
FORUM ORIGINAL RESEARCH COMMUNICATION

FUsed in Sarcoma Is a Novel Regulator of Manganese
Superoxide Dismutase Gene Transcription

Sanjit Kumar Dhar,1 Jiayu Zhang,2 Jozsef Gal,2 Yong Xu,1 Lu Miao,1 Bert C. Lynn,3 Haining Zhu,2

Edward J. Kasarskis,4 and Daret K. St. Clair1

Abstract

Aims: FUsed in sarcoma (FUS) is a multifunctional DNA/RNA-binding protein that possesses diverse roles,
such as RNA splicing, RNA transport, DNA repair, translation, and transcription. The network of enzymes and
processes regulated by FUS is far from being fully described. In this study, we have focused on the mechanisms
of FUS-regulated manganese superoxide dismutase (MnSOD) gene transcription. Results: Here we demonstrate
that FUS is a component of the transcription complex that regulates the expression of MnSOD. Overexpression
of FUS increased MnSOD expression in a dose-dependent manner and knockdown of FUS by siRNA led to the
inhibition of MnSOD gene transcription. Reporter analyses, chromatin immunoprecipitation assay, electro-
phoretic mobility shift assay, affinity chromatography, and surface plasmon resonance analyses revealed the far
upstream region of MnSOD promoter as an important target of FUS-mediated MnSOD transcription and con-
firmed that FUS binds to the MnSOD promoter and interacts with specificity protein 1 (Sp1). Importantly,
overexpression of familial amyotropic lateral sclerosis (fALS)-linked R521G mutant FUS resulted in a signifi-
cantly reduced level of MnSOD expression and activity, which is consistent with the decline in MnSOD activity
observed in fibroblasts from fALS patients with the R521G mutation. R521G-mutant FUS abrogates MnSOD
promoter-binding activity and interaction with Sp1. Innovation and Conclusion: This study identifies FUS as
playing a critical role in MnSOD gene transcription and reveals a previously unrecognized relationship between
MnSOD and mutant FUS in fALS. Antioxid. Redox Signal. 20, 1550–1566.

Introduction

FUsed in sarcoma/translocated in liposarcoma (FUS/
TLS) is a DNA and RNA binding protein that is normally

localized in the nucleus but is often redistributed to cytoplasm
in familial amyotropic lateral sclerosis (fALS) cases with FUS
mutations (31). It has been demonstrated that FUS plays im-
portant roles in the regulation of gene transcription (34, 48),
DNA binding, mRNA splicing (60), DNA repair, and cell pro-
liferation (5). Although FUS/TLS knockout mice exhibit peri-
natal lethality (23), male sterility, and radiation sensitivity (30),
the molecular targets of FUS/TLS have not been identified.

In this study, we have identified FUS as an interacting
partner of nucleophosmin (NPM), which we previously es-
tablished as a coactivator with NF-jB for transactivation of

Innovation

Our findings demonstrate that FUsed in sarcoma (FUS)
regulates the basal level of manganese superoxide dis-
mutase (MnSOD), the principal enzyme responsible for the
removal of superoxide in mitochondria. We have identi-
fied FUS as a component of the transcription complex that
regulates the expression of MnSOD by binding to a FUS
recognition element on the human MnSOD gene. The data
suggest not only a role for FUS in ROS detoxifying cellular
systems, but also suggest the possibility that dysregulation
of the MnSOD gene is a mediator of mutant FUS toxicity in
mitochondria. This study is the first to implicate a mito-
chondrial-mediated mechanism by which FUS, may par-
ticipate in the progression of fALS.
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manganese superoxide dismutase (MnSOD) (SOD2) (12).
However, the role of FUS in regulating MnSOD is not well
understood. Here we investigated the role of FUS in the reg-
ulation of MnSOD gene transcription. MnSOD is a primary
antioxidant enzyme present in mitochondria. Human
MnSOD is coded by a single-copy gene consisting of five ex-
ons interrupted by four introns with typical splice junctions
(53). The basal promoter of MnSOD exhibits multiple tran-
scription factor binding motifs containing specificity protein 1
(Sp1) and AP-2 binding sites. Functional studies in cell lines
with different Sp1 protein levels suggest that Sp1 is essential
for the constitutive expression of the MnSOD gene (58). In
addition to the regulatory elements in the 5¢-flanking region,
the MnSOD gene contains enhancer elements in the second
intron that contains NF-jB, C/EBP, and NF-1 transcription
factor binding sites (26, 57). Activation of Sp1 and NF-jB is
important for the induction of MnSOD under oxidative stress
conditions in a variety of diseases, including cancer and
neurodegeneration (13, 38).

Abundant evidence supports the critical role of MnSOD as
a cytoprotective enzyme both in vivo and in vitro. MnSOD
knockout mice develop cardiomyopathy and die within 10–15
days after birth (33), and treatment with SOD mimetics can
protect MnSOD knockout mice from systemic toxicity and
neonatal death (41). Conversely, transgenic mice over-
expressing human MnSOD are protected from inflammation
(54), cardiotoxic drugs (62), and pathological and physiolog-
ical conditions leading to neuronal injury (28).

ALS is an age-associated human neurodegenerative dis-
ease affecting cortical and spinal motor neurons (44). ALS is
typically manifested by progressive muscle atrophy and
weakness leading to death due to respiratory paralysis
within 3–5 years. Although the critical sequence of molecular
events leading to ALS is not clear, recurring themes of ALS
pathogenesis include mitochondrial dysfunction, protein
misfolding and aggregation, axonal transport defects and
glutamate excitotoxicity. Approximately 90% of ALS cases
are sporadic and the other 10% of ALS cases are familial
(fALS), usually with an autosomal dominant pattern of in-
heritance (24). Several genes have been implicated in famil-
ial ALS, including SOD1 (encoding Cu/Zn superoxide
dismutase), ANG (angiogenin), VAPB (vesicle associated
membrane protein B), TARDP (TAR DNA binding protein
TDP-43), FUS/TLS (42) and more recently expansion of a
noncoding hexanucleotide repeat in the C9orf72 gene (9).
FUS was originally identified by its fusion to C/EBP
homologous protein (CHOP), a member of the CCAAT/
enhancer-binding protein, family of transcription factors in
human myxoid liposarcoma with t(12;16) chromosomal
translocation (11). FUS/TLS shares a high homology with
Ewing’s sarcoma and TATA-binding protein associated
factor II (TAFII); which are collectively called FUS Ewing’s
sarcoma (FET) family proteins (1). The C-terminal of FUS is
composed of multiple domains of peptide sequences that are
often found in RNA-binding proteins. The RNA-binding
sequences known as RNA recognition motif (RRM) are rel-
atively conserved and are flanked by two regions rich in Arg-
Gly-Gly repeats (RGG domains) separated by a zinc finger
region. FUS can also bind with double stranded DNA via
the C-terminal region (46). In the N-terminus, the FET fam-
ily of proteins contains a glutamine-, serine-, and tyrosine-
rich region that functions as a transcriptional activator

when fused to a heterologous DNA binding domain (39).
However, the cellular targets of these genes have not been
identified.

In the present study, we investigated the roles of wild-type
and mutant FUS in MnSOD gene activation using cell culture
models and skin biopsy samples from fALS patients with the
R521G FUS mutation. The key finding of this study is that FUS
regulates MnSOD gene transcription and the FUS mutation in
fALS causes impaired MnSOD expression and reduced en-
zymatic activity. We further elucidated the detailed molecular
mechanism by which FUS regulates MnSOD gene expression.

Results

Identification of FUS in MnSOD transcription complex
by proteomic analysis

We previously showed that NPM, a RNA binding protein,
physically interacts with the MnSOD promoter and enhancer
regions, facilitates transcription factor bindings and coactivates
gene transcription (12, 15). To identify proteins interacting with
NPM in the transcription complex, nuclear extracts were im-
munoprecipitated with NPM antibody, or normal immuno-
globulin (IgG) as a control coupled to agarose A/G beads, and
the immune complexes were eluted as illustrated in Figure 1A.
Eluted protein complexes were then subjected to sodium do-
decyle sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE) electrophoresis and visualized by Coomassie brilliant
blue staining (Fig. 1B). The specificity of immunoprecipitation
was verified using normal IgG instead of the NPM antibody.
To verify the presence of NPM and FUS protein in the im-
munoprecipitated complex, the proteins separated on the SDS-
PAGE gels were transferred to nitrocellulose membranes and
subjected to Western blotting analysis using the NPM or FUS
antibody. As shown in Figure 1C, the NPM antibody im-
munoprecipitated the NPM protein along with FUS, but the
nonimmune IgG did not. To identify proteins in the immuno-
precipitate, the whole complex (eluted fraction) was digested
with trypsin and analyzed by mass spectrometry. LC-MS/MS
analysis identified several proteins abundantly present in the
immunoprecipitate. The significant hits obtained by MS/MS
analysis are shown in Figure 1D. The identified peptide frag-
ments of NPM, nucleolin and FUS are presented in Table 1.

Impairment of MnSOD enzyme activity in fALS

To probe the relationship between MnSOD and fALS, we
collected skin biopsy samples from three individual patients
carrying the R521G mutation in the FUS gene who were
treated at the University of Kentucky, and three non-ALS
control subjects. Using these biopsy samples, we established
primary fibroblast cultures, and determined MnSOD protein
levels and enzyme activity by Western blotting and activity
gel electrophoresis, respectively. The samples were also ex-
amined for FUS mutation at position 1561 (R521G) in exon 15,
where it has recently been demonstrated to be present in some
families with fALS (31). The R521G mutation was verified in
all three symptomatic patients and the levels of MnSOD ac-
tivity (Fig. 2A) in cultured fibroblasts derived from these fALS
patients were reduced as compared to the non-ALS controls.
The reduction in MnSOD activity is related to the reduction of
MnSOD protein level (Fig. 2B). That the reduced level of
MnSOD protein is not due to the loss of mitochondria but is
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due to the reduction of protein expression in fALS patients
was confirmed by referencing the levels of succinate dehy-
drogenase. These results indicate that MnSOD enzymatic
activity is compromised in fALS patients with the R521G
mutation in FUS. The reduced MnSOD activity and protein
levels are consistent with the possibility that FUS may par-
ticipate in the transcriptional control of MnSOD identified by
proteomic analysis.

Mutation of FUS abrogates MnSOD gene transcription
and enzymatic activity

To directly determine how FUS plays a role in MnSOD
transcription and whether the mutated FUS gene found in
fALS can perturb MnSOD transcription, we overexpressed
wild-type FUS cDNA or FUS cDNA carrying the mutation at
position 1561 in exon 15 (C > G), which corresponds to the
arginine to glycine mutation at amino acid 521 (R521G). The
arginine residue in FUS at position 521 is highly conserved in
a variety of species (Supplementary Fig. S1; Supplementary
Data are available online at www.liebertpub.com/ars). After
transient transfection of JB6 cells with a p3X-Flag-CMV10/

FUS expression vector containing wild-type or mutant FUS
along with MnSOD promoter construct, we examined
MnSOD promoter activity. Overexpression of wild-type FUS
increased the levels of MnSOD luciferase reporter gene ac-
tivity (Fig. 3A) and mRNA (Fig. 3B), whereas overexpression
of the mutant FUS did not. To examine whether the increase in
MnSOD level led to the production of an active MnSOD, we
tested the effects of FUS on MnSOD activity. As shown in
Figure 3C, MnSOD enzyme activity increased significantly in
JB6 cells overexpressing wild-type FUS but not in cells
transfected with the mutant FUS. These results demonstrate
that compared to wild-type FUS, the R521G mutant FUS is
incapable of activating MnSOD gene transcription.

Role of FUS in MnSOD gene expression

To investigate the role of FUS in MnSOD gene expression,
JB6 cells were transiently transfected with different concen-
trations of FUS expression vector and MnSOD promoter with
or without the I2E enhancer constructs (57). Overexpression
of FUS with the promoter and enhancer constructs led to a
dose-dependent increase of MnSOD gene transcription as

FIG. 1. Identification of
FUsed in sarcoma (FUS) in
nucleophosmin (NPM) im-
munocomplex. Transcription
factor as immune-complexes
were pulled down from the
nuclear extracts obtained
from hepatocellular carcinoma
(HepG2) cells by immuno-
precipitation with the NPM
antibody for LC/MS/MS
analysis and sodium dodecyle
sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE)
analysis (A). The proteins were
separated on SDS-polyacryl-
amide gel and stained with
Coomassie brilliant blue. The
immunoprecipitated bands
with a molecular weight that
corresponds to NPM or FUS
are marked by an asterisk (B).
The presence of NPM and FUS
in the immunocomplex was
detected by Western blotting
using monoclonal antibody to
NPM (1:1000) and polyclonal
antibody for FUS (1:1000), re-
spectively (C). Identities of
proteins or group of proteins
that are present in the im-
munocomplex are shown (D).
To see this illustration in color,
the reader is referred to the web
version of this article at www
.liebertpub.com/ars
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measured by luciferase activity, which was not observed
with transfection of empty vectors without the FUS gene
sequence (Fig. 4A, B). We verified these findings in motor
neuron-like NSC-34 cells after transfection with wild-type or
mutant FUS expression vector together with MnSOD pro-
moter-driven luciferase reporter vector. Consistent with the
findings in JB6 cells, expression of wild-type FUS signifi-
cantly increased the reporter gene activity and MnSOD
protein levels in NSC-34 cells (Fig. 4C). In contrast, expres-
sion of mutant FUS (R521G) or deletion of 32 amino acids
from the C-terminal was unable to induce MnSOD reporter
gene activity or protein levels (Fig. 4C, D). To verify the role
of FUS as a transcriptional regulator for MnSOD, we trans-
fected the FUS expression vector into JB6 cells and measured
the MnSOD mRNA levels. As shown in Figure 4E, FUS
overexpression led to a significant increase in MnSOD
mRNA level as detected by quantitative real-time PCR, in-
dicating that FUS-mediated induction of MnSOD gene ex-
pression is a transcriptional event. This result was
corroborated by measuring MnSOD mRNA levels in FUS-
transfected cells with or without actinomycin D, an inhibitor
of de novo mRNA synthesis. Overexpression of FUS signifi-
cantly increased MnSOD mRNA levels as compared to the
empty vector transfection control; however, the increase was
blocked completely by pretreatment with actinomycin D
(Fig. 4F). These results indicate that FUS-mediated induction
of MnSOD gene expression is a result of increased mRNA
synthesis and is not due to mRNA stabilization. Over-
expression of FUS also resulted in dose-dependent increases
of FUS and MnSOD proteins as detected by Western blotting
using the Flag and MnSOD antibodies, respectively, which
was not observed with the transfection of the empty vector
(Fig. 4G). These results indicate that FUS induces MnSOD
gene transcription resulting in increased protein expression.

To further verify the role played by FUS in MnSOD gene
expression, JB6 cells were transfected with control siRNA or
FUS siRNA. Transfection of FUS siRNA at different con-
centrations suppressed MnSOD gene expression in a dose-
dependent manner as indicated by MnSOD reporter gene
activity (Fig. 4H) and protein level (Fig. 4I). The suppression is
statistically significant compared to transfection with the
control siRNA. Transfection of FUS siRNA but not the control

siRNA suppressed the level of endogenous FUS and MnSOD
proteins with no suppressing effect on the nontarget gene
product GAPDH (Fig. 4I). These results suggest that the en-
dogenous FUS gene is as critical to activating MnSOD gene
expression as the ectopically expressed FUS.

Identification of FUS responsive sites
in the MnSOD promoter

To identify FUS binding site(s) in the MnSOD promoter, we
prepared a series of deletion constructs of the MnSOD pro-
moter, which we cotransfected with FUS expression vector or

FIG. 2. Levels of manganese superoxide dismutase
(MnSOD) in amyotropic lateral sclerosis (ALS) patients.
Human skin biopsy samples collected from the familial ALS
(fALS) patients or from normal individuals were minced into
small pieces in modified Eagle’s medium (MEM) cell culture
medium, and then transferred onto primary culture dish.
After the tissues were attached to the flask, MEM was re-
moved and supplemented with MEM containing 20% fetal
bovine serum, 20 U/ml penicillin-streptomycin, 2 mM gluta-
mine (Invitrogen). Cells at 80%–90% confluence were used for
experiments. The cell lysates of the primary human skin fi-
broblasts obtained from ALS patients with R521G mutation in
FUS gene or from normal individuals were subjected to 12.5%
polyacrylamide native gel for MnSOD activity, which was
then detected by staining the gel with nitro-blue-tetrazolium
dye (A, top panel). The bands were densitometrically scanned
and normalized with CuZnSOD (A, bottom panel). The cell
lysates were also subjected to SDS-PAGE followed by Western
blotting using MnSOD specific antibody to detect MnSOD
protein levels (B, top panel). The protein levels were quantified
by densitometric scanning of MnSOD bands followed by
normalization with succinate dehydrogenase (SDHB) as an
internal control (B, bottom panel). Each data point represents
mean – SD of three independent samples and significant dif-
ference as compared to respective controls is indicated by
**p < 0.01. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars

Table 1. Sequences of Trypsin-Produced Peptide

Fragments from Nucleophosmin Mediated

Immunoprecipitates by MS/MS-Analysis

Human Nucleophosmin
MQASIEKGGSLPK
MTDQEAIQDLWQWRK
MTDQEAIQDLWQWR
MSVQPTVSLGGFEITPPVVLR

Human Nucleolin
AIRLELQGPR
GFGFVDFNSEEDAK
GLSEDTTEETLKESFDGSVR
TLVLSNLSYSATEETLQEVFEK
QKVEGTEFTTAFNLFVGNLNFNK

RNA-binding protein FUS
AAIDWFDGK
ADFNRGGGNGRGGR
GGMGGSDRGGFNKFGGPR
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FIG. 3. Mutation in FUS gene abrogates MnSOD transcription. Luciferase activity of the MnSOD promoter ( - 3401 to
+ 24)-driven pGl3 reporter gene after transfection with wild-type or mutant FUS expression vector (A). Relative level of
MnSOD mRNA was determined by real-time PCR after normalization with GAPDH mRNA levels as loading control (B).
MnSOD enzyme activity (Units/mg protein) was measured in whole cell extract after transfection of wild-type FUS or
mutant FUS expression vector in JB6 cells (C). Each data point represents mean – SD of three independent experiments and
significant difference as compared to respective controls is indicated by *p < 0.05 and **p < 0.01.

FIG. 4. FUS increases MnSOD expression. Luciferase activity of pGl3 reporter vector driven by the MnSOD promoter
( - 3401 to + 24) (A) or MnSOD promoter/enhancer ( - 3401 to + 24/1742 to 2083) construct (B) was measured in JB6 cells.
MnSOD promoter ( - 3401 to + 24) driven luciferase activity (C) and MnSOD protein levels (D) were determined in NSC-34 cells
after transfection with wild-type or mutant FUS expression vector. MnSOD mRNA levels after FUS transfection were determined by
Real-time PCR [briefly, real-time PCR was performed with a Light Cycle System (Roche Diagnostics) according to the manufac-
turer’s protocol]. Real time PCR in the presence or absence of actinomycin D (0.5 lg/ml) (E, F). The level of MnSOD proteins in JB6
cells with or without FUS overexpression was also detected by Western blotting (G, top panel), and the protein bands were
densitometrically scanned and graphed (G, bottom panel). The effect of endogenous FUS on MnSOD gene expression was evaluated
by measuring the MnSOD promoter ( - 3401 to + 24)-driven luciferase reporter gene activity in JB6 cells after cotransfection with FUS
siRNA (H). Endogenous levels of FUS and MnSOD proteins were measured by Western blot (I, top panel), and the MnSOD protein
bands were quantified and normalized with the band intensity of GAPDH (I, bottom panel). Each data point represents mean – SD
of three independent experiments and significant difference as compared with respective controls is indicated by *p < 0.05 or
**p < 0.01. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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empty vector along with renilla luciferase as an internal
control. Cotransfection of the long fragment of the MnSOD
promoter and FUS expression vector resulted in increased
luciferase activity as compared with the empty vector co-
transfection control. The cotransfection of the 5¢-region of
MnSOD promoter constructs containing nucleotides ( - 3401
to + 24) and ( - 2947 to + 24) showed approximately a four-
fold increase of luciferase activity as compared to that of the

empty vector cotransfection control (Fig. 5B). Cotransfection
of the 5¢region of MnSOD promoter constructs containing the
shorter nucleotides ( - 1605 to + 24), ( - 1240 to + 24), ( - 555 to
+ 24), or ( - 257 to + 24) with the FUS expression vector failed
to induce luciferase activity (Fig. 5B). These results indicate
that FUS-responsive site(s) are located in the far upstream
region of the MnSOD gene promoter between nucleotides
( - 2947 to - 1605).

FIG. 5. Identification of
FUS-mediated response in
MnSOD promoter. Schematic
description of MnSOD gene
showing the promoter region
(A) and various lengths of
MnSOD promoter were sub-
cloned in PGl3 luciferase vec-
tor (B). DNAs were
cotransfected with FUS ex-
pression vector for 48 h. Cells
were then collected for lucif-
erase activity measurement,
which was used as a surrogate
measure for MnSOD gene
transcription. Data were nor-
malized and expressed in fold
change relative to empty vec-
tor transfected control (B).

FIG. 6. FUS binds with MnSOD promoter. The binding of FUS to the promoter of MnSOD gene was evaluated by
chromatin immunoprecipitation (ChIP) assay as described under ‘‘Experimental Procedures.’’ Briefly, chromatins were im-
munoprecipitated by FUS antibody or immunoglobulin (IgG) as control and immunoprecipitated DNA was amplified by PCR
using primers targeted to the promoter region ( - 2931 to - 2712 and - 2264 to - 2075) of MnSOD gene. Total genomic DNA
obtained after transfection was parallel-amplified by using the same primer as input control (A). Predicted putative FUS
binding element in MnSOD promoter and three mutated oligonucleotides were designed to use as probe (B). Oligonucleotides
were radioactively labeled with [32P]ATP and T4 polynucleotide kinase as described previously (23). Electrophoretic mobility
shift assay (EMSA) was carried out to separate DNA-protein complexes on 6% polyacrylamide native gel. The arrow points to
protein-DNA complexes (C). The biotinylated oligonucleotides of wild-type and mutant type probes were used for DNA
protein interaction by affinity chromatography followed by Western blotting using anti-FUS or anti-Flag antibody (D).
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To identify the putative FUS binding site on the MnSOD
promoter, we first performed chromatin immunoprecipitation
(ChIP) assay using FUS or Flag antibody with the nuclear
extracts prepared from cells with or without FUS over-
expression. For this purpose, we cross-linked DNA protein
complexes, which were subjected to ChIP using FUS or Flag
antibody, as well as nonimmune control antibody. As shown
in Figure 6A, ChIP with FUS or Flag antibody and subse-
quent PCR amplification detected a 220-bp MnSOD pro-
moter fragment ( - 2931 to - 2712), and FUS overexpression
resulted in a higher level of PCR product compared to empty
vector transfection control. The ChIP assay performed using
the nonimmune antibody was unable to pull down the
promoter fragment (Fig. 6A). Although reporter activity
data suggest that FUS may bind anywhere between - 2947
to - 1605, PCR amplification of - 2264 to - 2075 fragment
showing no bands after ChIP assay suggests that FUS
binds between - 2931 to - 2712 in the MnSOD promoter
(Fig. 6A).

FUS is known to have a potential DNA binding site with a
nucleotide sequence of ACTGGCTC (2). A homology search
identified this specific nucleotide sequence at the far upstream
region of the MnSOD promoter (Fig. 6B). To verify FUS binding
to this nucleotide sequence, we made a wild-type probe with
this nucleotide sequence and three mutant variants (Fig. 6B) for
electrophoretic mobility shift assay (EMSA) using nuclear ex-
tracts prepared from cells with or without FUS transfection.
The results demonstrate that FUS protein binds to the double
stranded DNA of the wild-type probes even in the presence of a
100-fold excess of nonspecific DNA (non-self-lane in Fig. 6C),
and binding is suppressed in the presence of self-competitor or
cold oligonucleotide (self-lane in Fig. 6C). Transfection of FUS
increased the DNA binding of the nuclear extract as compared
to empty vector transfection control. All three mutations in this
oligonucleotide sequence significantly suppressed FUS protein
binding (Fig. 6C). These results confirm that FUS specifically
binds with double stranded DNA in the MnSOD promoter
with the nucleotide sequence of ACTGGCTC and the alter-
ations in this nucleotide sequence significantly reduce FUS
binding to the MnSOD promoter.

To confirm the identity of FUS protein bound to DNA, the
wild-type or mutant-1 double stranded DNA probes as de-
scribed in Figure 6B were labeled with biotin and immobilized
on streptavidine columns. Nuclear extract prepared from cells
overexpressing FUS was subjected to DNA affinity chroma-
tography to purify the FUS protein. The FUS protein that
bound to the biotinylated DNA probes was eluted and sub-
jected to SDS-PAGE electrophoresis followed by Western blot
analysis using FUS or Flag antibody. The results show that
FUS protein was eluted from the column with biotinylated
wild-type DNA probes but was not eluted from similarly
prepared mutant DNA probes (Fig. 6D, Supplementary
Fig. S2).

To verify the interaction of FUS with DNA, the interaction
between FUS and the wild-type or mutant double stranded
DNA probes was further studied by surface plasmon reso-
nance (SPR) analysis. Affinity purified FUS protein bound to
the wild-type probe with very high affinity, whereas binding
to the modified probe was remarkably lower compared to the
binding with the wild-type probe (Table 2). The detailed
binding kinetics of the affinity-purified FUS to wild-type or
mutant probe is shown in Supplementary Fig. S3.

FUS mediates MnSOD expression via complex
formation with Sp1 and NPM

We previously identified NPM as an interaction partner of
Sp1 in the induction of MnSOD gene transcription (15). In this
study, using a proteomic approach we identified FUS as a
component of the immunocomplex with NPM and also
identified the putative binding site of FUS on the MnSOD
gene. Therefore, we tested the hypothesis that FUS is a com-
ponent of the transcription complex regulating the expression
of the MnSOD gene. Our immunoprecipitation data show that
FUS antibody was able to immunoprecipitate Sp1 and NPM;
reverse immunoprecipitation shows that Sp1 antibody was
able to immunoprecipitate FUS and NPM (Fig. 7A), suggest-
ing that FUS interacts with Sp1 and NPM. Reverse immuno-
precipitation with the NPM antibody also shows that FUS,
NPM and Sp1 were all present in the complex and further
overexpression of FUS increased transcription complex for-
mation (Fig. 7B). To determine whether FUS-mediated tran-
scription of the MnSOD gene requires Sp1, we suppressed Sp1
expression with Sp1 siRNA and overexpressed FUS by
transfecting the FUS expression vector. Transfection of Sp1
siRNA suppressed Sp1 protein and MnSOD protein expres-
sion (Fig. 7C). Cotransfection of FUS with control siRNA in-
creased MnSOD protein level, whereas coexpression of FUS
with Sp1 siRNA blocked MnSOD expression (Fig. 7C). These
results demonstrate that FUS forms a complex with Sp1 and
NPM and that Sp1 is required for the FUS-mediated induction
of MnSOD expression. Similar experimental approaches fur-
ther demonstrate that coexpression of FUS and NPM siRNA
suppresses FUS mediated MnSOD gene transcription. Con-
sistently, coexpression of NPM and FUS siRNA also attenu-
ated NPM mediated MnSOD gene transcription (Fig. 7D).
These results suggest that FUS, Sp1 and NPM form a func-
tional complex for MnSOD gene transcription.

To determine whether the inability of mutated FUS to in-
duce MnSOD transcription is due to loss in binding to the
MnSOD promoter, we performed EMSA using nuclear ex-
tracts from cells transfected with wild-type FUS, mutant FUS,
or empty vector. The nuclear extract from cells transfected
with wild-type FUS displayed strong binding with the wild-
type probe of the MnSOD promoter, whereas the binding
activity of the nuclear extracts from cells transfected with
mutated FUS was not different from that of the cells trans-
fected with the empty vector. Mutations in the consensus
nucleotide sequence in the MnSOD promoter for FUS binding
abrogated the binding by the nuclear extracts prepared from
cells transfected with either wild-type or mutated FUS (Fig.
8A). These data support the notion that FUS binds to a specific
DNA sequence in the MnSOD promoter and that mutations

Table 2. Kinetics of Purified FUsed in Sarcoma Binding

to MnSOD Promoter

Type of ligand
Ka Kd KD Chi2

(1/ms) (1/s) (M) RU

Wild type probe 7.11E + 03 7.70E-04 1.08E-07 11.82
Mutant probe 2.41E + 00 8.12E-04 3.37E-04 10.65

The biotinylated wild type or mutant type oligonucleotides were
used for DNA protein interaction by Surface Plasmon Resonance
analysis.
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in either the DNA sequence that is recognized by FUS, or the
consensus coding sequence of the FUS gene, disrupt the
binding of the FUS protein to its target DNA sequence in
the MnSOD gene promoter. We also performed ChIP assay
coupled with PCR amplification of the FUS binding region
contained in the MnSOD promoter using nuclear extracts
from cells overexpressing wild-type or mutant FUS. PCR
amplification of a 220-bp promoter fragment (nucleotides
- 2931 to - 2712) was achieved with transcription complexes
that immunoprecipitated with FUS or Flag antibody from the

FUS transfected cells but not with the transcription complex
immunoprecipitated from cells transfected with mutant FUS
(Fig. 8B, upper panel). PCR amplification of ChIP DNA products
was not detected with primers encompassing nucleotides
- 1823 to - 1613 within the MnSOD promoter (Fig. 8B, lower
panel). Importantly, these results indicate that wild-type FUS
specifically binds to the MnSOD promoter region and that
mutation in the FUS gene abolishes its ability to interact with
the MnSOD promoter region. To probe whether the inability of
mutant FUS to bind to MnSOD promoter is due to the

FIG. 7. Association of FUS with NPM and specificity protein 1 (Sp1). In vivo association of FUS with NPM and Sp1 in
isolated nuclear extract was detected by coimmunoprecipitation using FUS or Sp1 antibody. Coimmunoprecipitation by anti-
rabbit IgG from nuclear extract was used as negative control (A). Reverse immunoprecipitation was also carried out using
NPM antibody, and FUS and Sp1 were detected in the immunocomplex by Western blotting (B). Cells were transfected with
Sp1 siRNA or control siRNA with or without FUS expression vector for 48 h. After the transfection, cell lysates were prepared
and subjected to SDS-polyacrylamide gel electrophoresis (C). FUS, Sp1, and MnSOD proteins were detected by Western
blotting using antibodies specific to FUS, Sp1, and MnSOD, respectively. GAPDH was used as loading control (top panel).
MnSOD protein bands were densitometrically scanned and quantified using GAPDH as loading control (bottom panel).
MnSOD promoter driven luciferase activity was measured after transfection of combined NPM siRNA and FUS expression
vector or a combination of FUS siRNA and NPM expression vector in JB6 cells (D, bottom panel). The suppression of proteins
after transfection of corresponding siRNA and overexpression of proteins after transfection of corresponding expression
vector were confirmed by Western blotting (D, upper panel). Each data point represents the mean – SD of three independent
experiments. Significant difference as compared with corresponding control is indicated by *p < 0.05 and **p < 0.01.
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unavailability of the protein in the nucleus, we performed cell
fractionation followed by Western blotting. Our results show
that mutant FUS is located in the nucleus after overexpression
(Supplementary Fig. S4). These results further demonstrate that
the inability of mutant FUS to interact with the MnSOD pro-
moter is not due to its absence in the nucleus.

Interaction of FUS with other transcription factors
is DNA dependent

Although we established the interaction of FUS with NPM
and Sp1 (Fig. 7A, B), the interaction of mutated FUS with these
transcription factors remained to be determined. To address
this question, we immunoprecipitated the transcription fac-
tors from both wild-type and mutant FUS overexpressing
cells using the Flag antibody followed by Western blotting.
The results show that the Flag antibody could immunopre-
cipitate Sp1 and NPM from cells overexpressing the wild-type
FUS but not from cells overexpressing the mutant FUS. We
confirmed that the Flag antibody immunoprecipitated Flag-

tagged FUS protein from cells overexpressing either the wild-
type or mutant FUS (Fig. 8C, upper panel). Nonimmune IgG,
which was used as a control, did not immunoprecipitate any
of the transcription factors. These results were further verified
by an alternative method, in which the Flag antibody was
impregnated in sepharose beads, packed in column, and used
to pull down transcription factors from nuclear extracts ob-
tained from cells overexpressing wild-type or mutant FUS.
The Western blotting results acquired by using this method
are shown in the lower panel of Figure 8C. Consistent with the
earlier results, the Flag antibody was able to immunoprecip-
itate Flag-tagged FUS, SP1 and NPM from cells over-
expressing wild-type FUS. In contrast, smaller amounts of Sp1
and NPM were immunoprecipitated with Flag-FUS from cells
overexpressing the mutant FUS. The Flag antibody did not
immunoprecipitate these transcription factors from the nu-
clear extracts of cells transfected with empty vector control
(Fig. 8C, lower panel).

To determine whether FUS binding to DNA is required for
FUS interaction with NPM and Sp1, we treated the cell lysates

FIG. 8. Mutation in FUS abrogates its activity for MnSOD promoter binding and protein-protein interaction. EMSA was
carried out with nuclear extracts from cells transfected with wild-type or mutant FUS using 32p labeled oligo-nucleotides as
shown in Figure 6B as probe. The arrow points to protein-DNA complexes complexes (A). For ChIP assay, using FUS or Flag
antibody or IgG as control and interacting DNAs were immunoprecipitated and amplified by PCR using primers targeted to
the promoter region ( - 2931 to - 2712) of MnSOD gene. Total genomic DNA obtained after transfection was parallel-
amplified by using the same primer as input control (B). The specificity of FUS binding to the MnSOD promoter was verified
by amplifying the same DNAs with the primer set selected from the untargeted region of MnSOD promoter ( - 1823 to
- 1613) (B). Coimmunoprecipitation experiment was performed using nuclear extract of cells transfected with wild-type or
mutant FUS expression vector using Flag antibody (C). Flag, Sp1, and NPM was detected by Western blotting analysis using
antibodies specific for these proteins and IgG was used as negative control. Equal sample loading was confirmed by probing
the same membrane with anti-IgG (C, top panel). FUS interacting proteins were also affinity purified from the nuclear extracts
of cells transfected with wild-type or mutant-type FUS expression vector or empty vector using anti-Flag affinity column.
Flag binding proteins were eluted with 0.5 M glycine solution, analyzed by SDS-PAGE, and detected by Western blotting (C,
bottom panel). Coimmunoprecipitation was performed with cell lysates incubated in the absence (D, top panel) or presence (D,
bottom panel) of DNase for 1 h at 37�C.
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with DNase in vitro and performed immunoprecipitation. We
confirmed that DNase treatment degraded DNA under the
experimental conditions (Supplementary Fig. S5). Without
DNase treatment, the Flag antibody was able to pull down
Sp1 and NPM from cells overexpressing wild-type FUS (Fig.
8D, upper panel). After DNase treatment, the Flag antibody did
not pull down either Sp1 or NPM, although Flag-tagged FUS
was immunoprecipitated from cells overexpressing either the
wild-type or the mutant FUS. Immunoprecipitation with
nonimmune IgG did not show any band corresponding to
Flag, Sp1, or NPM (Fig. 8D, lower panel). These results suggest
that FUS-binding to DNA is required for FUS to interact with
Sp1 and NPM and that the mutation in FUS significantly
weakens such interactions. These findings support the con-
clusion that binding to MnSOD promoter DNA is required for
FUS to interact with important transcription factors and en-
hance MnSOD gene transcription.

FUS-mediated induction of MnSOD protects cells
from toxicity

To evaluate the significance of FUS-mediated MnSOD in-
duction, motor neuron-like NSC-34 cells were transfected
with either wild-type FUS or mutant FUS expression vectors.
The biological significance of FUS-mediated MnSOD expres-
sion was determined by performing cytotoxicity assay after
treatment with the cytotoxic drug rotenone that targets mi-
tochondria. We used Trypan blue exclusion assay to deter-
mine the rotenone-mediated toxicity in cells transfected with
the wild-type or mutant FUS. Treatment with rotenone sig-
nificantly increased cell death in a dose-dependent manner
which is markedly protected by overexpression of FUS.
Overexpression of mutant FUS in NSC-34 cells exhibited a
higher level of cell death after rotenone treatment (Fig. 9A).
These findings were further verified in primary skin fibro-
blasts after treatment with rotenone. Consistently, skin fi-
broblast from fALS patients harboring mutant FUS showed
significant and dose-dependent increase in cell death after
exposure to rotenone (Fig. 9B). These results suggest that
wild-type but not mutant FUS provides significant protection
against the cytotoxic effect of rotenone (Fig. 9A, B).

To further investigate whether FUS-mediated protection of
cell death is related to mitochondrial phenomena, we measured
the DCFDA and H2DCFDA in NSC-34 cells after over-
expression of FUS combined with rotenone treatment. Treat-
ment of rotenone significantly increased the H2DCFDA/
DCFDA ratio which is attenuated by FUS overexpression and/
or polyethylene glycol (PEG)-SOD pretreatment (Fig. 9C). Si-
milarly, primary skin fibroblasts from fALS patients showed a
higher level of H2DCFDA/DCFDA ratio compared to normal
control fibroblasts. Pretreatment of PEG-SOD suppressed the
rotenone induced oxidative stress in mutant FUS harboring skin
fibroblasts (Fig. 9D). Additionally, we measured the reduced
and oxidized glutathione (GSSG) in NSC-34 cells after over-
expression of the wild-type or mutant FUS expression vector.
Consistent with DCFDA data, overexpression of wild-type FUS
led to the reduction of GSSG and an increase in GSH:GSSG ratio
(Supplementary Fig. 6B). Consistently, GSSG levels were higher
in primary fibroblasts from fALS patients compared to normal
counterparts. GSH levels remained unchanged in fALS patients
compared to controls resulting in decreased GSH:GSSG ratio
(Supplementary Fig. 6C).

Discussion

MnSOD is the primary antioxidant enzyme that removes
superoxide radicals in mitochondria. The expression of
MnSOD is essential for the survival of all aerobic organisms;
thus, elucidating the mechanisms of MnSOD regulation is
very important for understanding the well-being of normal
cells and tissues, especially such tissues as motor neurons that
have a high energy demand. Reactive oxygen species (ROS)
play important roles in maintaining the prooxidant and an-
tioxidant states of cells. The cellular stress response is asso-
ciated with the activation of prosurvival pathways that are
under the control of protective genes called vitagenes (re-
viewed in 6). MnSOD may participate as a vitagene to protect
the cells via the dismutation of superoxide radicals. In addi-
tion, dismutation of superoxide to hydrogen peroxide after
enzymatic reaction of MnSOD can also lead to the expression
of other vitagenes, such as thioredoxin further contributes to
protection against cellular damage (7). In this context, the FUS
mediated induction of MnSOD may be considered a compo-
nent of the vitagenes network. The association of the FUS
mutation with MnSOD expression that results in a compro-
mised level of MnSOD activity in fALS disease may affect the
vitagenes network, leading to enhanced cellular damage.

The current report identifies and characterizes the FUS-
responsive element in the promoter of the MnSOD gene with
an emphasis on the role of FUS in the transcriptional regula-
tion of MnSOD gene expression. FUS mutations have recently
been reported in Type 6 fALS (52). We have demonstrated
that skin fibroblasts derived from fALS patients carrying the
R521G mutation in FUS had significantly decreased levels of
MnSOD, suggesting that MnSOD and mitochondria may play
an important role in the pathogenesis of ALS in this subset of
patients with the R521G FUS mutation.

Transcriptional activation of the MnSOD gene has been
shown to be dependent on several transcription factors, in-
cluding Sp1 and NF-jB (29, 47). Previously, we identified the
minimal promoter in the MnSOD gene, which is located at
555-bp upstream from the start site that binds Sp1 and Ap2
and is required for its basal transcription function (58, 61).
Mutagenesis study of this region demonstrated that Sp1 is
essential for the transcription of the MnSOD gene (58). The
MnSOD gene also contains an enhancer element located in the
second intron responsible for NF-jB-mediated gene tran-
scription (26, 57). Overexpression of FUS resulted in a several-
fold increase in the luciferase activity driven by the MnSOD
promoter; however, the presence of an enhancer in the
reporter gene construct did not play an additional role in FUS-
mediated MnSOD gene transcription, suggesting that FUS-
mediated MnSOD transactivation is not dependent on NF-jB
sites in the second intron. Using a variety of cell lines, Fuji and
Taniguchi (19) reported that MnSOD gene transcription can
be activated in a promoter-dependent manner in NF-jB un-
responsive cells. This observation is consistent with our finding
that the intronic element is not an essential factor for the in-
duction of the MnSOD gene by FUS. Our observation that FUS-
mediated MnSOD induction occurred only when we used a
long MnSOD promoter (construct [ - 3401 to + 24] or [ - 2947 to
+ 24], Figure 5B) suggests that the FUS-responsive element is
located in the far 5¢-upstream region of the MnSOD gene.

It has been demonstrated that ACTGGCTC (reverse se-
quence) in the form of double stranded DNA in the
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macrophage specific cerebrospinal fluid receptor-1 gene can
bind with FUS protein (25). Blast homology search analysis
identified that the GGCTC sequence was present in MnSOD
promoter at about 2.8-kb upstream from the start site. Our
experimental results establish that the FUS-responsive ele-
ment in the promoter region between ( - 2947 to 24) (Fig. 5B) is
functional. Consistent with this finding, in vivo ChIP assay
data confirm that FUS interacts with the MnSOD promoter at

the upstream region (Fig. 6A). Although we observed that
FUS DNA binding was increased by overexpressing FUS, as
determined by EMSA, we could not supershift the binding
complex with the FUS antibody. Therefore, we took an al-
ternative approach: we used the affinity purified FUS with
double stranded DNA probes containing wild-type or mutant
oligonucleotide sequences of the FUS response element, and
established the binding of FUS to double stranded DNA. It

FIG. 9. Overexpression of
FUS protects against rote-
none induced cytotoxicity.
NSC-34 cells were transfected
with wild-type or mutant
FUS expression vector fol-
lowed by treatment with ro-
tenone for 24 h. Trypan blue
exclusion assay was per-
formed to detect the dead
cells (A). Cultured primary
skin fibroblast cells that were
obtained from fALS patients
or from normal subjects were
treated with the indicated
concentration of rotenone
and the Trypan blue exclu-
sion assay was performed
24 h after treatment (B). Both
live and dead cells were
counted, and the ratio of
dead to total cells was calcu-
lated and expressed as fold
changes. H2DCFDA and
DCFDA fluorescence was
measured in NEC-34 cells (C)
and skin fibroblast (D) after
treatment with rotenone.
Cells were also treated with
polyethylene glycol-SOD 1 h
before rotenone treatment.
Each data point represents
mean – SD of three to four
samples and significant dif-
ference compared to respec-
tive control is indicated by
*p < 0.05 and **p < 0.01; dif-
ferent from treatment
#p < 0.05.
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has been reported that the RRM, together with a glycine rich
region and zinc finger motifs, are critical for RNA and DNA
binding (4). Our findings that FUS binds with DNA and that a
fALS mutation (R521G) in the C-terminal region disrupts
DNA binding suggest that the C-terminal region of FUS is also
crucial for its binding to DNA. The binding of FUS to the
promoter region has been implicated in the induction of gene
transcription (11, 48). FUS also functions as a gene transcrip-
tion modulator by binding to a number of gene specific
transcription factors. The glycine-rich region and zinc finger
motifs of FUS are capable of binding with transcription fac-
tors, such as NF-jB and transcription factor II D complex as a
component of RNA polymerase II preinitiation complex (32),
thereby participating in transcription. However, that FUS
functions as a specific modulator of MnSOD gene expression
was previously unknown. Our coimmunoprecipitation re-
sults indicate that full-length FUS interacts with Sp1 and NPM
(Figs. 7 and 8). In addition, our finding that FUS physically
interacts with Sp1 and NPM is consistent with FUS-mediated
regulation of MnSOD basal transcription.

Interestingly, FUS interacts with both single and double
stranded DNA (47). FUS promotes annealing of both single
and double stranded DNA (possibly by binding with DNA)
and facilitates D-loop formation (8). We and others have re-
ported that the guanine cytosine (GC)-rich promoter of the
MnSOD gene has a stem-loop structure containing Sp1 and
NPM binding sites (18, 56). Since FUS is only responsive when
it binds with the far upstream region of the MnSOD gene, FUS
may link to the loop structure by interacting with Sp1 and
NPM, which bind at the GC-rich region in the stem-loop
structure. Together, our results support the notion that FUS
induces MnSOD gene transcription by binding directly to
DNA at ( - 2821 to - 2814 bp) and indirectly in the stem-loop
GC-rich structure via Sp1, which together are essential to
maintain the basal level of MnSOD transcription (Fig. 10).
Treatment with DNase indicates that the interaction of FUS
with Sp1 or NPM is significantly diminished by the removal
of DNA from the transcription complex, suggesting that DNA
binding of FUS is required for the interaction of these tran-
scription factors to increase MnSOD gene transcription. It has

been demonstrated that many sequence-specific transcription
factors bind to DNA and interact with each other. For in-
stance, Sp1 and NF-jB bind with the HIV-1 promoter in a
sequence-specific manner and interact with each other, lead-
ing to a cooperative induction of gene transcription (45). Re-
cently, we found that both Sp1 and p53 bind to the MnSOD
promoter, which negatively modulates MnSOD gene tran-
scription (14, 17). Mutant FUS is unable to bind to DNA in the
MnSOD promoter or interact with Sp1 and NPM, again sug-
gesting that DNA binding and protein interaction are essen-
tial for FUS-mediated gene transcription.

Increased oxidative stress has been shown to cause neu-
ronal damage by gain-of-function mutations in Cu/Zn su-
peroxide dismutase (SOD1) in Type 1 fALS (22). However, the
role of MnSOD in fALS pathogenesis remains elusive.
MnSOD is expressed in almost all mammalian cells, including
neurons, and can be induced under various conditions (10, 16,
37, 50). We recently demonstrated that the molecular pa-
thology of FUS mutation can be recapitulated in cell culture
(20) and Drosophila (55) models. In the present study, we used
JB6 mouse skin epithelial cells and NSC-34 motor neuron-like
cells as cell culture systems to elucidate the underlying
mechanisms for FUS-mediated MnSOD transcriptional regu-
lation, which resulted in the first mechanistic insight into
oxidative stress in mitochondria as a link to FUS mutation in
fALS.

TDP-43 and FUS have been identified as being present in
families with fALS. This information has led to increasing
support for the idea that changes in alternative splicing are
critical targets for ALS and other motor neuron diseases.
Recent studies demonstrate that FUS binds to Survival
Motor Neuron (SMN, which is absent in the infantile motor
neuron disease, spinal muscular atropy) and to U1 in the
small nuclear ribonuclear protein (RNP) (snRNP) pre-
mRNA Spliceosome (21, 59). It appears that TDP-43 acts
upstream and facilitates the assembly of the SMN complex.
FUS protein binds to U1 and SMN in the snRNP complex
which forms the pre-mRNA Spliceosome. FUS protein with
ALS relevant mutations still bind to snRNP but divert the
complex from the nucleus to the cytoplasm where it is
trapped, resulting in functional changes in splice site rec-
ognition and exon skipping (21). Exon skipping of exon 7 in
the SMN2 gene was observed after mitochondrial dysfunc-
tion, oxidative stress, and adenosine triphosphate depletion
induced by paraquat exposure of human neuroblastoma
cells (36). It is well-established that MnSOD is critical in
modulating oxidative stress and maintaining proper mito-
chondrial function; thus, suppression of MnSOD is likely to
augment the deleterious diversion of snRNP to the cyto-
plasm in disease-causing FUS mutations. Thus, FUS muta-
tions may act negatively on three parallel, closely linked
pathways involved in RNA metabolism by diverting FUS/
snRNP complexes from the nucleus to the cytoplasm, by
altering the binding of FUS to highly conserved introns in
genes coding from RNA-binding proteins (43,49), and by
reducing MnSOD gene transcription with downstream ef-
fects of increased cellular oxidative stress.

Because ALS is a disease associated with the impairment of
motor neuron function and FUS mutations are associated
with some fALS families, our experiments reveal a potential
mechanism of mitochondrial dysfunction in FUS-mediated
fALS involving chronically reduced basal levels of MnSOD. In

FIG. 10. The schematic depiction of FUS-mediated
MnSOD gene transcription. FUS binds to a FUS binding
element identified in the upstream MnSOD promoter and in-
teracts with transcription factor Sp1 and nucleophosmin. This
interaction leads to activation of MnSOD gene transcription. To
see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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contrast, however, other investigators have demonstrated
that MnSOD levels are elevated in a sporadic ALS patient cell
line that includes motor neurons, but those studies did not
take into account the information about a specific FUS mu-
tation (35, 40). It is possible that the elevated level of MnSOD
observed in some sporadic ALS implies compensatory re-
sponse due to high oxidative stress. We speculate that the
chronically reduced basal levels of MnSOD would likely re-
sult in slow, cumulative oxidative damage to mitochondria
eventuating in progressive dysfunction and eventual death of
cortical and spinal motor neurons. This might be especially
important in metabolically active neurons with extensive
dendritic arbors and long axons. Dendrites and axons de-
mand high metabolic rates and active long distance transport,
which may render them particularly susceptible to oxidative
stress. The insights from our work imply that mutant FUS-
mediated Type 6 fALS might be amenable to such interven-
tion measures as MnSOD mimetic drugs that reduce chronic
oxidative stress in mitochondria.

Materials and Methods

Cell culture

The JB6 mouse skin epithelial cell line was originally pro-
vided by Dr. Nancy H. Colburn of the National Cancer In-
stitute, Frederick, MD, and was maintained according to a
previously described method (17). NSC-34 cells were pro-
vided by Dr. Haining Zhu of the University of Kentucky and
were maintained according to published protocol (20).

Clinical material

Punch skin biopsies (3 mm) were obtained after informed
consent from three males with symptomatic ALS who
originated from an extended regional family with a docu-
mented R521G FUS mutation (Athena Diagnostics). The
presence of R521G was confirmed by PCR amplification and
direct sequencing of genomic DNA isolated from genomic
DNA of skin fibroblast obtained from each individual. Two
subjects are related as uncle/nephew and they are distant
cousins of the third, all descendants of a common ancestor
who died before 1869. Relationships were established by
family history and were confirmed using public genealogy
records (Ancestors.com). The mean age at onset was 49 years
(36, 54, and 57 years). Two had limb-onset disease and one
presented with respiratory failure requiring intubation.
Clinically, subjects exhibited findings indicative of motor
neuron degeneration in the cortex and spinal cord, which
was confirmed on examination and electromyography
(EMG) testing. Mean survival from onset of progressive
weakness to death was 17 months (12, 14, and 25 months).
Controls were four females and one male who were free of
neurological disease (mean age 40.4 years; range 22–64
years). The study was approved by the Institutional Review
Board of the University of Kentucky.

SOD activity assay using native gel electrophoresis

Human skin fibroblasts were collected, and then sonicated
on ice for 30 s. Protein concentrations were estimated by the
Bradford protein assay. One hundred micrograms of the total
protein were loaded onto each lane of the gel, and the SOD
activity was visualized by the nitroblue tetrazolium method (3).

Promoter constructs, transfection and luciferase assay

The original promoter and enhancer-reporter constructs
were prepared in our laboratory as described previously (57)
and transfected in cells after a lipofectamin� transfection
protocol. Luciferase assay was performed by cotransfecting
the cells with FUS expression vector and vector containing the
enhancer (I2E) and promoter ( - 3400/ + 24) of the human
MnSOD gene in pGL3 reporter vector. b-Galactosidase cDNA
containing luciferase vector was used as an internal control.
Forty-eight hours after transfection, cells were lysed and the
samples were analyzed with the luciferase reporter assay
system.

Mass spectrometry

All mass spectra reported in this study were acquired by
the University of Kentucky Mass Spectrometry Facility as
described previously (12). Briefly, the immunoprecipitated
products were digested by trypsin (sequencing grade, Pro-
mega). The resulting peptides were extracted and LC-MS/MS
spectra were acquired on a Finnigan LCQ ‘‘Classic’’ quadru-
ple ion trap mass spectrometer (Finnigan C.). The data were
submitted to an in-house MASCOT search engine for protein
identification searching against the NCBI nonredundant
protein database. All reported proteins showed multiple un-
ique peptides with a MOWSE score > 50.

RNA isolation, cDNA synthesis and reverse
transcription PCR

Total RNA was isolated by using TRIzol reagent (Invitro-
gen) according to the manufacturer’s protocol. The cDNA was
generated using 0.4 lg of total RNA, oligo(dT) primer accord-
ing to the manufacturer’s instructions (Invitrogen), in a total
volume of 20 ll. Two microliters of cDNA were amplified
using the primer sets for MnSOD and GAPDH (primer se-
quence is available upon request). PCR products were sepa-
rated on agarose gel and visualized by ethidium bromide.

Immunoprecipitation

Immunoprecipitation studies were carried out using nu-
clear extract and antibodies or normal IgG. Im-
munocomplexes were separated by protein A/G after
centrifugation at 2500 rpm for 5 min. Immunocomplexes were
eluted in the sample loading buffer, subjected to SDS-PAGE,
and analyzed by Western blotting.

ChIP assays

ChIP assay was performed as described previously (17).
Briefly, wild-type or mutant FUS overexpressed cells were
cross-linked by formaldehyde and sonicated to obtain 200 to
1000 bp DNA fragments. The soluble chromatin fraction
was precleaned with 20 ll of salmon sperm DNA/protein A-
agarose beads and subjected to immunoprecipitation with
the appropriate antibodies or normal IgG. DNA-immuno-
complexes were eluted and reversal of cross-linking was
performed to isolate DNA for PCR amplification.

Surface plasmon resonance

The interactions between biotinylated oligonucleotide (li-
gand) and purified FUS protein (analyte) were measured by
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SPR technique using ProteOn� XPR36 instrument (Bio-Rad).
The biotinylated double-stranded oligonucleotide was im-
mobilized on sensor chips, which are precoated with strep-
tavidine (Bio-Rad). Ligand capturing on the biosensor surface
was performed according to manufacturer’s instructions.
Several different concentrations of analytes (pure FUS pro-
tein) were used to evaluate the dose- dependent binding. Data
were acquired using ProteOn manager software, and the ki-
netic analysis was performed using the langumir 1:1 evalua-
tion model.

High-performance liquid chromatography
assay of GSH and GSSG

Cellular levels of reduced GSH and GSSG were measured
from cell lysates by the quantitative High-performance liquid
chromatography (HPLC) method as described previously
(27). Briefly, cells were homogenized and sonicated, protein
concentration was determined, and then an equal amount of
protein (40 lg for GSH and 100 lg for GSSG) was used for
GSH derivatization. Five percent trichloroacetic acid,
7.5 mmol/l of N-ethylmaleimide, and 100 mmol/l of dithio-
theitol, in redox quenching buffer (5 mmol/l of diethylene-
triaminepentaacetic acid, and 10 mmol/l of ascorbic acid, pH
6.8), were added to the sample. The GSH samples were in-
cubated at 45�C for 15 min after addition of 50 mmol/l
monobromobimane (MBB). For GSSG, samples were incu-
bated at 45�C for 15 min before addition of MBB, and incu-
bated at 45�C for 15 min after addition of MBB. The reaction
was then stopped by adding 6 N HCl followed by centrifu-
gation at 5000g for 5 min at 4�C. The supernatant was assayed
for thiol–bimane fluorescence by reverse-phase HPLC using a
linear gradient from 0 to 100% solvent B (50% methanol,
0.25% acetic acid in water) in solvent A (10% methanol, 0.25%
acetic acid in water) over 28 min at a flow rate of 0.8 ml/min
with fluorescence detection at Ex370/Em485 using the Waters
2475 Multi (lambda) fluorescence detector. Fluorescence in-
tensities versus time of elution were quantified using Waters
Breeze chromatography software v. 3.2 (Waters Corporation)
and peak areas were integrated and converted to nmol GSH
equivalents from the integrated areas under the GSH stan-
dard curve.

DCFDA fluorescence assay

DCFDA fluorescence assay was performed using oxida-
tion sensitive carboxy-H2DCFDA (Invitrogen) and oxida-
tion insensitive oxidized carboxy-DCFDA (Invitrogen) as
described previously (51). To control the discrepancies
among the number of cells seeded, dye uptakes between
samples were taken into consideration by preloading oxi-
dized-DCFDA to the samples. Briefly, equal numbers of
cells were seeded in 48 well plates and grown for 24 h; after
the necessary treatment the cells were then incubated with
either H2DCFDA or DCFDA for 30 min, followed by
washing twice with 1 · PBS. Cellular fluorescence was then
detected at a wavelength of Excitation 530 and Emission 580
using SpectraMax GEMNI fluorometer (Molecular Device).
Fluorescence in cells preloaded with carboxy-H2DCFDA
was normalized to that in cells preloaded with carboxy-
DCFDA and data were presented as a H2DCFDA/DCFDA
ratio.

Statistical analysis

Data were analyzed using student t-test for two group
comparisons and one-way Analysis of Variance for multiple
group comparison. Bonferroni’s post-test multiple compari-
sons procedure was used to determine the statistical signifi-
cance. Data shown represent mean – SD.
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Abbreviations Used

ALS¼ amytropic lateral sclerosis
ATP¼ adenosine triphosphate
ChIP¼ chromatin immunoprecipitation

CHOP¼C/EBP homologous protein

CSF¼ cerebrospinal fluid
EMG¼ electromyography

EMSA¼ electrophoretic mobility shift assay
EWS¼Ewing’s sarcoma
fALS¼ familial amyotropic lateral sclerosis
FET¼ FUS Ewing’s sarcoma

FUS¼ fused in sarcoma
GC¼ guanine cytosine

GSH¼ glutathione
GSSG¼ oxidized glutathione

IgG¼ immunoglobulin
LCQ¼ quadrupole ion trap liquid chromatography
MBB¼monobromobimane

MEM¼modified Eagle’s medium

MnSOD¼manganese super oxide dismutase
NBT¼nitro-blue-tetrazolium

NF-jB¼nuclear factor kappa B
NPM¼nucleophosmin
PEG¼polyethylene glycol
RNP¼ ribonuclear protein
ROS¼ reactive oxygen species

RRM¼RNA recognition motif
RT-PCR¼ reverse transcriptase polymerase

chain reaction
SDS-PAGE¼ sodium dodecyle sulphate-polyacrylamide gel

electrophoresis
SMA¼ spinal muscular atropy
SMN¼ Survival Motor Neuron

Sp1¼ specificity protein 1
SPR¼ surface plasmon resonance

TAFII¼TATA-binding protein associated factor II
TLS¼ translocated in liposarcoma
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