receptors 
Innate immune responses are initially triggered in re-
sponse to viral infection through the recognition of  
highly conserved pathogen association molecular patterns 
(PAMPs). In terms of  RNA viruses this typically involves 
activation of  RIG-like (RLR), Toll-like (TLR) and Nod-
like receptors (NLR) in the cytoplasm and at membra-
nous surfaces such as the plasma membrane, endosomes 
and endoplasmic reticulum. A major outcome of  RLR 
and TLR activation is the production of  interferons. This 
induction, and its regulation, will be the focus of  this re-
view (summarized in Figure 1).

Coordination of antiviral responses at the mitochondrial 
outer membrane
An important event following RLR activation consists 
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Figure 1  Interferon activation. NLRX1 : 
Nucleotide-binding oligomerization domain, 
leucine rich repeat containing X1; TRIM25: 
Tripartite motif-containing 25; MITA/STING: 
Mediator of IRF3 activation/stimulator of 
interferon genes protein; TRIM11: Tripartite 
motif containing 11; RNF11: Ring finger 
protein 11; TRIP: Thyroid receptor-
interacting protein; DUBA: Deubiquitinat-
ing enzyme A; RLRs: RIG-like recep-
tors; TLRs: Toll-like receptors; IFIT3: 
Interferon-inducible transmembrane 
protein 3; MAVS: Mitochondrial anti-
viral signaling protein; NLRC5: Nod-like 
receptor C5; PCBP2: Poly(rC)-binding 
protein 2; PSMA7: Proteasome subunit 
alpha type-7; TBK1: Tank binding kinase; 
IKKe: Inhibitor of nuclear factor kappa-B 
kinase; IRFs: Interferon regulatory fac-
tors; WNT/CTNNB1: Wnt/beta-catenin.



of  the formation of  mitochondrion-centric anti-viral 
signalling complexes that regulate interferon and NF-kB 
signalling cascades and subsequent immune responses. 
The mitochondrial anti-viral signaling protein (MAVS)/
virus-induced signaling adaptor/interferon-beta pro-
moter stimulator protein 1/Cardif  protein is central to 
this process. Located at the outer mitochondrial mem-
brane, it acts as a scaffolding protein that interacts with 
a variety of  different host proteins that regulate down-
stream signalling pathways. There are many activators 
and facilitators of  MAVS-mediated signalling and some 
of  the most recently discovered ones include retinoic-
acid inducible gene Ⅰ (RIG-I), nucleotide-binding oligo-
merization domain, leucine rich repeat containing X1 
(NLRX1), MITA/Stimulator of  interferon genes pro-
tein[12], Tom70[13], interferon-induced protein with tetratri-
copeptide repeats 3 (IFIT3)[14], C1qA[15], tumor necrosis 
factor receptor associated factor (TRAF) proteins[16] and 
UXT-V1[17]. The formation of  MAVS-mediated com-
plexes can subsequently lead to the recruitment of  tank 
binding kinase (TBK1) and inhibitor of  nuclear factor 
kappa-B kinase (IKKe). However, this process is also 
carefully controlled through recruitment of  negative regu-
lators such as Ezh2[18], Mfn2[19], SEC14L1[20] and Wnt/beta-
catenin (WNT/CTNNB1) signalling[21]. MAVS has also been 
described to associate with the endoplasmic reticulum[12, 22-24], 
peroxisomes[22], and autophagosomes[25], although the 
outcome of  these events are beyond the scope of  this re-
view. For further details we direct readers to a review by 
Belgnaoui[26]. Overall, MAVS-interacting partners influ-
ence the extent of  activation or inhibition of  downstream 
interferon and NF-kB anti-viral pathways.

Activation of interferon regulatory factors
RLR and TLR activation culminate in the phosphoryla-
tion, activation and nuclear translocation of  various IRF 
transcription factors. Two well-known factors are IRF3 
and IRF7, which can be activated by kinases TBK1, 
IKKi, TAK1, and interleukin-1 receptor-associated 
kinase. This activation is carefully controlled through 
ubiquitin-mediated degradation of  TBK1, which can 
be negatively regulated by tripartite motif  containing 
11 (TRIM11)[27], ring finger protein 11 (RNF11)[28] and 
thyroid receptor-interacting protein[29]. Interaction with 
other molecules such as TRAF3, DDX3 [(DEAD (Asp-
Glu-Ala-Asp) box polypeptide 3][30] and nef-associated 
protein 1[31] can also modulate downstream signalling. In-
terestingly, a recent study using triple IRF3/IRF5/IRF7 
knockout mice[32] demonstrated a formerly unappreciated 
role of  IRF5 in interferon induction in myeloid dendritic 
cells. Genome-wide IRF1 binding sites have also been 
characterized in primary monocytes[33]. Overall, the IRF 
family members are essential mediators of  interferon sig-
nalling in response to RNA viral infection.

Other regulators of interferon production
Numerous other proteins have been described in regulat-
ing interferon production including activators Gab1[34] 

and suppressors protein tyrosine phosphatase 1[35], fork-
head box protein O3[36], and toll/interleukin-1 receptor 
domain containing adaptor molecule 2 (TRIF) degrada-
tion[37]. Several E3 ligases promote interferon signalling 
such as Pellino1[38], TRIM25[39], TRIM32[40] and Riplet[41]. 
Other E3 ligases have been characterized with a nega-
tive regulatory role in interferon production, such as 
Smurf1[42], RNF125[43], disintegrin and metalloproteinase 
domain-containing protein 15[44], TRIM38[37], TRIM11[27] 
and TRIM21[45]. Finally, several deubiquitinases appear 
to negatively regulate interferon responses, for example 
OTUB1[46] and UCHL1[47]. In addition, miRNAs are 
emerging as important regulators of  interferon-mediated 
anti-viral responses such as miR-155[48], miR-21[49,50], 
miR-146[51] and miR-466l[52].

JAK-STAT signalling
Secreted type I interferons bind to interferon receptors 
at the cell-membrane and induce the janus activated 
kinase-signal transducer and activator (JAK-STAT) 
pathway. The bound receptor activates self-catalyzed 
kinase activity and causes phosphorylation, dimerization 
and nuclear translocation of  STAT proteins. Ubiquitina-
tion has also been demonstrated to negatively regulate 
this pathway, for example, by ubiquitinating JAK1[53] and 
STAT1[54,55] as well as through binding of  suppressor 
of  cytokine signaling and protein inhibitor of  activated 
STAT proteins, which recruit E3 ligases[56]. In addition, 
mir-19a has been identified as a JAK-STAT regulator[57].

ISG-induced gene transcription
There are many different interferon transcriptional pro-
grams that depend on factors such as the receptor and 
JAK isoforms, as well as the type of  STAT dimer[58] 
that are induced. These in turn are dependent on the 
stimulus, species, cell type, and co-stimuli. Because of  
this complexity, the study of  interferon-stimulated gene 
(ISG) transcription patterns has benefited greatly from 
omics studies and has begun to provide powerful insights 
into the effects of  interferons on host transcription. The 
response to interferon-gamma, for example, has been 
a source of  recent interest and has been demonstrated 
to regulate ISGs at both the mRNA[59] and miRNA lev-
el[59,60]. A few specific miRNAs that have been identified 
as interferon regulators include miR-203[61] and miR-9[62]. 
Genome-wide DNA-binding sites for STAT1 have also 
been characterized using ChIP-Seq[63]. Many quantitative 
proteomic studies have also identified altered expression 
patterns of  interferon-induced proteins upon various 
stimuli, especially after viral infection; some of  these 
genes have also been found to be dependent upon NF-
kB signalling[64]. 

Microarrays and quantitative proteomics: Identifying 
global viral-induced alterations to the host response
A variety of  models have been used to study the induc-
tion of  innate immune pathways following virus infec-
tion, including epithelial cells, productive and abortive 
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infections in macrophages[65], dendritic cells[66] and animal 
models (see Table 1). Microarrays have been particularly 
popular for these studies due to its ability to provide a 
comprehensive analysis of  the entire cellular genome 
with relatively sensitive quantification of  gene expression 
(see[67] for review of  microarray technologies). Quan-
titative proteomic studies have also been important in 
validating these findings at the protein level and have 
been useful, for example, in the search for biomarkers. 
Many respiratory viruses, such as influenza[68-73], reovirus, 
and rhinovirus[74,75], demonstrate a robust activation of  
antiviral pathways and pro-inflammatory cytokines. Both 
genomic and proteomic analyses have demonstrated hubs 
of  gene and protein induction that are induced by key 
transcriptional factors such as IRFs, STAT proteins, NF-
kB and JNK. On the other hand, genomic profiling of  
respiratory syncytial virus[65] and pathogenic coronavirus-
es such as severe acute respiratory syndrome (SARS) and 
EMC strains have been reported to elicit weaker innate 
immune responses[76-78]. The absence of  interferon signal-
ling has also been recapitulated in several proteomic viral-
host studies[79-81].

Analyses of  microRNA expression during influenza 
have recently begun to emerge in a variety of  models 
including respiratory epithelial cells[82-85], human blood[86], 
immune cells[87-89] and lung tissue in animal models[90,91]. 
Collectively these have identified roles for miR-18a[86,92] 
and miR-223[86,93] in negative regulation of  STAT3, mir-29 
in IFN-γ1 production[89], and miR-449b as a positive 
regulator of  IFN-β production[85]. miR-23b has also been 
identified as a novel anti-viral molecule that is induced 
through RLR signaling during rhinovirus infection[94].

Strain differences: One of  the fundamental questions 
of  virology revolves around deciphering factors of  
pathogenesis. Hence, some studies have attempted to 
identify pathways that are differentially altered by patho-
genic viral strains compared to less pathogenic strains. 
Influenza has been particularly well studied in this respect 
and several host factors have been identified that are 
unique to the replication of  strains such as the patho-

genic avian H5N1, the p2009 swine flu and the 1918 
strain[69,70,108,124]. However, rather than inducing radically 
different cell responses, many different influenza strains 
have been found to activate surprisingly similar immune 
signatures (reviewed in[125]). It was, instead, the degree 
and timing of  activation and resolution[125] of  these path-
ways that was found to significantly impact the severity 
of  disease[126]. Dysregulation of  the host inflammatory 
response in particular is a major determinant of  influenza 
pathogenicity and is influenced by both viral and host 
factors[127]. Different rhinovirus strains, for example type 
14 and 1B[128,129], have also been demonstrated to have 
different abilities to attenuate interferon production and 
secretion from epithelial cells. This effect has been attrib-
uted to the inhibition of  IRF3 dimerization[74,129] but the 
viral mechanism leading to this is unknown. 

Cell type differences: Cell types have also been demon-
strated to express different basal levels of  interferon and 
hence, have different innate susceptibilities to viral infec-
tion[130,131]. For example, a direct comparison of  inter-
feron signaling between primary bronchial lung epithelial 
cells and the A549 continuous alveolar epithelial cell line 
suggested differences between either primary and cancer 
cell lines and/or epithelial cells of  different origins in the 
lung[72]. Additionally, different cell types have been shown 
to influence the degree of  interferon activation after reo-
virus infection[132].

Correlation of  interferon signaling with pathogen-
esis: Generally interferon production is considered 
protective against viral infections. It has been shown nu-
merous times that cells that produce less interferon, such 
as Vero cells, are more susceptible to viral infection and 
produce high titers of  the virus[133]. The extent of  inter-
feron inhibition by the influenza non-structural (NS)-1 
protein[134] and RSV NS1 and NS2 proteins[135,136] has also 
been extensively studied and correlates negatively with 
pathogenicity[137,138]. Similarly, models in which interferon 
signaling has been disrupted, such as by deleting IFNR, 
can produce high viral titers[139] and display increased lung 
tissue pathology[140]. Conversely, type I interferon signaling 
has also been shown to contribute to secondary bacterial 
infections[141,142]. In some studies the degree of  interferon 
induction correlated positively with the degree of  patho-
genicity.  For example, the reovirus T3D strain is consid-
ered more pathogenic the T1L strain, but the T3D strain 
was found to induce higher levels of  innate immunity 
proteins[64,117,118]. The role of  interferons in these situa-
tions is not currently understood.

Altered innate immune responses in chronic lung 
diseases: Many studies with rhinovirus have investigated 
differences in the immune response between healthy and 
non-healthy donor cells. In one study, infection of  chron-
ic obstructive pulmonary disorder (COPD) epithelial cells 
induced higher transcription levels of  cytokines, chemo-
kines, RNA helicases, interferons and increased apoptosis 
compared to infection of  healthy control cells. In addi-
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  Respiratory 
  syncytial virus

Epithelial cells [95-98] [99]
Macrophages - [65,100]
Cord blood - [101]

  Coronavirus Epithelial cells [79,80,102-104] [76-78]
Pro-monocytes -

  Influenza Macrophages [70,73,105,106] [110]
Epithelial cells [71, 72, 107] [111]

Mice [108] [112,113] 
Ferrets - [114,115] 

Macaques [109] [112,116]
  Reovirus Epithelial cells [117-120] [64]

Myocytes [119] -
Mice - [121]

  Rhinovirus Epithelial cells - [74,122,123] 
Dendritic cells [66] -

Human nasal cells - [75]

Table 1  For example references
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tion, basal levels of  several antiviral signalling pathways 
were altered in COPD patients[128]. Similarly, asthma-
derived epithelial cells also showed altered expression of  
several immunity genes both at basal levels and during 
rhinovirus infection[122,143]. Modulation of  rhinovirus-
induced host responses has also been investigated in the 
presence of  Echinacea extracts and cigarette smoke[123].

Core innate immune responses shared by multiple 
respiratory viruses: While many studies that have been 
discussed in this review have focused on identifying 
global host responses towards a single virus, a few stud-
ies have directly compared viruses from multiple families. 
For example, Smith el al[144]. identified common gene 
networks that were activated in response to seven respira-
tory viruses: influenza A virus, respiratory syncytial virus, 
rhinovirus, SARS-coronavirus, metapneumonia virus, 
coxsackievirus and cytomegalovirus[144]. Among those re-
sponses were pathways associated with a general immune 
response including interferon signalling[144]. A second 
study also identified core immune responses to four re-
spiratory viruses including apoptosis induction, endoplas-
mic reticulum stress and interferon signalling[98]. In addi-
tion several host interferon-induced proteins have been 
tested against multiple families and strains of  viruses. For 
example, IFIT1[145], Interferon-inducible transmembrane 
(IFITM) proteins[146], ISG15[147,148] and Viperin[149-152] pro-
tect against multiple virus families. 

Overall, microarrays and quantitative proteomics have 
allowed sensitive and comprehensive analyses of  the host 
genome, and have contributed substantially to under-
standing the types and kinetics of  signaling pathways that 
are activated upon viral infections. 

Identification of host-virus interactions and novel 
restriction factors
Interactomes, viral-mediated antagonism of  inter-
feron signaling: As many viruses encode interferon-an-
tagonizing proteins, there has been significant interest in 
defining their interacting partners in the host cell. Several 
studies have also been undertaken to identify host pro-
teins that recognize dsRNA and 5’pppRNA. This has, for 
example, led to the discovery and characterization of  the 
IFIT family[145] and their role anti-viral innate immunity. 

Influenza: The influenza NS1 protein is a well-known 
antagonist of  interferon signalling and is able to interfere 
with multiple anti-viral pathways. Viral-host studies have 
identified additional host proteins that interact with the 
influenza NS1 protein, using either plasmid-based expres-
sion of  NS1[153-155] or during whole virus infection[153,156]. 
Collectively, the integration of  multiple interactome stud-
ies has allowed networks such as Flu-Pol to be established 
which provide the basis for comparing differences and 
commonalities between influenza strains and cell types 
and are useful for targeted drug design.

RSV: RSV proteins NS1 and NS2 strongly inhibit 
IFN α/β by preventing the phosphorylation of  the IFN 
regulatory factor-3[157,158] as well as activation of  NLRX1 
and RIG-I[35]. Additionally, the RSV NS1 protein inter-

feres with interferon signaling through interaction with an 
elonginC-cullin2 E3 ligase complex that ubiquitinates and 
degrades STAT2[97,159]. RSV NS1 and NS2 have also been 
shown to alter miRNA expression, which can contribute 
to antagonism of  interferon and NF-kB responses[160].

Coronavirus: In studies with coronaviruses, it has 
been previously proposed that the viral deubiquitinase, 
PLpro, plays a major role in suppressing interferon-alpha 
induction. In support of  this idea, Li et al[161] recently 
demonstrated that PLpro overexpression mediated the 
down-regulation of  mitogen-activated protein kinase and 
up-regulation of  the ubiquitinase Ubiquitin ligase (UBC 
E2-25k). The open reading frame 6 protein has also been 
shown to attenuate antiviral responses by sequestering 
host nuclear impact factors including STAT1[162], vitamin 
D receptor, cyclic AMP-responsive element-binding pro-
tein 1, mothers against decapentaplegic homolog 4, p53, 
Epas Ⅰ and Oct3/4[163].

Rhinovirus: Despite induction of  interferon gene 
transcription, rhinovirus (type 14) infection can strongly 
attenuate interferon secretion from epithelial cells. This 
effect has been attributed to the inhibition of  IRF3 di-
merization[74,129] but the viral mechanism leading to this 
is unknown. In contrast, rhinovirus 1B readily stimu-
lated interferon production in bronchial smooth muscle 
cells[164], suggesting different interferon regulation be-
tween strains and/or cell types. 

Reovirus: The degree of  IFN-α/β induction after 
reovirus infection has been attributed to both host and 
viral factors but is not well understood. However, repres-
sion of  interferon signaling has been mapped to the M1, 
L2 and S2[132,165] genes. 

Knockdown/Knockout studies: siRNA technology has 
been important in testing functional effects of  interferon-
induced proteins. Both whole genome siRNA screens, 
and individual knockdown experiments have discovered 
and validated anti-viral effects of  many including interferon-
induced proteins such as the IFITM1-3 proteins[166], IRF3 
and IRF2 (Shapira), ISG15[147] and Viperin[167]. In contrast, 
several interferon pathway members have been assigned 
pro-viral functions such as MxB[168] and IFIT2[156,168].

Knock-out animals have also underscored the pro-
tective effects of  interferon signaling during respiratory 
virus infections, for example, ISG15-/-[147,169], IFNAR-/-[170], 
and MxA-/-[171]. In addition to its role in innate immunity, 
interferons have also been demonstrated to have pro-
found effects on the adaptive immune system, for exam-
ple, by priming CD+ T-cells during influenza infection[172] 
and inhibiting neurotropism of  reovirus infection[173,174]. 
Although discussion of  the effects of  interferon on 
whole host immunity is beyond the scope of  this review, 
further discussion can be found in several comprehensive 
reviews[175,176].

Collectively, these studies have provided fundamental 
insights into how cells respond to RNA virus infection 
and have highlighted the importance of  interferon in-
duction in restricting virus replication and activating an 
appropriate host immune response. Many new and unex-
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pected regulators of  interferon signalling have been dis-
covered and have demonstrated how multiple anti-viral 
networks interact such as ubiquitin-mediated regulation 
of  interferon signalling molecules. As large omics studies 
move forward, it will become possible to compare and 
draw connections between anti-viral networks that are 
induced by different viruses.

FUTURE DIRECTIONS: INTERFERON 
SIGNALING AS A BROAD-SPECTRUM 
ANTI-VIRAL PATHWAY?
Using interferons therapeutically has been most exten-
sively studied in models of  hepatitis. However, it has also 
shown some promise in protecting against a variety of  
other virus families, including the respiratory viruses dis-
cussed in this review. For example, exogenous IFN-alpha 
treatment has proven effective against influenza[177-179], 
rhinovirus[128,180] and coronavirus[181-183]. Interferons are 
also important in protecting against reovirus infec-
tions[184]. The role of  type Ⅲ interferons is generally not 
as well understood as type Ⅰ but may also afford protec-
tion against respiratory viruses[185]. 

Interferons can also be endogenously elicited through 
a variety of  RLR and TLR agonists. 5’pppRNA, for ex-
ample, is a well-known and potent RIG-I agonist and 
has been demonstrated to protect against both RNA and 
DNA viruses, including Dengue virus, influenza, hepati-
tis C and human immunodeficiency virus-1[186]. Similarly, 
TLR agonists such as dsRNA[187,188] or inosine-containing 
ssRNA[189] have been shown to protect against coronavi-
rus, influenza, and respiratory syncytial virus infections 
in mice. A commercial compound, Arbidol, has also had 
some success in neutralizing various respiratory viruses 
such as influenza, rhinovirus, adenovirus, coxsackie virus 
and RSV[190]. Additional small molecules that induce type 
I interferons have recently been identified using high-
throughput screens[191,192]. Alternatively, inhibiting antago-
nists of  interferon signaling can also boost the produc-
tion of  interferon. As discussed above, these antagonists 
can either be host molecules or viral proteins, and inhibi-
tors to each have been described[193]. Interestingly, ribavi-
rin treatment of  RSV-infected epithelial cells was shown 
to enhance interferon-stimulated gene expression[194] and 
treating RSV-infected macrophages with lovastatin was 
shown to blunt pro-inflammatory cytokine gene expres-
sion[100]. These therapies may have potential for broad-
spectrum anti-viral properties.

Despite successfully treating some viral infection with 
interferon, it has also been noted that interferon stimula-
tion can increase lung inflammation. Many gene array 
studies have also positively correlated pathogenicity or cy-
topathology with the induction of  interferon and/or in-
flammatory genes. For example, the severe pathology of  
the 1918 influenza pandemic and of  H5N1 (bird flu) vi-
ruses has been attributed to a “cytokine storm” (reviewed 
by[125]). It is therefore important to identify the mecha-

nisms behind interferon-dependent protection against 
viruses. Numerous studies, for example, have suggested 
that MxA is a major effector of  INF-α pre-treatment 
against influenza[195-197]; other newly identified interferon-
induced anti-viral proteins include IFITM proteins[146,198], 
ISG15[147] and Viperin[149-152]. It may also be useful to 
combine interferon treatment with anti-inflammatory 
compounds such as curcumin [199-201], resveratrol[202], S1P 
agonists[203,204], COX-2 inhibitors[205,206] and statins[100,207].

CONCLUSION
The study of  immune responses to viral infection has 
benefited greatly from viral proteomic studies. However, 
knowledge of  proteomic subsets is still limited and fu-
ture studies could provide more detailed insight into the 
dynamics of  protein localization, activity and regulation 
through post-translational modifications during virus in-
fection. Based on current technologies and identified net-
works, it may be beneficial to also investigate alterations 
of  the phosphoproteome, ubiquitome, and the activity 
of  proteasomes after viral infection. The development of  
broad-spectrum anti-virals has also shown some potential 
and could benefit from comparative analyses of  multiple 
viruses.
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