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A Distinct Contribution of the Frontal Eye Field to the Visual
Representation of Saccadic Targets
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The responses of neurons within posterior visual cortex are enhanced when response field (RF) stimuli are targeted with saccadic eye
movements. Although the motor-related activity within oculomotor structures seems a likely source of the enhancement, the origin of the
modulation is unknown. We tested the role of the frontal eye field (FEF) in driving presaccadic modulation in area V4 by inactivating FEF
neurons at retinotopically corresponding sites within the macaque monkey (Macaca mulatta) brain. As previously observed, FEF inac-
tivation produced profound, and spatially specific, deficits in memory-guided saccades, and increased the latency, scatter, and duration
of visually guided saccades. Despite the clear behavioral deficits, we found that rather than being eliminated or reduced by FEF inactiva-
tion, presaccadic enhancement of V4 activity was increased. FEF inactivation nonetheless diminished the stimulus discriminability of V4
visual responses both during fixation and in the presaccadic period. Thus, without input from the FEF, V4 neurons signaled more about
the direction of saccades and less about the features of the saccadic target. In addition, FEF inactivation significantly increased the
suppressive effects of non-RF stimuli on V4 activity. These results reveal multiple sources of presaccadic modulation in V4 and suggest
that the FEF contributes uniquely to the presaccadic specification of visual target features.
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Introduction
We shift our gaze to an object of interest �150,000 times each
day. It is known that the selection of visual targets for saccadic eye
movements is accompanied by perceptual benefits for stimuli
near the goal of impending saccades (Deubel and Schneider,
1996). Simultaneous with this perceptual benefit is an enhance-
ment in the representation of the target throughout the visual
system. Originally observed in the superior colliculus (SC), many
neurons exhibit enhanced visual responses when response field
(RF) stimuli are selected as saccadic targets (Mohler and Wurtz,
1976). A similar presaccadic enhancement is also observed in
other saccade-related areas such as the frontal eye field (FEF) and
the lateral intraparietal area (LIP) even among neurons without
pure motor properties (Wurtz and Mohler, 1976; Colby et al.,
1996). Within posterior visual cortex, presaccadic enhancement
of visual responses has been reported for neurons within infero-
temporal (IT) cortex (Chelazzi et al., 1993), area MT (Buracas
and Albright, 2009), and particularly within area V4 (Fischer and
Boch, 1981a; Moore et al., 1998). In V4, presaccadic enhance-
ment of visual activity is accompanied by an increase in orienta-

tion discriminability (Moore and Chang, 2009) and the magnitude
of presaccadic activity predicts the visual guidance of corre-
sponding movements (Moore, 1999). Collectively, the above ev-
idence suggests that the preparation of visually guided saccades
normally involves a corresponding specification of the target’s
visual properties within visual cortex.

Although it is reasonable to hypothesize that presaccadic modu-
lation within posterior visual cortex originates from motor-related
activity within oculomotor structures, this hypothesis has not been
tested. Among the most likely of these candidate sources is the
FEF, as it is known that neurons in this area modulate signals
within visual cortex during stable gaze (Moore and Armstrong,
2003; Noudoost and Moore, 2011a). FEF neurons show a mix of
visual and motor response properties (Bruce and Goldberg,
1985), and their activity reflects the location of covert attention
(Armstrong et al., 2009). FEF neurons are reciprocally connected
with multiple extrastriate visual areas, including V4 (Stanton et
al., 1995), where FEF projects predominantly excitatory inputs
directly onto pyramidal neurons (Anderson et al., 2011). To test
the contribution of the FEF to presaccadic modulation in visual
cortex, we measured the effects of FEF inactivation on V4 activity
during visually guided saccades. We found that rather than being
eliminated or reduced by FEF inactivation, presaccadic enhance-
ment in V4 increased substantially. However, in addition to in-
creasing surround suppression, FEF inactivation decreased
stimulus discriminability, both during fixation and in the pre-
saccadic period. Thus, the inactivation of the FEF exerted op-
posing effects on presaccadic enhancement and presaccadic
discriminability. These results demonstrate that the FEF con-
tributes uniquely to the presaccadic specification of visual tar-
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get features, and reveal multiple sources of presaccadic
modulation in V4.

Materials and Methods
General and surgical procedures. Three male rhesus monkeys (Macaca
mulatta; Monkeys HM, SP, BN) were used in these experiments. Mon-
keys BN and HM were used for the memory-guided saccade experiments.
V4 neuronal responses and visually guided behavior were studied before
and after FEF inactivation in Monkeys BN and SP (24 and 9 V4 neurons,
respectively). All experimental procedures were in accordance with Na-
tional Institutes of Health Guide for the Care and Use of Laboratory Ani-
mals, the Society for Neuroscience Guidelines and Policies, and Stanford
University Animal Care and Use Committee. Each animal was surgically
implanted with a head post, a scleral eye coil, and two recording cham-
bers. Two craniotomies were performed on each animal, allowing access
to dorsal V4, on the prelunate gyrus, and FEF, on the anterior bank of the
arcuate sulcus. Eye position monitoring was performed via the scleral
search coil and was digitized at 500 Hz (CNC Engineering). Eye moni-
toring, stimulus presentation, data acquisition, and behavioral monitor-
ing were controlled by the CORTEX system. Visual stimuli presented to
V4 RFs were 1.2�1.9° � 0.2�0.4° bar stimuli appearing at four possible
orientations (0, 45, 90, and 135°). All stimuli were presented on a 29° �
39° (22�) colorimetrically calibrated CRT monitor (Mitsubishi Diamond
Pro 2070SB-BK) with medium short persistence phosphors (refresh rate
77 Hz).

Single-neuron recording in V4. Single-neuron recordings in awake
monkeys were made through a surgically implanted cylindrical titanium
chamber (20 mm diameter) overlaying the prelunate gyrus. Electrodes
were lowered into the cortex using a hydraulic microdrive (Narashige).
Activity was recorded extracellularly with varnish-coated tungsten mi-
croelectrodes (FHC) of 0.2–1.0 M� impedance (measured at 1 kHz).
Extracellular waveforms were digitized and classified as single neurons
using both template matching and window-discrimination techniques
(FHC, Plexon). The RFs of V4 neurons were mapped during a fixation
task in which oriented bars were swept across the display to identify the
area of visual space from which the recorded neurons responded; RF
boundaries were marked by hand based on the audible discharge of V4
neurons in response to the visual stimulus (Hubel and Wiesel, 1968;
Haenny and Schiller, 1988). Bar stimuli evoking the largest response were
defined as the “preferred” orientation and orthogonal orientations were
defined as the “nonpreferred.”

Recording, microstimulation, and inactivation of the FEF. Electrophys-
iological recordings, electrical microstimulation and pharmacological
inactivation of the FEF were each performed using a custom-made mi-
croinjectrode (Noudoost and Moore, 2011b). Electrical microstimula-
tion with the microinjectrode consisted of a 100 ms train of biphasic
current pulses (0.25 ms each phase, 200 Hz) delivered with a Grass stim-
ulator (S88) and two Grass stimulation isolation units (PSIU-6). Current
amplitude was measured via the voltage drop across a 1 k� resistor in
series with the return lead of the current source. All stimulation was
delivered via varnish-coated tungsten microelectrodes of 0.2–1.0 M�
impedance (measured at 1 kHz) contained within the microinjectrode.
In each monkey, the FEF was first localized on the basis of its surrounding
physiological and anatomical landmarks and the ability to evoke fixed-
vector saccadic eye movements with stimulation at currents of �50 �A.

Using the custom-designed microinjection system, we infused 0.5–1.0
�l of muscimol at sites within the FEF over a period of 10 –15 min. Our
system consisted of a 32-gauge (236 �m outer diameter) stainless steel
cannula containing a 75 �m, commercially available epoxy-coated, tung-
sten microelectrode (FHC). The microelectrode was held in place inside
the cannula via a cilux T-junction. The electrode was passed through the
center of the T-junction and through a PEEK ferrule where it was sol-
dered to a connector for recording. The cannula was attached to a differ-
ent opening of the T-junction via another ferrule. The drug line,
composed of 363 �m (outer diameter) polyimide-coated glass tubing
(Polymicro Technologies), was attached through a ferrule to the final
T-junction opening. The polyimide tubing was then connected to a man-
ual injection drive (Stoelting) and a gas-tight microsyringe (Hamilton)
via a series of high precision fluidic valves attached to a fluidic “circuit”

board. The T-junctions, ferrules, fluid valves, and fluidic circuit board
were all obtained from LabSmith. Because the inner diameters of the
tubing and the cannula were equal (150 �m), drug flow was steady with
a minimum of clogging or hysteresis. To measure fluid flow into the
brain, we drew up into the fluid path an oil-dye-oil marker, whose move-
ment inside the polyimide tubing could be observed with the naked eye.
The oil in the marker was of low viscosity (�1 centistokes) and also
served to separate the water-soluble drug from the water-soluble dye (a
nontoxic food coloring). Within the 150 �m tubing, a 1 cm movement of
the marker indicated a �170 nl movement of the drug out of the cannula.
Because we could measure movements of the dye marker by as little as 1
mm, the volume resolution of the microinfusion system was �17 nl. The
inclusion of the tungsten microelectrode within the center of the drug
cannula further allowed us to record the activity of single neurons near
the center of the delivered drug volume using conventional recording
and filtering techniques. Moreover, we could also use standard electrical
microstimulation to confirm at each drug site that saccades could be
elicited with low currents, and thus that each microinfusion site was
within the FEF. The microelectrode typically extended beyond the bev-
eled tip of the cannula by 50 –500 �m. To keep the microelectrode from
being damaged when inserting the cannula into the brain, the ferrule
connecting it to the T-junction could be rotated three turns counter-
clockwise, thereby retracting the microelectrode �1 mm back into the
cannula. Once the cannula was well within the brain, the ferrule could be
slowly rotated clockwise and tightened thus positioning the electrode at a
known distance beyond the cannula opening. To suppress FEF neuronal
activity, we used muscimol, a potent and selective GABAa agonist that
has been widely used in studies involving in vivo inactivation of local
neuronal activity, particularly in behaving monkey studies (Sommer and
Tehovnik, 1997; Dias and Segraves, 1999; Wardak et al., 2002). Similar to
previous studies, muscimol was dissolved in physiological saline at a
concentration of 5 mg/ml (pH, 6.5–7.0). Before delivery of the drug, the
entire fluid delivery system was soaked and thoroughly flushed with cold
sterilant (chlorhexidine diacetate, Nolvasan), flushed with sterile water
and then allowed to dry. Based on pilot experiments on the time course of
the inactivation effects, behavioral testing and electrophysiological re-
cordings began at least 45 min after completion of muscimol infusion;
the effects of muscimol infusion lasted for at least 4 h (and potentially up
to 24 h) following infusion, with all data collection being completed well
within the 4 h window. To ensure that there were no lingering drug
effects from the previous experimental session, inactivation experiments
were always separated from one another by at least 48 h, although in
previous studies 24 h has been sufficient for the oculomotor effects of
muscimol injection into the FEF to wear off (Sommer and Tehovnik,
1997; Dias and Segraves, 1999). After 48 h, no lingering effects of the
previous muscimol infusion were observed, and no permanent deficits
developed over the series of experiments. Saline infusion sessions were
interspersed with inactivation experiments.

Behavioral effects of muscimol infusion in FEF. The effects of muscimol
infusion in FEF on visually guided saccade behavior are shown in Figure
1. As shown for a sample experiment in Figure 1A, FEF inactivation
increased the scatter of the landing points of saccades, especially for
saccades toward the area of space represented at the infusion site (here-
after referred to as the overlapping location). The saccade scatter (in units
of degrees visual angle, dva) was defined as the average distance between
pairs of saccade landing points quantified according to the following
formula

Saccade Scatter � �2/n*�n � 1		*�i
1

n�1�j
i�1

n ��Xi � Xj	
2 � �Yi � Yj	

2.

Where X and Y are the coordinates (in dva) of the landing points of n
number of saccades. The average scatter was 0.72 � 0.42 dva for saccades
toward the overlapping location before inactivation; after FEF inactiva-
tion, the average scatter increased to 1.02 � 0.65 dva ( p � 10 �3). For this
particular experiment the scatter also increased for saccades to the non-
overlapping location (away condition) within the same hemifield (be-
fore 
 0.39 � 0.23 dva; after 
 0.56 � 0.32 dva, p � 10 �3; note that the
scatter values are smaller for the away conditions, even before muscimol
infusion, because the target in the away conditions was a small circular
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dot rather than the oriented bar presented as the saccade target in the
toward condition. The scatter was not significantly different for the away
condition when the target appeared in the opposite hemifield (before 

0.47 � 0.29 dva; after 
 0.38 � 0.31 dva; p 
 0.085). The latency of
saccades toward the affected part of space was significantly longer after
inactivation (Fig. 1B; before 
 195 � 20 ms, after 
 264 � 19 ms, p �
10 �3). However, the reaction time in the away conditions was not af-
fected by FEF inactivation, either for saccades to the same or the opposite
hemifield (same hemifield, before 
 170 � 9 ms after 
 176 � 13 ms;
p 
 0.107; opposite hemifield, before 
 18 � 15 ms, after 
 179 � 10 ms;
p 
 0.116). The same pattern was observed for saccade duration (Fig.
1C). Saccade duration increased significantly following inactivation only
for the toward condition (toward: before 
 35 � 3 ms, after 
 41 � 4 ms,
p � 10 �3; away-same hemifield: before 
 44 � 7 ms, after 
 47 � 7 ms,
p 
 0.150; away-opposite hemifield: before 
 38 � 12 ms, after 
 45 �
17 ms, p 
 0.115).

Across 19 experimental sessions of FEF inactivation, the same pattern
of increased latency, duration, and scatter for saccades toward the RF is
observed. The latency of saccades was affected only in the toward condi-
tion (toward condition: before 
 213 � 18 ms, after 
 233 � 28 ms, p 

0.024; away-same hemifield: before 
 189 � 31 ms, after 
 196 � 33 ms,
p 
 0.114; away-opposite hemifield: before 
 192 � 22 ms, after 

189 � 25 ms, p 
 0.126; Fig. 1D). Saccade duration increased signifi-

cantly for saccades toward the affected part of space or to targets within
the same hemifield, but not for saccades to the opposite hemifield (to-
ward: before 
 35 � 6 ms, after 
 40 � 5 ms, p � 10 �3; away-same
hemifield: before 
 41 � 6 ms, after 
 43 � 5 ms, p 
 0.033; away-
opposite hemifield: before 
 43 � 11 ms, after 
 42 � 8 ms, p 
 0.901;
Fig. 1E). Average scatter for the toward condition was 0.75 � 0.12° before
inactivation, which increased to 0.90 � 0.20° ( p � 10 �3; Fig. 1F ). There
was also a trend toward increased scatter in the away condition when the
target stimulus appeared within the same hemifield as the inactivation
site (before 
 0.47 � 0.20°, after 
 0.54 � 0.19°, p 
 0.052). Endpoint
scatter was not significantly different before versus after inactivation for
saccades to targets in the opposite hemifield (before 
 0.49 � 0.12°,
after 
 0.44 � 0.13°, p 
 0.147).

We also measured the monkeys’ ability to remember the location of
targets across variable delays in a staircase-based, memory-guided sac-
cade task (Fig. 2A). In the memory guided saccade task, a cue appears
briefly in one of several locations: the monkey must remember the cue
location throughout a variable delay and make saccade to the remem-
bered location upon the removal of the fixation point. The delay duration
was adjusted via a staircase paradigm, in which the delay for each trial was
incremented up or down based on performance in the previous trial at
that location; a correct trial resulted in a juice reward and an increase in
the delay at that location, and incorrect trial gave no reward and a de-
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Figure 1. Effects of FEF inactivation on visually guided saccades. A, Landing points of saccades in the toward and away conditions before (green) and after FEF inactivation (blue) for a sample
experiment. Note that the saccade target is an oriented bar in the toward condition and a circular target in the away conditions. Small bar plots show the mean � SE of saccade scatter for each
condition. B, C, Distributions of saccade latencies and durations before and after inactivation for the sample experiment in A. The arrows indicate the median of each distribution. D–F, Mean and SEM
of changes in latency, duration and scatter of saccades after FEF inactivation in toward and away conditions across 19 experimental sessions.*p � 0.05; **p � 0.01; n.s. 
 p 
 0.05.
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crease in the delay. Thus, the monkey had to correctly complete trials to
receive any reward. As shown in Figure 2B, the monkey was able to
complete memory-guided saccades with delays as long as 2–3 s at most
locations. For example, after 20 trials at the rightward location the mon-
key was completing trials with a delay of 2 s. However, after inactivation,
for the same number of trials, the staircase procedure resulted in a 0 s
delay; a 100% drop in the final delay duration. As shown in the polar plot
in Figure 2B, this drop is maximal for the horizontal location and be-
comes gradually smaller for flanking locations. This spatial specificity of
the infusion-induced deficit in memory guided saccade performance was
observed across 24 inactivation experiments in two monkeys (Fig. 2C).
The most severely affected location showed a significant drop in delay
duration (percentage dropinside scotoma 
 77 � 26%, p � 10 �3), but
performance was not significantly impaired at locations 90 –180° away
(percentage dropoutside scotoma 
 11 � 42%, p 
 0.214; inside vs outside
scotoma comparison, p � 10 �3). Thus, the inactivation of the FEF led to
deficit in the memory guided saccade task that was concentrated in a
localized portion of the contralateral visual field.

Analyses of V4 activity. All data analysis was performed in MATLAB
(MathWorks). Only completed trials were included in the analysis. Sum-
marized below are the several ways in which V4 activity was quantified.

Time windows. FEF and V4 presaccadic responses were calculated in a
125 ms window starting 100 ms before saccade onset; this window was
chosen based on previous studies of presaccadic activity in extrastriate
cortex (Fischer and Boch, 1981a,b; Moore et al., 1998). The fixation
portion of the response was defined as the response in a 1000 ms window
starting 40 ms after stimulus onset; however, for comparisons between
activity during the presaccadic period and the fixation period, the fixa-
tion period is defined as a 125 ms window right before the go cue (fixa-
tion spot offset). The tonic activity was defined within a 500 ms window

beginning 300 ms after stimulus onset. Baseline activity was defined as
the activity during 0 –300 ms before stimulus onset.

Response normalization. The responses of each V4 neuron to RF stim-
uli were converted to normalized values for analyses. Specifically, each
neuron’s response to each stimulus was divided by its grand average
response to both preferred and nonpreferred stimuli before and after
drug infusion. For FEF recordings, neuronal responses recorded before
and after infusion were treated as independent samples (due to potential
volume effects of the infusion), and normalized separately. Normalized
values ranged between 0 and 1 according to following formula:

Normalized response � �response

� min�response		/�max�response	 � min�response		.

Where min and max responses are the peak and trough of the responses
during the baseline and fixation periods. Normalized responses are indi-
cated by NU (normalized units) in the text.

Discriminability. A receiver operating characteristic (ROC) analysis
was performed on the distributions of firing rates of V4 neurons during
the RF presentation of the most effective oriented bar stimulus and an
orthogonal bar during a given block of trials. The areas under ROC
curves were used as an index of stimulus selectivity and were calculated as
in previous studies (Britten et al., 1992), using the presaccadic and fixa-
tion time windows defined above.

Selectivity index. As in previous studies (Monier et al., 2003), a selec-
tivity index was computed as the difference in response to the preferred
and the response to the nonpreferred stimulus divided by their sum,
during the presaccadic and fixation windows defined above. For the
analysis described in Figure 9, in which correlations between preferred
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and nonpreferred response differences and changes in average presacca-
dic activity were computed for each neuron separately, the selectivity
index was computed only as preferred–nonpreferred (to avoid introduc-
ing a false correlation by normalizing by a value, then calculating a cor-
relation with that same value).

The surround suppression index (SSI) was computed as (presur-
round � postsurround)/(presurround � postsurround) using the firing
rate measured during two 65 ms time windows, one shortly before (pres-
urround) and one after (postsurround) surround onset. The presur-
round window began 100 ms before surround onset, and the postsurround
window began 50 ms after the surround onset.

Subsampling analysis. For the analysis in Figure 9, the change in aver-
age response and stimulus selectivity was compared between the final 125
ms of the fixation period and a 125 ms presaccadic window aligned to
saccade onset (�100 to �25 ms). We were interested in determining the
nature of the relationship between the change in average response,
defined as (preferred � nonpreferred)/2, and selectivity, defined as
(preferred-nonpreferred), for each neuron. To understand this relation-
ship, we used the bootstrapping technique (Efron and Tibshirani, 1993).
In this approach, each subsample contains the same number of trials as
the full dataset (which varied in size from day to day, with a minimum of
20 trials/condition), constructed by random sampling with replacement
from the original dataset; therefore, one trial can be used more than once
in each subsample whereas another trial is omitted. One-thousand sub-
samples were used to calculate the correlation value for each neuron.
Notice that the reason the correlation cannot be performed across single
trials is that quantification of selectivity requires at least two trials. In
addition to the subsampling approach reported in Figure 9 A, B, we ex-
amined the correlation between the average response and stimulus selec-
tivity on individual pairs of trials (Fig. 9C). To do so, we paired each
preferred stimulus trial with a nonpreferred stimulus trial. Pairings were
based on temporal proximity of the two trials; i.e., each preferred trial
was paired with the nonpreferred trial that was closest in time and not
already assigned to a pair. We then calculated the average response and
stimulus selectivity for each pair of trials, and the correlation between
these two measures was determined across pairs. This trial-pairing
method reproduced all the main results of the subsampling method.

Statistical tests. A criterion level of p � 0.05 was used in all statistical
analysis. P � 0.001 are reported as p � 10 �3. We used Wilcoxon signed-
rank tests to evaluate the statistical significance of differences between
two paired populations or whether a single population’s median differed
from zero. Other tests used throughout the text are mentioned in each
instance. Correlations were measured using the Pearson correlation
method.

Behavioral tasks. During each recording experiment, monkeys per-
formed a visually guided, delayed saccade task (Fig. 3A). After fixating a
0.5 dva fixation spot within a 1.0 dva diameter window, an oriented bar
appeared within the RF of the V4 neuron being recorded. Following a 1 s
delay, monkeys made saccades to visual stimuli (targets), presented ei-

ther within the RF of V4 neuron (“saccade toward”, 50% of trials) or to a
distant non-RF target (“saccade away,” 50% of trials); the two conditions
were randomly interleaved so that the monkey could not predict the
saccade location until after the removal of the fixation spot. In addition,
the effects of FEF inactivation on behavior was assessed with a memory
guided saccade task, in which monkeys had to remember the location of
a visual target, and then make saccades to its location after a variable
delay (Fig. 2A).

In 15 of 19 inactivation experiments, we briefly presented (13 ms) a
surround stimulus (1 � 1 dva white circle) at a random time (200 – 800
ms after RF stimulus onset). The surround stimulus was placed at a
random location, always at least 6 dva away from the RF stimulus, but
otherwise anywhere on the screen.

Results
Effects of muscimol on FEF neural activity
At 19 sites within the FEF of two monkeys, we infused 0.5–1.0 �l
of the GABAa agonist muscimol (5 mg/ml). At the beginning of
each experiment, before drug infusion, we first confirmed the
location of the microinjectrode within the FEF by evoking sac-
cades with low-current electrical microstimulation (see Materials
and Methods). The endpoints of the evoked saccadic vectors also
defined the part of retinotopic space represented by neurons at
the stimulation site (Fig. 3B). Next, we identified area V4 neurons
with RFs that corresponded retinotopically to the site of FEF
inactivation; we recorded these V4 neurons before and after FEF
inactivation.

Although our primary focus was on the effects of FEF inacti-
vation on area V4 neuronal responses, we occasionally recorded
FEF neuronal responses after the local infusion of muscimol.
Figure 4A shows the multiunit activity of neurons at a sample FEF
site before and after the infusion of 0.5 �l of muscimol. Following
the infusion, we observed a significant decline in baseline firing
rate (mean � SEM baseline response: control 
 40 � 1 spikes/s;
muscimol 
 15 � 1 spikes/s) and a reduction in visual and pre-
saccadic responses (visual response: control 
 63 � 1 spikes/s;
muscimol 
 17 � 0.5 spikes/s; presaccadic response in toward
condition: control 
 103 � 5 spikes/s; muscimol 
 22 � 2
spikes/s; presaccadic response in away condition: control 
 91 �
6 spikes/s; muscimol 
 26 � 3 spikes/s). We did not assume that
the postinfusion responses were from the same neurons recorded
before inactivation, given the likely disruption in recording sta-
bility with volume injections. Instead, we treated the preinactiva-
tion and postinactivation data as different (unpaired) neuronal
populations, and normalized their activity separately (see Mate-
rials and Methods). Nonetheless, we could observe that with a
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small number of residually responsive FEF neurons (n 
 7), the
inactivation reduced the strength of tonic visual activity relative
to the initial visual response (n 
 7; �response 
 �0.08 � 0.04
NU, p 
 0.006; Wilcoxon rank sum test; Fig. 4B). More impor-
tantly, muscimol dramatically reduced presaccadic responses
(relative to the visual response) for saccades made to RF targets in
this sample of neurons (�presaccadic response 
 �0.57 � 0.15
NU, p 
 0.001; Fig. 4C). Presaccadic responses appeared un-
changed for saccades made to non-RF locations (�presaccadic
response 
 �0.21 � 0.13 NU, p 
 0.216; Fig. 4D). Local infusion
of saline neither changed the tonic visual activity (�response 

0.01 � 0.04 NU, p 
 0.639; n 
 4) nor the presaccadic responses
for saccades made toward (�presaccadic response 
 0.03 � 0.13
NU, p 
 0.875) or away from RF targets (�presaccadic re-
sponse 
 0.01 � 0.09 NU, p 
 0.882). Thus, we observed direct
evidence that muscimol strongly suppressed presaccadic activity
within the FEF.

Effects of FEF inactivation on V4 neuronal responses
Contrary to our expectations, we found that the magnitude of
presaccadic activity in V4 increased following FEF inactivation.
Although the magnitude of presaccadic activity in V4 increased,
orientation selectivity of V4 responses during this period de-
creased. These effects are illustrated in the responses of an exam-
ple V4 neuron with an RF overlapping that of the FEF site (Fig. 5).
The responses of this neuron are shown before and after infusion

(Fig. 5A,B, respectively), aligned to the onset of the visual stim-
ulus (left), and to the time of the saccade (right), for preferred
(black, orange), and nonpreferred stimuli (gray, peach; Fig.
5A,B, respectively). Only trials in the saccade toward condition
are included. This V4 neuron displayed significant orientation
selectivity: a 45° oriented bar evoked 25.07 � 1.13 spikes/s in this
neuron whereas a 135° stimulus evoked 13.87 � 0.63 spikes/s
(preferred vs nonpreferred orienation; Wilcoxon rank sum test;
p � 10�3). The neuron also exhibited enhanced activity during
the presaccadic period relative to the tonic visual response (for
saccades into the RF), for both preferred and nonpreferred stim-
uli (presaccadic enhancementpreferred 
 6.72 � 2.56 spikes/s, p 

0.028; presaccadic enhancementnonpreferred 
 5.66 � 1.67
spikes/s, p 
 0.006). FEF inactivation resulted in an increase in
this presaccadic enhancement for both preferred and nonpre-
ferred stimuli (�presaccadic enhancementpreferred 
 2.62
spikes/s, p 
 0.01; �presaccadic enhancementnonpreferred 
 3.12
spikes/s, p 
 0.006; Fig. 5A,B). However, following FEF inacti-
vation the orientation selectivity of the cell decreased during the
same presaccadic period: the difference between preferred and
nonpreffered responses was reduced after FEF inactivation
[�(preferred � nonpreffered) 
 �3.03 � 1.01; Wilcoxon rank
sum test; p 
 0.02]. The difference between responses to pre-
ferred and nonpreferred stimuli was also reduced during the vi-
sual period [�(preferred � nonpreffered) 
 �3.61 � 0.82,
Wilcoxon rank sum test; p 
 0.03]; however, average visual ac-
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tivity during the visual period (mean response to preferred and
nonpreferred stimuli) was not altered by FEF inactivation (�
average activity 
 �1.61 � 0.82; Wilcoxon rank sum test; p 

0.32). Thus, for the example V4 neuron presented, FEF inactiva-
tion increased presaccadic enhancement but reduced orientation
selectivity during the visual and presaccadic periods.

Similar effects were observed when we tested the effects of FEF
inactivation on the responses of 33 V4 neurons with RFs overlap-
ping those of FEF neurons at the inactivation site (Fig. 6A). The
centers of the V4 and FEF RFs were separated by an average of
1.11 � 0.11 dva, which is only a fraction of RF diameter in these
two areas (Wurtz and Mohler, 1976; Gattass et al., 1988). Baseline
activity of V4 neurons was not altered by inactivation of FEF sites
with corresponding RFs. Mean baseline activity was 0.28 � 0.04
NU before FEF inactivation, and 0.28 � 0.03 NU after inactiva-
tion (baseline activity, control vs inactivation; p 
 0.52). We
defined the presaccadic enhancement as the change in neuronal
activity before saccade onset, comparing firing rates during the
presaccadic period with those during the fixation period, and
quantified it using ROC analysis. Before FEF inactivation, V4
presaccadic enhancement was significantly 
0.5 for saccades to
stimuli in the RF (toward condition), reflecting the presaccadic
increase in firing rate (n 
 33; AROCtoward,control 
 0.56 � 0.01,
p � 10�3; Fig. 6B). In contrast, saccades to stimuli outside of the
RF (away condition) resulted in a reduction of V4 activity (ARO-
Caway,control 
 0.48 � 0.01, p � 10�3). Thus, as previously shown,
V4 neurons signal the direction of impending saccades (Fischer
and Boch, 1981b; Moore et al., 1998). We also quantified the
ability of V4 neurons to signal impending saccade direction using

the ROC analysis (toward vs away; AROCcontrol 
 0.58 � 0.01,
p � 10�3).

Our hypothesis was that inactivation of the FEF would eliminate
or reduce presaccadic enhancement in area V4. However, contrary
to our prediction, we found that FEF inactivation instead increased
the magnitude of presaccadic enhancement (Fig. 6C). We observed
greater presaccadic enhancement in the population of recorded V4
neurons following the FEF inactivation compared with the control
data (�AROCtoward 
 0.05 � 0.01, p � 10�3; Fig. 6D). In addition,
we observed a trend toward greater suppression of presaccadic re-
sponses in the away condition (�AROCaway 
 �0.016 � 0.01, p 

0.09; Fig. 6E). Both effects contributed to an overall increase in the
degree to which V4 neurons signaled the direction of impending
saccades (�AROCtoward vs away 
 0.07 � 0.01, p � 10�3).

Despite the increase in presaccadic enhancement following
FEF inactivation, we observed no change in the average tonic
visual response. The average visual response of the population of
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V4 neurons was 0.99 � 0.19 NU before and 1.01 � 0.29 NU after
FEF inactivation (n 
 33; p 
 0.809).

Of the recorded neurons, 27 significantly discriminated RF
stimulus orientation. V4 visual responses showed nonsignifi-
cant trends toward increased responses to nonpreferred stim-
uli and decreased responses to preferred stimuli (Fig. 7 A, B;
n 
 27; �preferred 
 �0.03 � 0.07 NU, p 
 0.648;
�nonpreferred 
 0.09 � 0.06 NU, p 
 0.102). These trends
combined to produce a significant reduction in the stimulus
(orientation) selectivity index of V4 visual responses following
FEF inactivation (�selectivity index 
 �0.04 � 0.01, p 

0.002). As in previous studies, the selectivity index was defined
as the difference between responses to preferred and nonpre-
ferred stimuli divided by their sum (Monier et al., 2003). We

also measured the ability of V4 responses to discriminate RF
stimuli (stimulus discriminability) using an ROC analysis,
which takes into account the variability of visual responses as
well as the difference in their magnitude. This analysis re-
vealed that the ability of V4 neurons to discriminate between
preferred and nonpreferred stimulus orientations is reduced
by 24% after FEF inactivation (AROCcontrol 
 0.68 � 0.02;
AROCinactivation 
 0.64 � 0.02; �AROC
 �0.04 � 0.01, p �
10 �3); the full time course of this decrease in discriminability
can be seen in Figure 7C. The inactivation-induced reduction
in stimulus discriminability observed during the tonic visual
response was also present during the presaccadic period, the
period during which presaccadic enhancement actually in-
creased. Figure 7 A, B shows the presaccadic responses of the
population of V4 neurons before and after FEF inactivation
for the toward condition. Following inactivation, neuronal
activity during the presaccadic period increased both for pre-
ferred and nonpreferred RF stimuli (�preferred 
 0.15 � 0.07
NU, p 
 0.043; �nonpreferred 
 0.20 � 0.06 NU, p 
 0.002).
However, the difference between the responses to the pre-
ferred and nonpreferred stimuli was reduced during this pe-
riod (�selectivity index 
 �0.06 � 0.02, p 
 0.008; Fig. 8A).
In the away condition, we also observed a nonsignificant trend
toward a reduction in the selectivity index and stimulus dis-
criminability (n 
 27; �selectivity index 
 �0.06 � 0.027,
p 
 0.054; �AROC 
 �0.04 � 0.02, p 
 0.079; Fig. 8B).
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The reduction in the stimulus selectivity index during the presac-
cadic period was also apparent in a subset of eight neurons studied
using four different stimulus orientations (Fig. 8C). Stimulus dis-
criminability, as measured by the ROC analysis in the toward con-
dition, was reduced following the FEF inactivation (�AROC 

�0.04 � 0.01, p 
 0.026). In addition, we observed that for the eight
neurons tested with four different stimulus orientations, the
inactivation-induced reduction in discriminability was independent
of which pair of stimulus responses were compared (Fig. 8D; two-
way ANOVA, inactivation effect: F 
 8.93, p 
 0.003; orientation
pair: F 
 3.05, p 
 0.012; interaction: F 
 0.23, p 
 0.949). Thus,
although FEF inactivation increased the ability of V4 neurons to
signal the direction of impending saccades, it reduced their ability to
discriminate the orientation of the target. We also separately exam-
ined the effect of FEF inactivation on the variability of V4 visual
responses. Variability was quantified as the variance in spike counts
across trials divided by their mean (Fano factor; Churchland et al.,
2010). FEF inactivation did not significantly change the variability of
V4 responses to preferred or nonpreferred stimuli (n 
 27; �Fano
factorpreferred 
 0.001 � 0.09, p 
 0.630; �Fano factornonpreferred 

0.02 � 0.07, p 
 0.532). The lack of an effect of FEF inactivation on
response variability thus indicates that the observed reduction in
stimulus discriminability resulted primarily from a decrease in the
difference between the magnitude of responses to preferred and
nonpreferred orientations. Last, to determine whether the observed
changes in V4 responses were simply due to infusing a volume into
the FEF, we also tested the effects of infusing the vehicle (saline)
instead of muscimol. Saline infusions failed to alter the magnitude of
presaccadic enhancement (n 
 27; �AROCtoward vs away 
 0.01 �
0.07, p 
 0.626) and failed to alter stimulus discriminability either
during fixation (�AROC 
�0.01 � 0.013, p 
 0.380) or during the
presaccadic period (�AROC 
 0.01 � 0.02, p 
 0.331).

Without inactivation, both the magnitude and the stimulus
discriminability of V4 visual responses increase before sac-
cades made to RF targets (Moore and Chang, 2009). We
wished to determine whether there is a relationship between
these two effects. As shown for an exemplar neuron (Fig. 9A),
saccades into the RF enhanced the average response to RF
stimuli (preferred and nonpreferred), compared with the re-
sponse during fixation. The stimulus selectivity index also in-
creased during the presaccadic period. Across trials, the

change in the presaccadic enhancement was positively corre-
lated with the change in stimulus selectivity index (r 
 0.668,
p � 10 �3). For this neuron, FEF inactivation significantly
reduced this correlation (r 
 0.129; ANCOVA, factors prein-
activation vs postinactivation, presaccadic enhancement, pre-
saccadic selectivity; main effect of FEF inactivation p � 10 �3).
We examined the relationship between presaccadic enhance-
ment and the selectivity index in an additional population of
61 stimulus-selective V4 neurons from a previous study using
the same visually guided saccade task (Moore and Chang,
2009). For this population, the mean correlation between pre-
saccadic enhancement and the selectivity index was signifi-
cantly greater than zero (Fig. 9B; n 
 61; r 
 0.20 � 0.04, p �
10 �3). This correlation was also present in the population of
V4 neurons recorded before FEF inactivation in the current
study (n 
 27; r 
 0.21 � 0.05, p 
 0.001). Furthermore, the
magnitude of this correlation was statistically equivalent be-
tween the two studies ( p 
 0.763; Wilcoxon rank sum test).
Following FEF inactivation, the correlation between presacca-
dic enhancement and the selectivity index was eliminated
(rinactivation 
 0.04 � 0.05, p 
 0.471) and this elimination
rendered it significantly different from that of the control (n 

27; rinactivation � control 
 �0.17 � 0.06, p 
 0.009). Baseline
activity and selectivity values were subtracted from the presac-
cadic values in the preceding results to isolate changes in V4
activity around the time of a saccade. However, the same re-
sults also held when considering presaccadic activity and se-
lectivity without subtracting out the baseline fixation values:
presaccadic activity and selectivity were correlated before FEF inac-
tivation (r 
 0.21 � 0.05, p 
 0.001), but not correlated following
inactivation (rinactivation 
 0.08 � 0.05, p 
 0.31), changing signifi-
cantly between conditions (rinactivation-control
�0.13 � 0.07, p 

0.019). FEF inactivation also eliminated the relationship between
presaccadic enhancement and the selectivity index for saccades in
the away condition (rcontrol 
 0.16 � 0.05, p 
 0.009; rinactivation 

0.04 � 0.05, p 
 0.216; rinactivation � control 
 0.11 � 0.05, p 
 0.022).
We verified the findings of our subsampling approach using another
analysis method, in which we paired each preferred stimulus trial
with the closest nonpreferred stimulus trial (see Materials and Meth-
ods for details). The effects of FEF inactivation on the relationship
between average activity and selectivity calculated using the trial-
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pairing method are shown in Figure 9C. Consistent with the results
of the subsampling procedure, there was a significant correlation
between activity and selectivity in the population of V4 neurons
before FEF inactivation (rcontrol 
 0.19 � 0.05, p 
 0.001). Also
consistent with the results of the subsampling procedure, the corre-
lation between presaccadic changes in average response and stimu-
lus selectivity was eliminated by FEF inactivation (rinactivation 

0.05 � 0.06, p 
 0.400) and this elimination rendered it significantly
different from that of the control (rinactivation-control
�0.14 � 0.06,
p 
 0.019). Therefore, FEF inactivation not only increased the mag-
nitude of presaccadic enhancement and reduced stimulus selectivity
index, but it also disrupted the normal relationship between these
two measures.

In addition to testing the effect of FEF inactivation on V4
presaccadic activity, we measured its impact on surround sup-
pression during fixation. Surround stimuli generally have sup-
pressive influences on neuronal responses in area V4 (Desimone
and Schein, 1987) and these effects interact with the locus of
attention (Sundberg et al., 2009). In 15 of 19 inactivation exper-
iments, we briefly presented (13 ms) a surround stimulus (1 � 1
dva white circle) at a random time (200 – 800 ms after RF stimu-
lus onset), at a location distant (
6 dva) from the RF (Fig. 10A).
As shown in Figure 10, for the population of 24 V4 neurons, the
surround stimulus presentation suppressed V4 neuronal re-
sponses (Fig. 10B,C, black traces; for preferred and nonpreferred

stimuli respectively). Figure 10D shows the distribution of SSIs
used to compare V4 activity before and after surround onset,
positive SSIs indicating greater surround suppression. As shown,
the SSI was significantly greater than zero both for preferred and
nonpreferred stimuli (n 
 24; SSI preferred 
 0.094 � 0.024, p �
10�3; SSI nonpreferred 
 0.122 � 0.030, p � 10�3), indicating a
drop in activity following surround onset. Importantly, as shown
in the blue trace in Figure 10B, after FEF inactivation, V4 re-
sponses showed even greater surround suppression. The SSI was
0.165 � 0.029 for the preferred stimulus after FEF inactivation,
reflecting a significantly larger surround-induced suppression of
the V4 response (�SSIpreferred 
 0.0713 � 0.024, p 
 0.009; Fig.
10E). This change in the surround-induced response suppression
was only observed when the preferred stimulus was presented
within the V4 RF; there was no change in surround suppression
of responses to nonpreferred stimuli after FEF inactivation
(�SSInonpreferred
 �0.005 � 0.037, p 
 0.440; Fig. 10C, blue
trace, E, bottom histogram). Thus, following FEF inactivation,
V4 neurons became more susceptible to suppressive influences
from the surround, yet only when those neurons were adequately
driven by RF stimuli.

Discussion
We examined the contribution of the FEF to presaccadic mod-
ulation in area V4 and found that, contrary to our expecta-
tions, FEF inactivation increased the magnitude of presaccadic
enhancement. This increased enhancement was accompanied
by a decrease in stimulus discriminability both during fixation
and in the presaccadic period. Consequently, with reduced
input from the FEF, V4 neurons signaled more about the di-
rection of saccades, but less about the features of the saccadic
target. FEF inactivation also disrupted the normal correlation
between presaccadic changes in the response magnitude and
the stimulus selectivity index. These results reveal the distinct
contribution of the FEF to the visual cortical representation of
saccadic targets.

Sources of presaccadic enhancement in V4
Presaccadic enhancement in V4 was altered following FEF inac-
tivation, clearly indicating that the FEF plays some role in that
enhancement. However, the persistence of presaccadic enhance-
ment following a reduction in FEF input reveals that the FEF is
not the sole source of that enhancement. In fact, not only did the
enhancement persist during FEF inactivation, it increased in
magnitude. What might account for this increase?

One straightforward explanation might be that FEF exerts a
primarily inhibitory effect on V4 activity. However, key evidence
argues against that explanation. First, a recent examination of
FEF inputs to V4 found that a vast majority of the FEF input to V4
consists of excitatory synapses onto pyramidal neurons (Ander-
son et al., 2011). In addition, microstimulation of the FEF rapidly
increases the magnitude and selectivity of V4 visual responses
(Moore and Armstrong, 2003; Armstrong and Moore, 2007) sug-
gesting that the direct projections from the FEF exert an excit-
atory, gain modulation on visually driven inputs to V4.
Consistent with that evidence is the observed coherence and
short phase lag between the spiking activity and local field poten-
tials between the FEF and V4 (Gregoriou et al., 2009, 2012).
Nonetheless, it might still be possible that the small subset of FEF
inhibitory input to V4 neurons exerts a net inhibitory effect on
presaccadic responses.

One possibility is that the elevated enhancement is due to a
compensatory increase in presaccadic activity within other
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saccade-related structures; for example, the area LIP or the SC.
Regarding the latter, it is known that both the FEF and the SC are
necessary for normal saccadic eye movements, and that saccades
are eliminated following combined lesions of both structures
(Schiller et al., 1979, 1980). Furthermore, the SC projects inputs
to extrastriate cortex via the pulvinar (Kaas and Huerta, 1988).
However, recent data indicates that the tecto-pulvinar relay to V4
is weak or absent compared with dorsal extrastriate areas (e.g.,
MT; Lyon et al., 2010). These data suggest that a contribution of
the SC to V4 presaccadic enhancement would need to be medi-
ated by dorsal areas, including area LIP where neurons exhibit
robust presaccadic modulation (Mazzoni et al., 1996). Recent
work also provides some evidence of a compensatory relationship
between FEF and SC. Berman et al. (2009) found that some FEF
neurons exhibit increased presaccadic activity following inactiva-
tion of the SC. It could be that inactivation of the FEF similarly
results in compensatory effects within the SC, and this compen-
sation influences presaccadic enhancement in V4 via a tecto-
pulvinar-dorsal stream route, perhaps involving area LIP.
Alternatively, there could be a compensatory increase in presac-
cadic activity within LIP itself, and this compensation could be
conveyed directly to V4 (Andersen et al., 1990).

Nevertheless, our results suggest that although there is a resid-
ual source of presaccadic enhancement, the FEF contributes
uniquely to presaccadic modulation. The relationship between
presaccadic enhancement and the presaccadic change in the stim-
ulus selectivity index observed before inactivation suggests that
information about the direction of upcoming saccades and about
visual target features covary under normal circumstances in V4.
We found that this relationship was eliminated by FEF inactiva-
tion. This finding indicates a distinct contribution of the FEF to
presaccadic modulation in that the FEF is necessary for maintain-
ing the relationship between presaccadic enhancement and stim-
ulus selectivity that is normally observed during the presaccadic
period.

Implications for covert attentional modulation
The modulation of visual activity within area V4 before saccades
shares many similarities with that observed during covert spatial
attention. For example, both types of modulation involve in-
creased firing rates, reduced trial-to-trial variability, increased
stimulus discriminability and shifts in RFs (Tolias et al., 2001;
Noudoost et al., 2010; Steinmetz and Moore, 2010). In attention,
as in our presaccadic findings, a primarily spatial signal somehow
enhances feature selectivity elsewhere in visual cortex (McAdams
and Maunsell, 1999). Furthermore, microstimulation of the FEF
also increases stimulus selectivity among V4 neurons (Armstrong
and Moore, 2007). Although the effect of a spatial signal on stim-
ulus selectivity appears to be counterintuitive, the ability of
feature-indifferent spatial feedback to produce enhanced feature
selectivity has been reproduced in computation models of atten-
tion (Reynolds and Heeger, 2009). In fact, evidence has accumu-
lated over the past several years implicating gaze-related
structures in the modulation of visual cortical signals during vi-
sual attention (Knudsen, 2007). This evidence is particularly
strong for the FEF where studies have demonstrated improve-
ments in psychophysical performance with microstimulation
(Moore and Fallah, 2001), as well as improvements in visual sig-
naling in area V4 either with microstimulation (Moore and Arm-
strong, 2003) or with pharmacological manipulation of FEF
neuronal activity (Noudoost and Moore, 2011b). Psychophysical
experiments indicate that attention is tied to the target of an
impending saccade, with improved discriminability at the sac-

cade target relative to other locations (Deubel and Schneider,
1996); we speculate that the decrease in V4 presaccadic selectivity
observed following FEF inactivation would disrupt the usual per-
ceptual benefits at the saccade target.

In addition, inactivation of FEF activity leads not only to def-
icits in saccadic eye movements but also to deficits resembling
attentional neglect (Wardak et al., 2006). Results from simulta-
neous neurophysiological recordings in the FEF and area V4 sug-
gest that the FEF’s influence on visual cortical signals during
attention involves gamma-band coupling between the areas
(Gregoriou et al., 2009). When combined, the above evidence
suggests that the FEF’s interaction with posterior visual cortex
serves to specify the features of visual targets for the accurate
guidance of saccades, even when they are planned but not trig-
gered. A recent study provides evidence in support of this notion
(Schafer and Moore, 2007). In this view, the presaccadic and
covert attentional modulation observed within visual cortex
would be consequences of imminent or latent saccade plans, re-
spectively, and would originate in part from the FEF. Consistent
with the hypothesis that FEF serves as a source of top-down en-
hancement of V4 responses, we found that FEF inactivation re-
sulted in greater surround suppression, which is similar to the
greater suppression observed when attention is directed to dis-
tracters in the surround (Sundberg et al., 2009). Interestingly the
increase in surround suppression following the removal of FEF
feedback appears to contrast with the effect of inactivating feed-
back from area V4 to V2 within posterior visual cortex (Nassi et
al., 2013). Both effects are consistent with a normalization model
of covert attention that accounts for the interaction of top-down
modulation with surround influences, particularly in area V4
(Reynolds and Heeger, 2009). Both effects are also consistent
with the possibility that the direct excitatory inputs from the FEF
to V4 (Anderson et al., 2011) provide a source of gain modulation
that may mitigate the divisive normalization due to competing
surround stimuli.

Together, the above evidence suggests an important role of the
FEF in modulating visual cortical signals both during covert at-
tention and during the preparation of saccades. However, it may
be that the FEF’s role in both processes does not involve precisely
the same neural circuitry. FEF neurons display a mixture of vi-
sual, motor, and memory-related properties (Bruce and Gold-
berg, 1985), and this heterogeneity raises the crucial question of
which functional class or classes of neurons mediate the FEF’s
influence on visual cortical signals. For example, it may be that
FEF neurons with motor properties are scarce or absent from the
class projecting to visual cortex. This possibility is consistent with
a recent study (Gregoriou et al., 2012), and could also help ex-
plain the present results in which removal of FEF input did not
eliminate presaccadic modulation. Future studies will need to
identify the specific class of FEF neurons projecting to visual
cortex. Nonetheless, our results indicate that at least area V4’s
visual activity depends on the FEF more than its saccade-related
activity. Whether attentional modulation of V4 activity depends
on the FEF, however, remains to be seen. The recent finding that
attentional modulation within visual cortex (area MT and MST)
persists following inactivation of the SC (Zenon and Krauzlis,
2012) indeed seems to increase the likelihood that the FEF is a
source of that modulation. Thus, a loss of covert attentional mod-
ulation within V4 following FEF inactivation, combined with the
present results, would not only signify a dissociation of the FEF’s
role in saccadic and attentional modulation but it would further
suggest complimentary contributions of the FEF and the SC in
those two functions.
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