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Abstract
The sanctity of the cytosolic compartment is rigorously maintained by a number of innate immune
mechanisms. Inflammasomes detect signatures of microbial infection and trigger caspase-1 or
caspase-11 activation, culminating in cytokine secretion and obliteration of the replicative niche
via pyroptosis. Recent studies have examined inflammatory caspase responses to cytosolic
bacteria, including Burkholderia, Shigella, Listeria, Francisella, and Mycobacterium species. For
example, caspase-11 responds to LPS introduced into the cytosol after Gram-negative bacteria
escape the vacuole. Not surprisingly, bacteria antagonize these responses; for example, Shigella
delivers OspC3 to inhibit caspase-4. These findings underscore bacterial coevolution with the
innate immune system, which has resulted in few, but highly specialized cytosolic pathogens.

INTRODUCTION
The immune defenses of the extracellular environment are severe, as are those of the
phagolysosome. The prospect of refuge from these insults therefore makes the cytosolic
compartment a theoretically attractive refuge for potential bacterial pathogens. However, the
fact that bona fide cytosolic bacteria can be counted on one’s fingers (see Table 1 for a
summary of these pathogens, their cell tropisms, and their mechanisms for invading the
cytosol) highlights the successful immune defenses employed to maintain the sterility of the
cytosolic niche. A number of cytosolic sensors detect signatures of infection, initiating
potent inflammatory responses and/or host cell death. The importance of inflammatory
caspases in this regard is underscored by the extreme susceptibility of mice deficient in these
enzymes to infection by cytosolic pathogens. Interestingly, the few cytosolic specialist
pathogens are among the most virulent known. Herein, we discuss the role of inflammatory
caspases in the innate immune response to cytosolic bacteria, focusing on recent advances in
our understanding of how cells detect intruders and trigger caspase activation, and how
caspases mediate containment of the infection.

THE INFLAMMATORY CASPASES
Caspases are ancient and evolutionarily conserved proteases that are integral to
development, homeostasis, and immunity. Some caspases are involved in apoptosis, an
immunologically silent form of programmed cell death. In contrast, the inflammatory
caspases, caspase-11 (or the presumed human homologs caspase-4 and caspase-5) and
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caspase-1, initiate a form of lytic cell death termed pyroptosis following their activation,
which releases inflammatory mediators, removes the replicative niche of cytosolic bacteria,
and exposes intruders to extracellular defenses and neutrophils [1] (reviewed in [2]). In
addition, caspase-1 mediates the maturation and secretion of pro-IL-1β and pro-IL-18, two
pleiotropic inflammatory cytokines best known for inducing fever and interferon (IFN)-γ
secretion, respectively [3].

THE INFLAMMASOMES
The inflammatory caspases are expressed as inactive zymogens. The canonical
inflammasomes, a class of cytosolic pattern recognition receptors (PRR), activate caspase-1
in response to specific signatures of infection. A theorized non-canonical inflammasome(s)
is proposed to activate caspase-11 [4]. Relevant inflammasomes and their agonists are
detailed in Table 2; for in-depth review, see [2] and [3].

Burkholderia
B. pseudomallei and B. thailandensis have served as models for studying the interaction of
inflammatory caspases and cytosolic bacteria. These Gram-negative bacteria exist
ubiquitously in the soil of southeast Asia and sporadically elsewhere [5]. Although closely
related, only B. pseudomallei causes severe human and murine disease; however, B.
thailandensis can infect macrophages and epithelial cells both in vitro and in vivo. B.
pseudomallei and B. thailandensis rapidly escape the vacuole via their type III secretion
system (T3SS) [6][7]. NLRC4 is positioned to detect signatures of T3SS activity, alerting
the immune system to pathogens that reprogram and parasitize host cells. Not surprisingly,
we and others found that macrophage infection triggers NLRC4 activation [8][9]. Mediating
this activation, we showed that the T3SS rod protein BsaK is detected through NLRC4 [10],
and Zhao and colleagues demonstrated that NAIP2 is the sensor upstream of NLRC4 [11].
Later the T3SS needle protein BsaL, as well as needle proteins from a variety of other
bacteria, was found to be detected by murine NAIP1 and human NAIP, both signaling
through NLRC4 downstream [11][12][13]. By an ill-defined mechanism, Burkholderia
species also activate NLRP3 [8][9]. Together, NLRC4 and NLRP3 are critical for mice to
resist intranasal B. pseudomallei challenge [8]. In this model, IL-18 is central to this
resistance, coordinating bacterial clearance, whereas IL-1β secretion mediates immune
pathology driven by neutrophil recruitment.

Recently, we determined that caspase-11 is critical for mice to resist infection by both
virulent B. pseudomallei as well as avirulent B. thailandensis [9]. Caspase-11 functions
independently of all known inflammasomes, instead working in parallel with caspase-1 to
mediate protection against ubiquitous environmental bacteria. We discovered that
caspase-11 responds specifically to Gram-negative cytosolic bacteria, where normally
vacuolar bacteria such as Legionella pneumophila and Salmonella enterica serovar
typhimurium (S. typhimurium) rapidly induce caspase-11 dependent pyroptosis only after
aberrant translocation to the cytosol. In complementary studies, we and Kayagaki and
colleagues determined that cytoplasmic translocation of penta- and hexa-acylated LPS, but
not tetra-acylated LPS, triggers caspase-11 activation [14][15]. Although enhanced by TLR4
signaling, this pathway can proceed independently of extracellular LPS signaling. Thus,
Tlr4−/− mice primed with a TLR3 agonist succumb to secondary LPS challenge in a model
of endotoxic shock. Previous studies indicate that during prolonged infections, caspase-11
activates in response to all Gram-negative bacteria [4][16][17][18]. We speculate that such
activation may reflect vacuole leakage events that accumulate over 16h, which may have
relevance in the setting of Gram-negative septic shock. In contrast, caspase-11 rapidly
responds to L. pneumophila infection in pre-activated macrophages [19][20]; whether
vacuolar integrity is compromised under these conditions remains to be examined. The
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physiologic role of caspase-11 during infection is to combat cytosolic bacteria. The
upstream sensor that detects cytosolic LPS remains unknown.

Shigella
Members of the Gram-negative Shigella genus are exquisitely adapted to cause human
gastrointestinal disease. S. flexneri infects a variety of cell types, such as intestinal epithelial
cells and macrophages. Following phagocytosis by macrophages or T3SS-mediated uptake
by epithelial cells, S. flexneri rapidly escapes the phagosome. In vitro, S. flexneri is robustly
detected by caspase-1 via NLRC4 [21] and, under some conditions NLRP3 [22]. As an
aflagellate bacterium, S. flexneri does not expressed flagellin. We showed that the MxiI rod
protein is detected via NLRC4 [10], and Zhao showed this was via NAIP2 [11]. The S.
flexneri needle component MxiH is also detected by murine NAIP1 and human NAIP [12].
As with Burkholderia, NLRC4 is positioned to detect Shigella before cytosolic invasion, and
thus does not differentiate it from vacuolar T3SS utilizing bacteria such as S. typhimurium.
Whether inflammasome pathways more tailored to detecting cytosolic bacteria (AIM2 or
caspase-11) function in resistance to Shigella infection remains to be determined; however,
we have found that both S. flexneri infection and transfection of S. flexneri lysates into
macrophages activate caspase-11 in vitro (our unpublished observations), indicating that S.
flexneri lipid A can be detected by the caspase-11 pathway.

Recently, work employing a Guinea pig model of Shigella infection, which more faithfully
models human infection than mouse models, has implicated caspase-4 in host resistance to
S. flexneri [23]. Kobayashi and colleagues found that caspase-4 mediates epithelial cell
death in response to several enteric pathogens, and that S. flexneri secretes an inhibitor of
caspase-4 activation, OspC3, to counteract this innate immune response in vitro and in vivo.
Remarkably, the authors found that OspC3 is specific in antagonizing caspase-4 and does
not associate with caspase-11, highlighting the specificity of Shigella species for infecting
humans. Future research will determine whether caspase-4 responds to cytoplasmic LPS as
does caspase-11, which would situate caspase-4 as key preserver of cytosolic sterility.

Francisella
The causative agent of tularemia, Gram-negative F. tularensis is among the most infectious
and virulent pathogens; thus, it is classified as a category A bioweapon. F. tularensis infects
a variety of cell types, with macrophages and neutrophils representing the primary
replicative niches during pneumonic infection [24]. F. novicida is closely related to F.
tularensis, but is far less virulent. F. novicida lyses in the cytosol of murine macrophages,
releasing DNA that triggers AIM2/ASC/caspase-1 [25][26][27][28][29][30]. In vivo, Aim2-
deficient mice have increased susceptibility to F. novicida infection [27][28]. In some
experimental systems, F. novicida also triggers NLRP3 activation [31]. However, murine
infection by F. tularensis, unlike byF. novicida, results in little detectable caspase-1
activation [32], suggesting virulent strains have evolved to evade AIM2. A better
understanding of this difference may have implications for both the treatment of and
vaccination against tularemia.

Francisella species express tetra-acylated LPS. Not surprisingly, we have found that
macrophages do not activate caspase-11 after infection by F. novicida [15]. However,
transfection of penta-acylated lipid A from an lpxF mutant, but not wild-type tetra-acylated
lipid A, triggers caspase-11 dependent pyroptosis. Therefore, Francisella species appear to
have evolved to evade a major host cytosol surveillance pathway, the non-canonical
inflammasome.
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Listeria
Listeria monocytogenes is a Gram-positive saprophyte and facultative pathogen that causes
self-limited gastroenteritis in immunocompetent individuals. Of particular concern for the
immunocompromised, L. monocytogenes infections can progress to cause sepsis,
encephalitis, and death; in pregnant mothers, it can trigger abortion. L. monocytogenes
readily escapes into the cytosol of epithelial cells and macrophages using the pore-forming
toxin listeriolysin O (LLO).

In vitro, macrophages detect cytosolic L. monocytogenes via NLRC4 and AIM2; NLRP3
also detects infection under certain experimental conditions [26][33][34][35][36][37][38],
but not others [39][40]. In the absence of infection, the pore-forming activity of purified
LLO protein is sufficient to trigger NLRP3 activation [33]. NLRC4 responds to flagellin
sloughed from L. monocytogenes in the cytosol. In this case, NLRC4 acts as a specific
sensor of cytosolic invasion, whereas it does not differentiate between cytosolic or vacuolar
T3SS-expressing bacteria. AIM2 responds to DNA released into the cytosol following
infrequent lysis of L. monocytogenes.

In vivo, Casp1−/− Casp11−/− mice may have increased susceptibility to L. monocytogenes
infection [41]; however, this was not replicated in another publication [40]. Furthermore, the
contributions of individual inflammasomes during in vivo infection are not defined.
Nevertheless, L. monocytogenes appears to have evolved to limit inflammasome detection:
LLO activity is optimal in the acidic environment of the phagosome, thus limiting its
potential to trigger NLRP3; flagellin expression is repressed during growth at host
temperature; and few bacteria lyse in the cytosol, thus limiting cytosolic DNA exposure. The
efficiency of these evasive strategies is demonstrated by the rapid clearance of L.
monocytogenes forced to express flagellin in vivo [40][42].

By virtue of its nature as a Gram-positive bacterium, L. monocytogenes does not contain
LPS, and thus is not detected by caspase-11 [15][43].

Rickettsia
Members of the genus Rickettsia are Gram-negative, obligate intracellular pathogens that
invade the cytosol of vascular endothelial cells and macrophages, causing a variety of
arthropod-borne diseases. Little research to date has investigated the interactions of
inflammatory caspases and Rickettsia; however, infected mouse peritoneal macrophages
secrete IL-1β [44], suggesting that caspase-1 responds to certain Rickettsia species.
Interestingly, IFN-γ primed RAW264.7 macrophage-like cells undergo rapid cell death
(within 4h) following infection with R. prowazekii [45]. It is tempting to speculate that the
enhanced bactericidal activity of IFN-γ primed macrophages potentiates AIM2 or
caspase-11 detection of Rickettsia.

Mycobacterium
Among Mycobacterium species, M. marinum is distinct in that it rapidly escapes the
phagosome to replicate in the cytosol and spread cell-to-cell. Vacuolar escape requires
ESAT-6, a secretion product of the ESX-1 type VII secretion system suggested to have
membrane pore forming activity [46]. Although M. tuberculosis is traditionally considered a
vacuolar pathogen of macrophages, recent studies suggest it may exist in the cytosol for at
least part of its intracellular life cycle (reviewed in [47]).

A number of studies have investigated the role of inflammatory caspases in immunity to M.
tuberculosis and M. marinum. While the in vivo importance of IL-1α and IL-1β are well
accepted, the role of NLRP3, ASC, and caspase-1 remain controversial both in vivo and in
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vitro (for a more in-depth review, see [3]). Herein we limit our discussion to the recent
studies examining caspase-1 activation in response to cytosolic bacterial exposure. Several
studies implicate ESX-1 and ESAT-6 in caspase-1 activation [48][49][50][51][52][53].
Abdallah and colleagues suggest that ESX-1 translocation of mycobacteria to the cytosol
potentiates subsequent ESX-5 dependent inflammasome activation [54]. M. tuberculosis
DNA can access the cytosol in a manner dependent on ESX-1, where it triggers STING-
dependent type I interferon production [55]. DNA from M. tuberculosis and M. bovis also
trigger AIM2/ASC/caspase-1 [56][57], and Aim2−/− mice appear susceptible to M.
tuberculosis infection, suggesting a physiologic relevance to the in vitro detection data [56].
A recent contradictory report suggests that virulent M. tuberculosis strains actually inhibit
AIM2 activation, whereas nonvirulent strains do not [58]; use of different macrophage types
in these studies may reconcile their conflicting findings.

CONCLUSIONS
In recent years, our understanding of inflammatory caspase activation has expanded to
include several new sensor-stimulus pairs, such as AIM2 and DNA, NAIP1 and the T3SS
needle, and LPS and the non-canonical inflammasome. These findings have elucidated how
the inflammatory caspases and, more generally, the innate immune system restrict the ability
of pathogens to establish cytosolic growth niches. At the same time, they pose a number of
questions, such as the identity of the non-canonical inflammasome. Furthermore, several
models of cytosolic pathogen interaction with inflammatory caspases remain under-
explored, such as Rickettsia infection and the emerging paradigm of cytosolic M.
tuberculosis. Future studies will begin to fill these gaps and, surely, raise a number of new
questions.
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HIGHLIGHTS

• Specific NAIPs activate NLRC4 in response to flagellin and the T3SS rod and
needle proteins

• Caspase-11 defends against Burkholderia species by responding to cytosolic
LPS

• OspC3 translocation by Shigellais a novel mechanism of caspase-4 antagonism

• Mycobacterium tuberculosis may have a cytosolic phase of its lifecycle that
exposes it to cytosolic sensors
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Table 1

Cell tropism and vacuolar escape determinants of cytosolic bacteria.

Genus Gram +/− Cell tropism Vacuolar escape determinants, bacterial

Burkholderia − Mφ, PMN, epithelial cells T3SSBSA

Shigella − Mφ, DC, intestinal epithelial cells Mxi-Spa T3SS, IpaB

Francisella − Mφ, PMN, DC, epithelial cells, hepatocytes IglC, MglA, FTT11103

Listeria + Mφ, intestinal epithelial LLO, phospholipase C

Rickettsia − Vascular endothelial, Mφ Phospholipases, hemolysin

Mycobacterium Acid-fast + Mφ ESX-1 T7SS, ESAT-6
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Table 2

Interaction of inflammatory caspases and cytosolic bacteria.

Bacteria Caspase-1 Caspase-11 or -4

Stimulus/sensor NLRC4 NLRP3 AIM2

Burkholderia BsaK/NAIP2 Infection LPS/casp11

Shigella Needle/NAIP1 and human NAIP
Rod/NAIP2

Infection LPS/casp11 ?/casp4

Francisella Infection (human) DNA

Listeria Flagellin/NAIP5 Infection, LLO DNA

Rickettsia

Mycobacterium Infection, ESAT-6 DNA

Antagonism

Burkholderia

Shigella OspC3 inhibits casp4

Francisella possible Tetra-acyl LPS

Listeria Represses flagellin at host temperatures pH dependent LLO activity

Rickettsia

Mycobacterium Zmp1 metalloprotease
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