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Abstract
Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The
virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted
toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to
cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter,
some were recently identified to lyse neutrophils after ingestion, representing an especially
powerful weapon against bacterial elimination by innate host defense. Furthermore, S. aureus
secretes many factors that inhibit the complement cascade or prevent recognition by host defenses.
Several further toxins add to this multi-faceted program of S. aureus to evade elimination in the
host. This review will give an overview over S. aureus toxins focusing on recent advances in our
understanding of how leukotoxins work in receptor-mediated or receptor-independent fashions.

Introduction
Staphylococcus aureus is a dangerous and versatile pathogen that can cause a multitude of
different diseases. Most frequently, it causes skin infections and infections of the respiratory
tract. Skin infections are usually community-acquired, whereas infections of the lung
dominate among nosocomial S. aureus infections. Among nosocomial pathogens, S. aureus
is the most common and associated with high morbidity and mortality. S. aureus pneumonia
often develops in hospitalized patients with underlying conditions, such as in patients
suffering from immune deficiencies or viral infections. However, S. aureus may also cause a
variety of other sometimes very severe and life-threatening diseases, such as infective
endocarditis, toxic shock syndrome, scalded skin syndrome, or osteomyelitis, to name but a
few. Even necrotizing fasciitis and necrotizing pneumonia were reported with S. aureus as
the causative agent [1,2].

The versatility of S. aureus as a pathogen stems from the fact that S. aureus strains possess a
varying repertoire of virulence factors, many of which are encoded on mobile genetic
elements (MGEs), such as plasmids or prophages, and can be transferred between strains by
horizontal gene transfer (HGT). HGT in S. aureus may happen via phage transduction,
conjugation, or – as recently found – by direct uptake of “naked” DNA by genetic
competence [3].

Many S. aureus virulence factors can be described as toxins. Toxins are usually defined as
poisonous substances. Thus, the distinction from other virulence factors – molecules that
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increase the potential of a pathogen to cause disease in a broader sense – is that they are
secreted by the producing organism and interfere directly with the host. Toxins thus do not
include molecules that, for example, combat mechanism of host defense in the intracellular
space of the bacteria, such as intracellular reactive oxygen scavenging mechanisms. Also, S.
aureus produces a large set of secreted, surface-bound proteins that enable the pathogen to
attach to host tissue. Although this is an important mechanism of the S. aureus pathogenesis
program, these surface-located proteins will not be regarded as toxins for the purpose of this
review and the reader is referred to other reviews dealing specifically with those proteins
[4]. Furthermore, molecules that are secreted but serve the defense from host immunity in a
passive way, such as exopolymers with a function in providing resistance to antimicrobial
peptides or leukocyte phagocytosis, will not be included here. Rather, this review will cover
secreted S. aureus molecules that in some way or another directly harm the host. These are
grouped in three categories: 1) membrane-damaging toxins, which may work in a receptor-
mediated or receptor-independent fashion, 2) toxins that interfere with receptor function but
are not membrane-damaging, and 3) secreted enzymes, such as those that degrade host
molecules or affect important host defense mechanisms.

Membrane-damaging toxins
The cytoplasmic membrane is the target of a large series of bacterial toxins, including
several that are produced by S. aureus. These toxins cause pore formation in the membrane,
leading to the efflux of vital molecules and metabolites, and therefore are cytolytic. Two
subgroups can be distinguished: those for which subsequent lysis is dependent on initial
receptor interaction, and which thus show high target cell specificity, and those that interfere
with membranes in a less specific fashion without receptor interaction (Fig. 1).

Receptor-mediated
S. aureus produces a variety of cytolytic toxins. Most are infamous for lysing red and/or
white blood cells. Those that lyse red blood cells are called hemolysins, while those that
target white blood cells are leukotoxins. Many cytolytic toxins of S. aureus have only
recently been shown to require receptor interaction for their lytic function.

Alpha-toxin is probably the best-known toxin of S. aureus [5] and the first identified
example of the beta-barrel forming toxins, which predominantly consist of beta sheets. It is
lytic to red blood cells and a series of leukocytes, but not neutrophils [6]. It is 293 amino
acids in length and forms a heptameric pore that leads to the efflux of mono- and, at higher
concentration, divalent ions. At higher concentrations, pore formation may be receptor-
independent, but pore formation at lower concentrations has recently been shown to be
dependent on the interaction with the ADAM10 receptor [7,8]. Binding of alpha-toxin to
ADAM10, a disintegrin and metalloproteinase, ultimately leads to the disruption of focal
adhesions. In particular, cleavage of E-cadherin in epithelial cells leads to loss of epithelial
barrier function. Independently, alpha-toxin also causes apoptosis in human monocytes, T
and B cells [9].

S. aureus also produces are series of bi-component toxins that are structurally similar to
alpha-toxin and belong to the beta-barrel pore-forming toxin family: the Panton-Valentine
leukocidin (PVL, consisting of the LukS and LukF proteins), the leukocidins LukDE and
LukAB (LukGH), and gamma-toxin (gamma-hemolysin, HlgA, HlgB, HlgC). Intensified
research has recently been prompted by the association of PVL with infections by
community-associated methicillin-resistant S. aureus (CA-MRSA) strains [10], although the
involvement of PVL in CA-MRSA disease remains controversial [11]. Initially often
believed to function in a receptor-independent fashion, the discovery of the LukDE receptor
(CCR5) [12], and the subsequent discoveries of the PVL and LukGH (LukAB) receptors
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(C5aR, C5L2 and CD11b, respectively) [13,14], clearly showed that these toxins require
receptor interaction for cytolytic activity. Notably, these findings explained the often-noted
species and target cell specificity of the bi-component S. aureus toxins [15].

Non-receptor mediated
In 2007, it was discovered that the long-known S. aureus delta-toxin (delta-hemolysin) is but
one member of a family of secreted peptides called the phenol-soluble modulins (PSMs),
which have multiple function in staphylococcal pathogenesis [16]. Importantly, some PSMs
have pronounced, non-specific cytolytic activity. While members of the PSM family also
occur in other, less pathogenic staphylococci [17], S. aureus produces high amounts of
strongly cytolytic PSMs, in particular the PSMα peptides PSMα1 – α4 encoded in the psmα
locus, of which PSMα3 is by far the most active. PSMs trigger inflammatory responses by
interaction with the FPR2 receptor, but their cytolytic activity is FPR2-independent [18].
They are small, amphipathic peptides with detergent-like properties. Accordingly, pores
formed by delta-toxin are short-lived [19] and it can be assumed that other PSMs work
similarly. According to a recent study that performed an alanine exchange peptide library
screen with PSMα3, pro-inflammatory, cytolytic, and other properties of PSMs can be
attributed to specific amino acid positions and different parts in the peptide [20]. Notably,
similar to alpha-toxin and in contrast to many bi-component leukocidins, PSMs are
produced by most S. aureus strains [16,21]. Only strains dysfunctional in the global
virulence regulator Agr, which regulates most S. aureus toxins and exoenzymes, lack PSM
production. Recently, PSMα peptides of S. aureus were identified as the toxins that
contribute to neutrophil lysis after phagocytosis, a pathogenesis mechanism of immense
importance for the high toxicity found in strongly aggressive S. aureus strains [22–24] (Fig.
2). Notably, lysis after phagocytosis might explain at least in part why the development of
vaccines for S. aureus that work by enhancement of opsonophagocytosis failed so far [25].
Among the other leukocidins, only LukAB (LukGH) also lyses neutrophils after uptake
[26,27]. Finally, recent work indicates that S. aureus δ-toxin contributes to the allergic skin
disease atopic dermatitis by inducing mast cell degranulation [28]. Interestingly, only δ-
toxin but not PSMα peptides contributed to that phenotype, exemplifying that PSM peptides
have undergone divergent evolution to fulfill different functions in pathogenesis.

Toxins that interfere with receptor function (other than membrane-
damaging)

Enterotoxins are secreted toxins of ~ 20 to 30 kD that interfere with intestine function and
typically cause emesis and diarrhea [29]. They are superantigens, molecules that trigger T
cell activation and proliferation without the need for antigen processing by allowing non-
specific interaction of the class II major histocompatibility complex MHC II with T cell
receptors. S. aureus strains can produce a wide array (~ 20) of enterotoxins and enterotoxin-
like toxins. Enterotoxins, also produced by some other bacteria, share a common structure
comprising a two-domain fold, a long central alpha-helix, the characteristic N-terminal
“oligosaccharide/oligonucleotide fold” with beta-barrel structure and a C-terminal “beta
grasp” motif. The mechanisms by which staphylococcal enterotoxins work are not well
known, but may include the activation of cytokine release, ultimately causing cell death by
apoptosis [30]. Staphylococcal enterotoxin B (SEB) is considered a biological warfare
weapon [31]. Staphylococcal enterotoxin C (SEC) has been shown to promote infective
endocarditis, sepsis, and kidney injury in the CA-MRSA strain MW2 [32].

The most famous S. aureus superantigen, the 22-kD toxic shock syndrome toxin (TSST),
causes toxic shock syndrome (TSS) by stimulating release of IL-1, IL-2, TNF-α, and other
cytokines. TSS is a severe and potentially fatal disease mostly known for the outbreak
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associated with tampon use in the 1980s. In contrast to the enterotoxin superantigens, TSST
does not cause emesis. With the exception of SelX, a recently described core genome
encoded enterotoxin produced by 95 % of isolates, all enterotoxins and TSST are present in
only a small number of S. aureus strains [33].

S. aureus produces a series of secreted proteins that interfere with leukocyte receptors to
evade recognition and prevent subsequent activation of the immune system. CHIPS
(chemotaxis inhibitory protein of S. aureus) binds specifically to the C5aR and FPR
receptors, thereby impairing the recognition of bacterial formylated peptides by FPR and
blocking activation of leukocytes via C5a, a terminal effector of the complement system
[34]. FLIPr (FPR-like 1 inhibitory protein) and its homologue FLIPr-like also block
recognition of formylated peptides by the FPR receptor, with FLIPr-like having ~ 100 times
more potency [35,36]. Additionally, FLIPr is an efficient antagonist of FPR2 (formerly
named FPRL1), which is the receptor recognizing S. aureus PSM peptides. Finally, both
FLIPr and FLIPr-like have recently been demonstrated to competitively block IgG-ligand
binding by FcγR receptors, inhibiting neutrophil phagocytosis and subsequent killing of S.
aureus [37]. CHIPS, FLIPr and FLIPR-like are encoded within pathogenicity islands, but
show relatively high frequency among S. aureus isolates.

Enzymes
Many secreted S. aureus enzymes degrade host molecules or interfere with host metabolic or
signaling cascades. Several of those are proteases. Relatively non-specific proteases degrade
host proteins in a broad fashion, leading to tissue destruction, but may also have a more
specific impact. The protease aureolysin (S. aureus neutral proteinase) cleaves many
proteins including insulin B, with a preference of cleaving after hydrophobic residues.
Furthermore, aureolysin inactivates PSMs, thus having a major impact on the pathogenesis
of osteomyelitis [38]. It also leads to maturation of another non-specific S. aureus
exoprotease, the glutamyl endopeptidase SspA, which cleaves after glutamate residues.
Aureolysin, glutamyl endopeptidase, and the cysteine proteases staphopain A and B all
interfere with complement factors, leading to evasion of complement-mediated bacterial
killing [39]. The biological function of further S. aureus proteases, a series of serine
proteases, is not well understood, except for the exfoliative toxin serine proteases. The
exfoliative toxins specifically cleave desmosomal cadherins of the superficial skin layers
[40], leading to staphylococcal scalded skin syndrome (SSSS), a severe skin disease
presenting with rash, blisters, and severe lesional damage of the skin. Finally, S. aureus may
produce a protease that degrades collagen, called collagenase.

Staphylokinase activates plasminogen to plasmin, which degrades fibrin clots. The
biological significance of this activity is to diminish the function of the fibrin meshwork in
keeping a staphylococcal infection localized. It also cleaves the complement factor C3b
[41], adding to the broad attack of other staphylococcal proteases and further molecules,
such as the fibrinogen-binding protein Efb and SCIN (staphylococcal complement inhibitor)
[42,43], on complement function. While staphylokinase facilitates bacterial penetration
through the skin barrier, it decreases the severity of skin infections by leading to drainage
[44].

S. aureus produces two coagulases, staphylocoagulase and von Willebrand factor (vWF),
which contribute to the formation of fibrin clots after binding to prothrombin (forming a
complex called staphylothrombin) and several other plasma proteins, thereby triggering the
conversion of fibrinogen to fibrin [45]. This leads to fibrin clots on the surface of S. aureus
cells, inhibiting phagocytosis, causing abscess formation [46] and adhesion of S. aureus to
catheters during biofilm-associated infection [47].
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S. aureus beta-toxin is a sphingomyelinase of type C that degrades the sphingomyelin
present on the surface of a variety of host cells, leading to cell lysis. In many virulent S.
aureus strains, the gene encoding beta-toxin (hlb) is disrupted by a pathogenicity island [48].
Beta-toxin is thus not considered a virulence factor contributing significantly to the
pathogenicity of virulent S. aureus.

Finally, S. aureus produces lipases and nucleases, whose functions in pathogenesis are
poorly understood. Possibly, nucleases may decrease the antibacterial activity of neutrophil
extracellular traps (NETs), which consist of DNA released from lysed neutrophils [49].

Other toxins
Some S. aureus secreted host-damaging factors cannot be classified in the categories used in
this review. These include the abovementioned Efb and SCIN, which are potent inhibitors of
the function of convertase C3, a crucial enzyme in the complement pathway.

Conclusions
Main developments in recent S. aureus toxin research include the discovery of (i) the PSMs,
(ii) a large series of complement-inhibiting factors, (iii) molecules that block recognition by
host immune cells, and the finding that leukotoxins and alpha-toxin bind to specific
receptors. These findings and discoveries will prompt further research in those areas, aimed
to investigate for example the exact mechanisms by which PSMα peptides and specific
leukotoxins cause cell death and phagosomal escape.
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Highlights

• S. aureus produces a wide variety of toxins mostly aimed to evade elimination
by host defenses.

• Many S. aureus toxins are encoded on mobile genetic elements, leading to a
strongly varying repertoire of toxins in different isolates.

• Some toxins, such as alpha-toxin and PSMs, are produced by virtually all
strains, representing an S. aureus toxin “core set”.

• Classical leukotoxins of S. aureus work in a receptor-mediated, while PSMs
lyse in a receptor-independent fashion.

• The leukotoxin LukAB (LukGH) and PSMs can lyse after phagocytosis.
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Fig. 1.
Membrane-damaging toxins. Alpha-toxin and the bi-component leukotoxins of S. aureus
bind to specific receptors, upon which formation of a defined pore occurs. Receptors have
been identified for alpha-toxin, PVL, LukAB (LukGH), and LukDE. Probably gamma-toxin
also binds to a specific receptor. PSMs are believed to attach to the cytoplasmic membrane
in a non-specific fashion and lead to membrane disintegration. Probably the phospholipid
composition and membrane charge are important for cell susceptibility to PSMs. Pores
formed by PSMs are likely short-lived, as shown for delta-toxin.
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Fig. 2.
Neutrophil lysis after phagocytosis. Lysis after phagocytosis from within the neutrophil
phagosome was demonstrated for S. aureus PSMα peptides and the leukotoxin LukAB
(LukGH), illustrated here for PSMs. PSMs trigger neutrophil activation by interaction with
the FPR2 receptor. After phagocytosis and phagosome formation, bacterial regulatory
systems (Agr, stringent response) lead to PSM production and PSM-mediated phagosome
lysis. Bacteria may further proliferate in the neutrophil. Upon ultimate neutrophil destruction
the bacteria escape from the cell.
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