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Abstract

Significance: Ionizing radiation is a vital component in the oncologist’s arsenal for the treatment of cancer.
Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment
regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by
radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-
mediated ROS production, and ROS resulting from altered aerobic metabolism. Recent Advances: ROS are
produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers.
ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radio-
responsiveness of tissues, thus affecting the efficacy of radiotherapy. Critical Issues: Despite its prevalent use,
radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and
normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor
hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the
effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. Future Direc-
tions: Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation,
methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method
to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing
radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the
overall effectiveness of ionizing radiation. Antioxid. Redox Signal. 20, 1567–1589.

Introduction

The International Agency for Research on Cancer

has estimated an annual diagnosis of 12.7 million new
cases of cancer and 7.6 million cancer-related deaths world-
wide (105). Radiation therapy is used alone, or in conjunction
with, chemotherapy, immunotherapy, surgery, and hormone
therapy for the treatment of cancer (10). In fact, *50% of all
cancer patients will receive some form of radiation as an im-
portant element in their treatment regimen (43).

The medical application of ionizing radiation was realized
early after the discovery of X-rays by Röntgen in 1895, when
Emil Grubbé used X-rays to treat an ulcerated breast cancer
60 days after the discovery of X-rays (15). Since that time,
efforts have been made to improve the efficacy of radiation
therapy, increasing the killing effect on cancer cells while

minimizing the detrimental effects on normal tissues. Var-
ious drugs have been developed to modulate the DNA
damage response in tumor cells, alter the activation of signal
transduction pathways activated after irradiation, and con-
trol the influence of the tumor microenvironment [reviewed
in ref. (12)]. Despite these advances, there is a need for fur-
ther improvements.

Reactive oxygen species (ROS) are produced as a by-
product of oxygen metabolism (70). ROS, while harmful to
cells when produced in excess through oxidative modification
of lipids, proteins, and DNA, are also vital mediators of
multiple cellular processes, including cell growth and differ-
entiation (18), the immune response, cell adhesion, and apo-
ptosis (47). ROS are also second messengers in cell signaling
(69, 81, 181, 210). The rate of ROS production and destruction
is carefully maintained in the cell, and interruption of this
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process contributes to the development of different diseases,
including cancer (75, 210, 215).

ROS play a major role in the damaging effects of low linear
energy transfer (LET) ionizing radiation on cancer cells. ROS
are formed by the radiolysis of water, and these ROS (137),
particularly the hydroxyl radical (214), participate in dam-
aging DNA. Roughly two-thirds of radiation-mediated
DNA damage is caused by indirect effects from ROS (146).
Although radiation is an important treatment for cancer, it can
also be harmful to normal tissues (1). Therefore, methods that
can simultaneously increase the radiosentivity of cancer cells
and radioresistance of normal tissues are needed to improve
the treatment outcome in patients.

Mitochondria are the major sites of metabolic ROS pro-
duction in the cell, with the superoxide radical as the primary
ROS generated by the organelle as a byproduct of oxidative
phosphorylation (2, 97). Cells are equipped with many sys-
tems to scavenge ROS, with the superoxide dismutases
(SODs) as the chief ROS scavenging enzymes in the cell (228).
Because of the importance of ROS in cancer development, and
the role of ROS in the radiation-induced damage, methods to
alter the redox environment of cancer cells may enhance the
response of cancer cells to ionizing radiation.

In this review, we will discuss the effects of ionizing radia-
tion on the cell. We will also discuss two factors that affect the
efficacy of radiation therapy: the bystander effect and the tu-
mor microenvironment. We will also discuss SODs, their role in
cancer development, and their importance in the radiation re-
sponse of both normal tissues and cancer cells. Finally, we will
detail different methods to increase SOD expression and/or
activity and its effects on simultaneously protecting normal
tissues and sensitizing tumor tissues to ionizing radiation.

Effects of Radiation on Biological Tissue

The primary target of ionizing radiation in the cell is
chromosomal DNA. Ionizing radiation damages intracellular
molecules by direct ionization and through indirect ioniza-
tions mediated by water radiolysis products (Fig. 1A), with an
estimated two-thirds of radiation-induced DNA damage due
to indirect effects (146). This process elicits myriad types of
DNA damage, including base and sugar damage, as well as
single- and double-strand breaks. Radiolysis of water leads to
the formation of a variety of free radicals. For example, water
is ionized to form a radical and a free electron. The water
radical can either undergo decomposition or interact with a
water molecule to form hydroxyl radicals. The free electron
can be hydrated by surrounding water molecules, and this
stabilized electron can interact with another water molecule
to form a hydroxyl radical or a proton to form a hydrogen
radical (137) (Fig. 1B). Direct effects of ionizing radiation on
DNA lead to a variety of damage products, such as oxidized
bases and cleavage of the sugar–phosphate backbone (Fig. 2)
(189). Water radiolysis products can damage nucleic acids
(Fig. 3) and other cellular molecules, including proteins and
lipids (180, 214). Free radical damage of DNA, whether direct
or indirect, results in the formation of myriad types of DNA
lesions (137, 167, 182). Base lesions may be benign, with no
apparent effect on the cell after irradiation, or the base lesions
may lead to miscoding of the DNA, resulting in mutation
formation. Single-strand breaks can also form, which may
result in mutation formation if this damage is not properly

repaired. Double-strand breaks also occur, in particular,
following the replication of DNA that sustained oxidative
damage, resulting in chromosomal abnormalities (137). These
double-strand breaks, if not re-annealed at the site of the
original break, may re-anneal with other breaks on the same
chromosome or a different chromosome to form chromo-
somal aberrations (88). Chromosomal aberrations are divided
into two broad types: chromosome type and chromatid type.
Chromosome-type aberrations occur when breaks and re-
joining change both sister chromatids at one locus (Fig. 4A).
Chromatid-type aberrations occur when breaks and rejoinings
alter only one sister chromatid at any one locus (Fig. 4B).
The type of damage that occurs after irradiation depends
on the stage of the cell cycle at which a cell is irradiated.
Chromosome-type aberrations typically occur during G1 of
the cell cycle, whereas chromatid-type aberrations typically
occur during G2 and S phases of the cell cycle (3).

Another important type of radiation-induced DNA damage
identified is referred to as clustered damage, where two or more
closely spaced types of damage occur, such as abasic sites, ox-
idized bases, and tandem lesions, contributing to the formation
of double-strand breaks (77, 78, 198, 213) (Fig. 5). This clustered
damage is thought to have significant biological consequences
because it is much more difficult to repair. Clustered damage is
longer-lived, increasing the likelihood of incorporation of an
inappropriate base, resulting in mutation formation [reviewed
in ref. (152)]. Unrepaired clustered damage also leads to a
multitude of chromosomal aberrations (5), and attempts to re-
pair clustered damage can result in further double-strand break
formation (191). Not only does clustered damage form from the
direct interaction of ionizing radiation with DNA, it can also be
induced by ROS, including hydroxyl radicals (180).

Although radiation therapy has proven valuable in the
treatment of cancer, it can also have detrimental side effects.
Tissues most susceptible to ionizing radiation are those with a
high replication rate and are least differentiated (1). This
characteristic makes cancer cells, with their high proliferation
rate, more prone to radiation-induced damage than normal
tissues (12), but can also affect normal tissues (1). One example
of the detrimental effects of ionizing radiation is the formation
of secondary cancers. Diallo et al. studied the frequency of
secondary cancer formation in relation to irradiated volume in
patients with childhood cancer that received radiation therapy.
The researchers found that the majority of secondary tumors
(66%) formed in the region bordering planning target volume,
and a small percentage of tumors formed in a region > 5 cm
from the irradiated volume (22%) or within the irradiated
volume (12%) (46). Therefore, methods that increase the
radiosensitivity of cancer tissues and simultaneously increase
the radioresistance of normal tissue are needed.

Radiation-Induced Bystander Effect

Description

The bystander effect is defined as an induction of some
biological effect in cells that have not been directly traversed
by radiation but are in close proximity to a cell that has re-
ceived radiation (87). Radiation-mediated changes in unirra-
diated cells can be divided into three classifications: bystander
effects, abscopal effects, and cohort effects. Bystander ef-
fects occur in cells in an irradiated tissue that are not di-
rectly bombarded by radiation. Abscopal effects occur to
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unirradiated cells outside the irradiated volume. The cohort
effect is an indirect effect within an irradiated cell due to some
signal received by another irradiated cell within the same ir-
radiated tissue (17) (Fig. 6). Several biological endpoints have
been used to prove the presence of radiation-induced by-
stander effect, including micronuclei formation, clonogenic
survival, mutation formation, apoptosis, and neoplastic
transformation, among others [reviewed in refs. (34) and (89)].
Another important consequence of the bystander effect is in-
creased radioresistance in nonirradiated tissue. For example,
the exposure of normal human lung fibroblasts (NHLFs) to
medium from HLFs irradiated with 1 cGy c-rays increased
clonogenic survival after exposure to 10 and 19 cGy radiation.
The increased radioresistance in bystander cells correlated
with an increase in the expression of AP-endonuclease (102).

One of the first reports of a radiation-induced bystander
effect was a study by Nagasawa and Little (145), in which
the researchers reported the induction of sister chromatid

exchanges in Chinese hamster ovary (CHO) cell cultures ex-
posed to very low mean doses of a-particles (0.31 mGy). While
less than 1% of the cell nuclei were struck by an a-particle, 30%
of the cells had increased sister chromatid exchange. Irradia-
tion with X-rays (65, 112, 226) and low LET b-particles (163)
also produced stressful bystander effects.

Irradiated cells can induce a bystander effect long after the
irradiation event. Lyng et al. (129) found that medium col-
lected from progeny cells of c-irradiated HPV-G human ker-
atinocytes up to passage 7 after irradiation induced rapid
calcium fluxes, loss of mitochondrial membrane potential,
and increased ROS production in bystander HPV-G cells. No
differences were observed in the bystander effect between
medium collected from irradiated cells or from the cells pas-
saged from the irradiated cells (129). A better understanding
of the mechanisms of the bystander effect can lead to im-
provements in cancer therapy that mitigate harmful effects
of radiation on nontarget tissue.

FIG. 1. Effects of ionizing radia-
tion on DNA. (A) DNA can either
be damaged directly by ionizing
radiation to form a base radical, or
DNA can be damaged indirectly
through radiation-induced ioniza-
tion of water to form hydroxyl
radicals, which cause base radical
formation. (B) Interaction of ioniz-
ing radiation with water either
leads to an excited form of water or
ionization of water to form a water
radical and a free electron. Hydrox-
yl radical formation occurs by
various mechanisms through the
interaction of the free electron with
water or decomposition of the wa-
ter radical.
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FIG. 2. Direct damage to DNA by ionizing radiation. (A) Oxidation of guanine (Gua) to 8-oxoGua. (B) Radiation induced
cleavage of cytosine (Cyt) from the sugar–phosphate backbone. Modified from Shibata et al. (190).
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Mechanisms of the bystander effect

Direct intercellular communication by junctional channels.
Microbeam technology has proven invaluable for study of
the bystander effect, allowing for the delivery of a specific
dose of radiation to an individual cell or groups of cells,
leaving surrounding cells untouched [reviewed in ref. (170)].
Alpha particle irradiation of 20% of AL human hamster hybrid
cells in a microbeam dish resulted in a threefold higher mu-
tation fraction than predicted due to the formation of mu-
tations in nonirradiated cells. When cells were pretreated
with the gap junction intercellular communication (GJIC)
inhibitor lindane, there was a significant reduction in mu-
tation formation, indicating the importance of cell–cell
communication in the induction of the bystander effect (231).
Further studies revealed that GJIC is vital for propagating
signals involved in the bystander effect. Inhibition of gap
junction communication by chemical inhibitors or by ex-
pression of a dominant-negative form of connexin-43 (Cx43)
resulted in diminution of bystander effect-induced mutation
frequency (162, 233). Using various fibroblast and epithelial
cell lines, Azzam et al. (8) demonstrated the importance of
GJIC in the bystander effect. The researchers found that
treatment of the cells with a-particles resulted in the induc-
tion of p21Waf1, and pretreatment with the GJIC inhibitor
lindane, use of cells that are GJIC incompetent or use of Cx43
knockout cells, resulted in diminished radiation-induced
p21Waf1 levels (8).

GJIC is also important in potentiating the cell-killing effects
of ionizing radiation due to the propagation of stress signals
throughout the irradiated volume. Little effect is seen with
low LET radiation, but a significant enhancement is observed
for high LET radiation. Using confluent cultures of AG1522
human diploid fibroblasts, Autsavapromporn et al. (6) dis-
covered that incubation of the cells for 3 h after irradiation
with a-particles resulted in decreased survival and increased
DNA damage compared to cells irradiated with c-rays. This
effect was due to GJIC and was attenuated by pretreatment
with the GJIC inhibitor AGA or knockdown of Cx43 by siR-
NA (7). A similar enhancement of cell killing and DNA
damage was observed for high-charge high-energy iron ions
compared to protons (6).

Intercellular communication via release of soluble fac-
tors. Numerous studies have found that conditioned me-
dium obtained from irradiated cells induces a bystander effect
in unirradiated cells, suggesting soluble factors released by
irradiated cells are involved in the bystander effect. For ex-
ample, Mothersill and Seymour (141) found that treatment of
various epithelial cell lines with the medium from c-ray-
treated cells led to a decrease in clonogenic survival in both a
radiation dose- and irradiated cell number-dependent man-
ner. This effect was only seen in the medium from irradiated
cells, and not irradiated medium in the absence of cells (141).
Similar results have been reported in various cell types using

FIG. 3. Hydroxyl radical-induced DNA damage. A DNA base is attacked by a hydroxyl radical to form a base radical. In
the presence of oxygen, this base radical is stabilized by the formation of a peroxide. A base-sugar radical transfer occurs,
placing the free radical on the ribose. Hydrolytic cleavage then occurs, resulting in a strand break. Modified from Rhee et al.
(181) and Waris and Ahsan (215).
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different methods, including medium transfer (123, 159),
double mylar dishes (which allow exchange of medium be-
tween irradiated and nonirradiated cells) (232), and micro-
beam treatment (14, 169), leading to increased apoptosis
(14, 123, 159, 169), ROS formation (159), as well as micronuclei
formation (14, 169).

Extracellular DNA (ecDNA) has recently been identified
as an important soluble factor that stimulates the bystander
effect. Ermakov et al. (60) discovered that release of ecDNA
from X-ray-treated primary human lymphocytes induced a
bystander effect in nonirradiated lymphocytes. Both the re-
lease of ecDNA and induction of the bystander effect were
blocked by the administration of the antioxidant a-tocopherol.

Based on these results, the researchers suggested that ROS are
important for both the response to radiation, leading to apo-
ptosis and release of ecDNA, and induction of DNA damage
in bystander cells (60). Similar results have been observed in
X-ray-treated human umbilical vein endothelial cells (HU-
VEC) (61, 118). The authors proposed that ecDNA is released
due to ROS-mediated apoptosis induced by ionizing radia-
tion. DNA-binding receptors (TLR9) on bystander cells detect
these DNA fragments, stimulating ROS production and DNA
damage. Inhibition of TLR9 by treatment with an oligonu-
cleotide inhibitor or chloroquine blocked the bystander effect,
whereas treatment of unirradiated cells with ecDNA isolated
from irradiated cell medium stimulated the bystander effect

FIG. 4. Chromosomal aberrations after ionizing radiation. (A) Chromosome-type aberrations occur when breaks and
rejoinings change both sister chromatids at one locus. (B) Chromatid-type aberrations occur when breaks and rejoinings alter
only one sister chromatid at any one locus. To see this illustration in color, the reader is referred to the web version of this
article at www.liebertpub.com/ars
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(61, 118). These results suggest that scavenging of ROS may be
a valuable strategy for assuaging the bystander effect.

Altered gene expression and signal transduction. Induc-
tion of the bystander effect leads to the activation of various
signal transduction pathways and different transcription
factors, resulting in changes in gene expression, culminating
in the biological endpoints that characterize the bystander
effect. Two important genes identified in the bystander effect
are cyclooxygenase-2 (COX-2) and insulin growth factor
binding protein 3 (IGFBP-3). Zhou et al. (229) using NHLFs
found that a-particle irradiation resulted in a bystander effect
by a reduction in the surviving fraction and an increased
mutagenesis rate. Using a signal transduction gene array, the

researchers identified a significant increase in the expression
of COX-2 gene and a decrease in IGFBP-3 gene expression. Co-
treatment of NHLFs with NS-398 (a COX-2 inhibitor) reduced
the mutagenesis rate in bystander cells, and addition of
IGFBP-3 increased survival and decreased the mutagenesis
rate in bystander cells. Treatment of the cells with either the
MAP kinase inhibitor PD98059 or an anti-tumor necrosis
factor-alpha (TNF-a) antibody significantly blocked the by-
stander effect (229).

Bystander effect in vivo

While a multitude of studies demonstrate an in vitro by-
stander effect, the bystander effect has also been confirmed

FIG. 5. Model of clustered dam-
age of DNA after ionizing radia-
tion. Clustered DNA damage can
occur after direct ionization by ra-
diation or by radiation-induced
ROS formation, leading to the for-
mation of base damage (orange
circles), abasic sites, and tandem
lesions, resulting in single- and
double-strand breaks. ROS, reactive
oxygen species. To see this illustra-
tion in color, the reader is referred
to the web version of this article at
www.liebertpub.com/ars

FIG. 6. The bystander effect.
Three major types of bystander ef-
fects occur in irradiated tissues.
Bystander effects (A) occur in unir-
radiated cells within a low-dose-
irradiated tissue. Abscopal effects
(B) occur to unirradiated cells out-
side the irradiated volume. The co-
hort effect (C) occurs between
irradiated cells within an irradiated
tissue volume. To see this illustra-
tion in color, the reader is referred
to the web version of this article at
www.liebertpub.com/ars
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in vivo in various model systems, such as Caenorhabditis ele-
gans, zebra fish, and Arabidpopsis thaliana [reviewed in ref.
(30)]. Studies of partial lung c-ray treatment in rats revealed
that the lower lung is much more sensitive to the in-field ef-
fects of radiation (as determined by micronuclei formation)
than the upper lung, whereas the upper lung demonstrated
greater response to bystander effects after lower lung irradi-
ation. Copper-zinc superoxide dismutase (CuZnSOD), man-
ganese superoxide dismutase (MnSOD), or the nitric oxide
synthase inhibitor nitro-l-arginine methyl ester dissolved in
saline and administered by intraperitoneal injection, signifi-
cantly reduced both in-field and bystander effects, suggesting
a role for ROS in bystander effects in vivo (114, 115). In-field
and bystander effect induction of inflammatory cytokines
is also involved in the response to partial lung c-ray treat-
ment (28), as well as X-ray treatment of the abdomen (211).
Koturbash et al. found that X-irradiation of the cranium of
mice increased double-strand DNA breaks, p53 expression,
cell proliferation, and apoptosis in the lead-shielded spleen of
the animals (120), and these bystander effects on the spleen
were sex specific, with male bystander spleens demonstrat-
ing significantly greater DNA damage and loss of DNA
methylation compared to bystander female spleens. These
sex-specific differences in bystander effect were diminished in
animals that had undergone surgical removal of their gonads
(119). These results indicate that the bystander effect is a
complex phenomenon in vivo and that strategies designed to
assuage the bystander effect may need to take into account
sex-specific differences.

Bystander effect in neoplastic transformation

Not only can the bystander effect result in cellular damage
and death in nonirradiated cells, it can also induce neoplastic
transformation in nonirradiated cells. Exposure of CGL1 HeLa
skin-fibroblast hybrid cells to medium collected from X-ray-
treated HeLa-skin fibroblast hybrid (CGL1) cells significantly
increased the neoplastic transformation frequency (123). A
similar increase in neoplastic transformation has been observed
in JB6 mouse epithelial cells co-cultured with JB6 cells treated
with c-rays (216). Bystander effect-mediated neoplastic trans-
formation has also been observed in vivo. Mancuso et al., using
Patched-1 (Ptch1) heterozygous knockout mice (Ptch1 + / - ),
discovered that medulloblastoma formation was significantly
greater in Ptch1 + / - mice with their heads shielded (but the
remainder of their body receiving radiation treatment) com-
pared to untreated mice but was not as great as mice receiving
whole-body radiation (134). A later study investigated the role
of GJIC on propagation of bystander effect signaling in vivo and
its role in radiation-associated bystander effect cancer forma-
tion in a Cx43 heterozygous knockout mouse (Cx43 + / - ) model.
Radiation-induced medulloblastoma formation was signifi-
cantly lower in shielded Cx43+ / - /Ptch + / - mice compared to
shielded Cx43 + / + /Ptch+ / - mice, confirming the role for GJIC
in bystander effect-mediated neoplastic transformation (133).

The bystander effect may also contribute to neoplastic
transformation in humans. In a study by Diallo et al. (46) in-
vestigating the formation of secondary cancer formation in
childhood cancer patients who received radiation therapy,
there was a substantially greater number of secondary cancers
that developed at distant sites from the irradiated volume (25
neoplasms) than what was predicted (nine neoplasms). In this

study, the authors defined distant as any area farther than
5 cm outward from the edge of the irradiated volume (46).
Given the effects of the bystander effect on neoplastic trans-
formation discussed above, these results suggest that an im-
portant bystander effect may also be occurring in humans
that may contribute to the secondary cancer formation after
radiation treatment. Therefore, adjuvant therapies that can
mitigate these unwanted effects of radiation therapy would
prove valuable in the clinic.

Although irradiated cells can communicate to unirradiated
cells through the bystander effect, bystander cells can com-
municate back to the irradiated cells. Chen et al. found that
incubation of a-particle-irradiated NHLFs with bystander
NHLFs significantly reduced 53BP1 foci formation (a marker
of double-strand breaks), as well as diminished micronuclei
formation and apoptosis, in the irradiated cells compared to
irradiated cells not incubated with bystander cells (36).
Similar reductions in micronuclei formation have been ob-
served in a-particle-irradiated HeLa incubated with NHLFs
(36) and incubation of X-irradiated Me45 human melanoma
cells with normal human dermal fibroblasts (219), and the
reduction in micronuclei formation corresponded with re-
duced ROS formation in the irradiated cells (219). These re-
ports suggest that the bystander effect and reciprocal
communication from bystander cells back to irradiated cells is
an important component in the complex response of an or-
ganism to ionizing radiation. This type of communication
may have important implications in radiation resistance in
cancer cells and may provide an important target to increase
radiosensitivity in cancer, especially within the context of
therapies that exploit oxidative stress.

ROS in the bystander effect

ROS are important mediators of the bystander effect by
myriad mechanisms. Incubation of bystander cells with the
conditioned medium from c-ray-treated human keratinocytes
in the presence of the antioxidant N-acetylcysteine (NAC) or
the caspase-9 inhibitor Z-LEHD-FMK abrogated the effects of
the conditioned medium on bystander keratinocytes (130).
Increased lipid oxidation after irradiation with c-rays (as
measured by malondialdehyde formation) has also been ob-
served in both irradiated and bystander Me45 cells and cor-
related with a significant decrease in the MnSOD activity
(171). ROS formation was associated with micronuclei for-
mation and c-H2AX foci formation in bystander AG01522
normal human fibroblasts, which was inhibited by the ad-
dition of either CuZnSOD or catalase (final concentration
500 U/ml and 8 · 103 U/ml, respectively) directly into the
culture medium immediately after irradiation (226). Similar
results have been reported in human peripheral blood lym-
phocytes (13). In HaCaT human keratinocytes, viability of
bystander cells was rescued by incubation of either the by-
stander cells or the c-ray-treated cells with SOD or catalase
(added directly to the cell culture medium), suggesting ROS
are both a source of bystander signals and carry out the by-
stander effect in recipient cells (127). ROS also initiate the
bystander effect by stimulating ecDNA release from irradi-
ated cells and response of bystander cells (see discussion
above). Therefore, methods that increase ROS scavenging
ability in cells may simultaneously abrogate both the genera-
tion of bystander signals and the response to bystander signals.
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Mitochondria and the bystander effect

Mitochondria are the primary source of ROS in the cell due
to oxygen metabolism through oxidative phosphorylation
(22, 122, 144), with complexes I (83, 200) and III (205) as major
contributors of superoxide produced by mitochondria. Be-
cause mitochondria produce ROS, and the role of ROS in
propagation of the bystander effect (discussed above), logic
dictates that mitochondria may be important in the bystander
effect. Rajendran et al. (178) used various human lympho-
blastoid cell lines treated with X-rays to study the effects of
mitochondrial DNA (mtDNA) mutations on the bystander
effect. The researchers found that medium from irradiated cell
lines with normal mtDNA stimulated a bystander effect
(micronucleus formation) in the same cell line or other cell
lines with normal mtDNA, but not in cell lines harboring
mtDNA mutations. Medium from irradiated cell lines with
mtDNA mutations was unable to stimulate a bystander effect
in either normal cell lines or cell lines with mtDNA mutations.
These results suggest that functioning mitochondria are vital
for both generation and reception of bystander signals (178).

Mitochondria as sources of the bystander effect. Studies
using AL human-hamster hybrid cells with either normal
mtDNA (q + ) or depleted of mtDNA (q0) have established the
contribution of mitochondria in generation of bystander sig-
nals from irradiated cells. Either depletion of mtDNA or in-
hibition of the electron transport chain, as well as inhibition of
NO production or calcium uptake, significantly reduced c-
H2AX foci, a marker of DNA damage, in bystander cells (37).
A reduction in the bystander effect has also been observed in
AG1522 cells incubated with the medium from a-particle-ir-
radiated q0 AL cells (38). Depletion of mtDNA had similar
results in a-particle-irradiated HeLa cells (202) and human
skin fibroblasts (230).

Mitochondria as targets of the bystander effect. Not only
are mitochondria important initiators of the bystander effect,
they are also recipients of bystander signals. For example,
treatment of human keratinocytes with the medium from
keratinocytes treated with c-rays resulted in rapid calcium
flux, increased ROS production, and decreased mitochondrial
membrane potential, as well as increased apoptosis and de-
creased clonogenic survival (128). Direct irradiation of Chi-
nese hamster ovary K1 cells or HPV-G cells, or exposure of
these cells to irradiated cell-conditioned medium, signifi-
cantly altered mitochondrial oxygen consumption and in-
creased mitochondrial mass (151), as well as decreased
expression of mtDNA-associated genes (150).

mtDNA is an important target of the bystander effect.
Several reports indicate that mtDNA mutations (79) and de-
letions (79, 143, 185) occur upon exposure to the conditioned
medium from irradiated cells, with these mutations correlat-
ing with a decrease in mitochondrial membrane potential (79).
The bystander effect can also affect mtDNA gene expression
(35, 150). For instance, Chaudhry and Omaruddin (35) found
that in both X-irradiated and bystander TK6 human lym-
phoblast cells, there was a statistically significant change in
the expression of various mtDNA encoded genes for differ-
ent components of the electron transport chain. MT-ND1,
MT-ND5, and MT-ND6 (components of NADH dehydroge-
nase) were upregulated in directly-irradiated cells but were

downregulated in bystander cells, whereas MT-ATP6 and
MT-ATP8 were upregulated in both cell types (35).

Although cytochrome c (cytc) does not affect the direct re-
sponse of cells to ionizing radiation or the generation of by-
stander signals, it has a significant impact on response to
bystander signals from irradiated cells. Co-culture of mouse
embryonic fibroblasts (MEFs) that are cytc-null (cytc - / - )
with a-particle-irradiated cytc - / - or cytc + / + cells resulted in
no significant induction of micronuclei formation in cytc - / -

bystander cells. The conditioned medium from irradiated
cytc + / + or cytc - / - cells stimulated ROS production in cytc + / +

bystander cells, but not cytc - / - bystander cells (225).
Genomic DNA damage occurs in bystander cells as a result

of signaling events modulated by mitochondria. Telomere
shortening and anaphase bridge formation caused by incuba-
tion of bystander SW480 cells with the medium from explanted
tumor tissue exposed to c-rays correlated with a decrease in
mitochondrial membrane potential and an increase in ROS
formation. Overexpression of MnSOD in the SW480 cells not
only diminished the effects of the conditioned medium on
mitochondrial membrane potential and ROS formation, but
also significantly reduced the effects of the conditioned me-
dium on telomere shortening and anaphase bridge formation.
These results suggest that MnSOD may be important for in-
hibition of the bystander effect in nontarget cells (80).

Tumor Architecture and Its Effects
on Radiation Medicine

Tumors as organs

Long thought to be only a clonal expansion of mutated
cells, tumors are actually complex mixtures of various cell
types organized as abnormal organs. A variety of cells have
been identified in tumors, many of which contribute to tumor
progression, including adipocytes, fibroblasts, endothelial
cells, and myriad immune cells [reviewed in ref. (49)]. During
tumor progression, changes in the interactions between the
cancer cells and supporting cells, including cancer stem cells
[recently reviewed in ref. (26)], as well as the differences in
the interaction between cancer cells with extracellular matrix
(and the composition of the extracellular matrix) occur, which
can contribute to radiation resistance in tumors. For exam-
ple, Josson et al. (107) found that coculture of ARCaPE (with
an epithelial morphology and phenotype) human prostate
cancer cells with either bone fibroblasts or stromal fibroblasts
isolated from normal or cancer-bearing prostate tissue sig-
nificantly enhanced radioresistance of ARCaPE cells. This
radioprotective effect was mediated by both E-cadherin
and integrin signaling. Interestingly, coculture of ARCaPM

(with a mesenchymal morphology and phenotype) human
prostate cancer cells with bone or prostate fibroblasts did
not affect radioresistance (107), indicating an important role
for phenotype on cancer cell responsiveness. Coculture of
Suit-2 human pancreatic cancer cells with c-ray-treated MRC5
human fibroblast cells or primary pancreatic fibroblasts sig-
nificantly enhanced invasiveness both in vitro and in vivo.
Enhancement of Suit-2 invasiveness and cell scattering was
induced by incubation with the conditioned medium from
irradiated MRC5, coinciding with an increase in p44/p42
MAPK and c-Met activation, and was blocked by pretreat-
ment with the hepatocyte growth factor inhibitor NK4 (156).
In a study by Tsai et al., (206) coculture of MCF-7 or
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MDA-MB-231 human breast cancer cells with senescent primary
human mammary fibroblasts (induced by X-ray treatment)
significantly enhanced cell growth due to the stimulation of the
expression of mitotic genes. Senescent fibroblasts, as well as
senescent fibroblast-conditioned medium, also conferred radio-
resistance to the breast cancer cells, which was partially atten-
uated by expression of dominant-negative AKT in the breast
cancer cells (206). These results demonstrate the importance of
supporting cells for the response of cancer cells to ionizing ra-
diation. Because of the role of soluble factors secreted by the
supporting cells in conferring radioprotection and stimulation of
aggressiveness of cancer cells, the bystander effect may be vital
contributor of this process. Methods that target the bystander
effect between cancer cells and the supporting cells within the
tumor may prove attractive for enhancing the effectiveness of
radiation therapy.

Tumor hypoxia and radiation treatment

Given the importance of oxygen in the response of cells to
radiation (23, 82, 106), hypoxia becomes a major problem in
the treatment of tumors by radiation. Two types of hypoxia
exist in tumors: chronic and acute (Fig. 7). Chronic hypoxia
occurs due to the diffusion limits of oxygen through tissues,
whereas acute hypoxia occurs due to temporary blockage of a
tumor blood vessel (25). Chronic hypoxia was first identified
by Deschner and Gray, who found that oxygen supply to cells
within a tumor is limited to a region *150 lm from the vas-
culature (44). Acute hypoxia was first identified by Brown (24)
and can have important implications in the response of tu-
mors to radiation (32). Several reports show that radiosensi-
tivity of cancer cells is inversely proportional to the distance
from the blood supply (142, 201). Chaplin et al. discovered that
tumor cells closest to the blood vessels of the tumor were most
sensitive to ionizing radiation (as measured by clonogenic
survival), whereas the tumor cells farthest from the blood
vessel were most resistant to ionizing radiation. Ionizing ra-
diation resulted in acute hypoxia in the tumor due to transient
changes in blood flow, and this acute hypoxia increased
radioresistance in the tumor (33). Hsieh et al. compared the
influence of either cycling hypoxia or uninterrupted hypoxia
on radiation resistance of U87 glioma cells and found that
cycling hypoxia greatly increased U87 glioma cell radiation
resistance compared to uninterrupted hypoxia due to in-
creased ROS production, leading to greater stabilization, ex-
pression, and transcriptional activity of hypoxia-inducible
factor-1a (HIF-1a). Suppression of HIF-1a induction by siRNA
resulted in radiosensitization of U87 cells both in vitro and
in vivo (98).

Because hypoxia diminishes the effectiveness of radiation
therapy, several methods have been devised to increase oxy-
gen concentrations at the tumor. These methods include in-
creasing blood oxygen saturation, diminishing tumor oxygen
consumption (106), and normalization of tumor vasculature
(76). Secomb et al. (186) studied the effects of blood flow, ar-
terial pO2, and oxygen consumption on tumor cell hypoxia
using a simulation based on observations from a transplanted
mammary adenocarcinoma. While hypoxia was reduced with
increasing blood flow and arterial pO2 and decreased oxygen
consumption, tumors were much more sensitive to changes
in oxygen consumption, with a 30% reduction in oxygen
consumption, compared to controls, completely eliminating

tumor hypoxia (186). McGee et al. (136) studied the effects of
interferon-b (IFN-b) or the monoclonal human vascular en-
dothelial growth factor (VEGF) antibody bevacizumab, on
the radiation response of orthotopic U87 glioma xenografts.
IFN-b or bevacizumab decreased tumor hypoxia by normal-
ization of tumor vasculature. Combination of radiation with
either IFN-b or bevacizumab synergistically reduced tumor
size compared to any individual therapy alone, demonstrat-
ing the importance of tumor oxygenation by normalization of
vasculature in radiation therapy (136).

Another important method to treat tumors that can affect
tumor oxygenation is fractionated radiotherapy. By applying
radiation in a fractionated regimen, normal tissues can re-
cover through repair of sublethal damage and repopulation
of normal cells (10). Fractionated therapy takes advantage
of the increased proliferation rate in cancer cells compared to

FIG. 7. Hypoxia within a tumor. Two types of hypoxia
occur within a tumor: chronic hypoxia and acute hypoxia.
Chronic hypoxia occurs due to the diffusion limits of oxygen
from blood vessels. Acute hypoxia may be due to blockage of
blood flow in a region of the tumor. To see this illustration in
color, the reader is referred to the web version of this article
at www.liebertpub.com/ars
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normal tissues (15). Fractionation, especially hyperfractiona-
tion, permits a higher total radiation dose to be delivered.
Fractionated therapy also allows for the reoxygenation of
tumors and increases their radiosensitivity (Fig. 8) (137). The
combination of radiation with chemotherapy postradio-
therapy can enhance drug delivery and improve patient
outcome.

SODs in Normal and Tumor Tissues

General description of SODs

Because SODs are discussed in much greater detail in other
review articles in this Forum, we will only briefly describe
the SODs. SODs are the chief superoxide-scavenging en-
zymes in a cell (71), and three types exist in cells, with
each form encoded by a separate gene [reviewed in ref.
(228)]: CuZnSOD (SOD1), MnSOD (SOD2), and extracellular
superoxide dismutase (SOD3, ECSOD). CuZnSOD is a cyto-
plasmic homodimer (113, 135), although small amounts have
been identified in the intermembrane space of mitochondria
(157, 217). ECSOD shares 40–60% amino acid homology with
CuZnSOD, and like CuZnSOD, contains both copper and zinc
in its active site. However, ECSOD is a homotetramer found in
the extracellular region of the cell (68, 92). MnSOD is a
homotetramer found exclusively in the mitochondrial matrix
(19, 157, 179, 217, 220). All three enzymes catalyze the dis-
mutation of superoxide radicals to hydrogen peroxide and
molecular oxygen. Hydrogen peroxide, itself a ROS, is de-
composed to water by myriad enzyme systems, including
peroxiredoxins, glutathione peroxidase (GPx), and catalase
(4). All three enzymes have forms localized to mitochondria
(31, 62, 131, 155, 160, 177, 183, 188, 190) (Fig. 9).

SOD in cancer development

Given the role of ionizing radiation in the development of
cancer (46) and the significance of ROS in the development
and progression of cancer (75, 209, 215), the importance of
MnSOD in cancer development becomes quite evident due
to its ability to scavenge ROS. However, a careful examina-
tion of the literature reveals a dual function for MnSOD in
cancer [recently reviewed in ref. (94)]. Many studies show a
reduction in MnSOD expression in various types of cancer
compared to normal tissues (39, 42, 100, 153, 192), suggesting

MnSOD acts a tumor suppressor. Conversely, other studies
report an elevation in MnSOD expression in cancer (93, 99,
103, 104, 132, 203, 207) and its association with cancer ag-
gressiveness, growth, survival (140, 158), and metastatic po-
tential (95, 132, 149, 184), implying that MnSOD supports
progression of tumors to a more aggressive stage.

Recent work by this laboratory has begun to shed
light on the dual role of MnSOD in cancer development.
Using the 7,12-dimethylbenz(a)-anthracene (DMBA)/12-O-
tetradecanoylphorbol-13-acetate (TPA) two-stage model of
skin cancer development in a unique mouse model expressing
a MnSOD promoter-linked luciferase reporter gene (45), this
laboratory discovered that treatment with the tumor initiator
DMBA, followed by repeated exposure to TPA over 25 weeks,
resulted in a significant reduction in MnSOD luciferase re-
porter gene activity, MnSOD mRNA, protein, and enzyme
activity in both DMBA/TPA-treated skin and papillomas
compared to vehicle controls. When the observation period
was extended to allow squamous cell carcinoma (SCC) for-
mation, MnSOD expression significantly increased at the re-
porter gene activity, mRNA, protein, and enzyme activity
levels during the transition from the relatively nonaggressive
papilloma to the more aggressive SCC. These differences in
MnSOD expression between papillomas and SCCs are due, in
part, to changes in Sp1 and p53 transcription factor binding
activity on the Sod2 promoter (45).

One potential mechanism by which MnSOD is involved in
tumor suppression and tumor aggressiveness is altered hy-
drogen peroxide flux with changes in MnSOD levels. Buettner
et al. (27) showed that steady-state levels of hydrogen perox-
ide are affected by MnSOD where the equilibrium constant for
superoxide production (K) is less than 1. Under these condi-
tions, the rate constant for the back reaction (conversion of
superoxide back to molecular oxygen) is greater than the rate
constant for the forward reaction (conversion of molecular
oxygen to superoxide). This condition is seen for superoxide
production by the electron transport chain. When MnSOD is
present, there is a proportional increase in hydrogen peroxide
production with increasing MnSOD levels. The greatest effect
occurs when MnSOD levels are low, but at sufficiently high
levels of MnSOD, there is only a modest further increase in
hydrogen peroxide production. Increased hydrogen peroxide
production occurs because MnSOD is driving the equilibrium
of the system to the right, resulting in increased superoxide

FIG. 8. The effects of fractionated radiotherapy on tumors. Fractionated therapy allows the recovery and repair of normal
tissues and the reoxygenation of tumor tissues. Reoxygenation of the tumor increases the efficacy of radiation against the
tumor. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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production. A small amount of superoxide is consumed for
the production of hydrogen peroxide and does not participate
in the reverse reaction to regenerate molecular oxygen, in
agreement with Le Chatelier’s principle (27).

Changes in hydrogen peroxide flux with modifications in
MnSOD levels can have broad repercussions in cancer pro-
gression. During early stages of cancer, when MnSOD levels
are low (153), MnSOD overexpression may suppress cancer
growth through various mechanisms because of greater hy-
drogen peroxide flux (126). At later stages of cancer progres-
sion, when cancer cells experience persistent oxidative stress
(16, 161, 168), increased MnSOD expression may benefit
cancer cells by the stimulation of metastasis (40, 90, 95, 147).

SOD in radiation-induced neoplastic transformation

Two important papers established the importance of SODs
in radiation-induced neoplastic transformation of normal
tissues. This laboratory was the first to demonstrate the pro-
tective effects of MnSOD overexpression in the protection of
normal tissue from ionizing radiation-induced neoplastic
transformation. In C3H 10T1/2 MEFs expressing either an
empty vector or a construct containing the Sod2 gene, St. Clair
et al. discovered that overexpression of MnSOD did not pro-
tect the cells from transformation by the DNA intercalating
agent 3-methylcholanthrene but did protect the cells from
transformation by ionizing radiation (194). Du et al., (48)
using MEFs derived from MnSOD + / + , MnSOD + / - , and

MnSOD - / - mice, found a fivefold increase in transformation
frequency in MnSOD - / - MEFs compared to MnSOD + / +

MEFs. The lack of MnSOD in MnSOD - / - MEFs enhanced the
formation of late ROS, micronuclei (a marker of DNA dam-
age), and binucleated bearing micronuclei cells at 72 h post-
irradiation compared to MnSOD + / - and MnSOD + / + MEFs.
MnSOD + / - and MnSOD - / - MEFs also demonstrated de-
creased exit from the G2 cell cycle checkpoint compared to
MnSOD + / + MEFs, which was reversed in MnSOD - / - cells
by overexpression of MnSOD (48). These results suggest that
mitochondrial ROS generation is an important component of
ionizing radiation-mediated transformation and the vital role
for MnSOD for the prevention of cancer formation.

SOD-mediated radioprotection

Many studies have revealed the importance of SOD in pro-
tection of normal tissue from the harmful effects of ionizing
radiation. Lee et al. (121) used a yeast model with knockdown
of MnSOD, CuZnSOD, or both MnSOD and CuZnSOD, to
study radiation response. The researchers found that in wild-
type cells, there was a dose-dependent increase in the activity
of different antioxidant enzymes (catalase, glutathione reduc-
tase, and glucose 6-phosphate dehydrogenase), whereas
knockdown of either SOD alone or the combination of MnSOD
and CuZnSOD resulted in a much smaller increase in the ac-
tivities of these enzymes. The researchers also found a radiation
dose-dependent increase in the levels of ROS and ROS-medi-
ated protein and lipid damage (protein carbonyl formation and
thiobarbituric acid-reactive substances, respectively) (121).

Overexpression of MnSOD alone is enough to bestow ra-
dioprotection in normal cells. In CHO cells, overexpression
of MnSOD, but not CuZnSOD, protected the cells from
radiation-induced cell death. Overexpression of GPx was only
partially protective against radiation compared to MnSOD
(195). Overexpression of MnSOD by retroviral transduction in
either K562 human erythroleukemic cells or primary mouse
bone marrow-derived myeloid progenitor cells resulted in a
significant increase in radioresistance (193). MnSOD is also
important for radiation-induced adaptive response in normal
cells. In JB6 mouse epidermal cells, exposure to low-dose
ionizing radiation significantly increased the clonogenic sur-
vival of cells subsequently challenged to 2 Gy radiation due to
activation of several NF-jB target genes, including MnSOD
(63). An important mechanism by which MnSOD confers ra-
dioprotection of normal tissues is to prevent apoptosis (50,
56), in part, by maintaining mitochondrial integrity (56).
These results suggest that mitochondria are major targets of
ionizing radiation and mitochondria-specific scavenging of
ROS by MnSOD may be an important mechanism to safe-
guard cells against radiation-induced damage.

CuZnSOD also has a radioprotective effect in normal tis-
sue. Petkau et al. found that the administration of mice with
bovine SOD by intravenous injection before and after ionizing
radiation treatment significantly increased the LD50 dose (164,
165), and exogenous SOD protected the proliferative capacity
of bone marrow stem cells from ionizing radiation, indicating
a protective effect of SOD (164). The addition of CuZnSOD
either before irradiation or after irradiation also had a protec-
tive effect in HUVEC, although pretreatment with CuZnSOD
gave the greatest level of radioprotection. CuZnSOD pretreat-
ment also partially attenuated the antiangiogenic effects of

FIG. 9. Sources and means of detoxification of ROS in the
cell. Superoxide radicals are generated at different sites in the
cell, such as the ER, ETC in mitochondria, as well as various
enzymatic sources, like NOX and XO, all of which contribute to
the generation of ROS after ionizing radiation. Superoxide
radicals are detoxified by SODs to form hydrogen peroxide,
which is further detoxified by GPx and Prx. GR is used to
regenerate GSH. ER, endoplasmic reticulum; ETC, electron
transport chain; GPx, glutathione peroxidase; GR, glutathione
reductase; GSH, reduced glutathione; NOS, NADPH oxidase;
Prx, peroxiredoxin; SOD, superoxide dismutase; XO, xanthine
oxidase. To see this illustration in color, the reader is referred to
the web version of this article at www.liebertpub.com/ars
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radiation, as determined by tube formation of HUVEC cells
in vitro. The radioprotective effect of CuZnSOD leading to in-
creased angiogenesis required the activation of the mitogen-
activated protein/extracellular signal-regulated kinase1/2
pathway, and the pretreatment of HUVECs with the MEK in-
hibitor PD98059 suppressed the effects of CuZnSOD (204).

ECSOD, like MnSOD and CuZnSOD, confers protection
from the harmful effects of ionizing radiation. Lung-specific
overexpression of ECSOD in B6C3 mice resulted in a signifi-
cant reduction in radiation-induced lung damage compared
to wild-type mice. For example, ECSOD overexpression de-
layed the onset of increased breathing frequency and sig-
nificantly reduced breathing rate compared to irradiated
wild-type mice. ECSOD also reduced radiation-induced in-
creases in macrophage and lymphocyte lung infiltration
compared to irradiated wild-type mice, as well as decreased
TGFb activation, Smad3 expression, and Smad2/3 activation
and reduced lipid peroxidation (111, 174).

While a multitude of studies show a role for SOD in radio-
protection of normal tissue, other studies suggest an apparent
radiosensitization effect. Fishman et al. (67) discovered that
knockdown of either MnSOD or CuZnSOD in C57BL/6J mice
attenuated radiation-induced reductions in neuronal cells and
cells differentiated into either neurons, astrocytes, or microglia in
the dentate subgranular zone of the hippocampus compared to
wild-type mice. The authors suggest that one potential mecha-
nism of the protective effect of MnSOD or CuZnSOD knock-
down may be increased superoxide levels. This hypothesis was
supported by experiments using xanthine or xanthine plus
xanthine oxidase. Incubation of neural precursor cells with either
xanthine alone or xanthine/xanthine oxidase had a protective
effect against radiation-induced diminution of cell numbers.
Although the authors did not address the specific mechanisms
by which decreased SOD, whether MnSOD or CuZnSOD, im-
parted a radioprotective effect on neuronal cells, they suggested
that the effect may be similar to an adaptive response for radi-
ation, whereby low doses of ionizing radiation are protective
against later, high doses of ionizing radiation (67). It would be
interesting to determine whether the observed effect of SOD
knockdown can occur in other normal cells and tumor cells.

SOD and Radiation Response in Neoplastic Cells

Radiosensitization

Using the MnSOD-overexpressing Fsa-II cells implanted in
mice, this laboratory found that MnSOD expression resulted
in a significant reduction in the radiation dose required
to control one-half of the irradiated tumors compared to
control mice (208). Overexpression of MnSOD by transfection
with a MnSOD cDNA-expressing plasmid/liposome complex
(MnSOD-PL) proved effective in increasing radiosensitivity
of SCC-VII mouse SCC cells (D0 = 1.244 Gy compared to
3.246 Gy for control cells), and the combination of MnSOD-PL
with the EGFR inhibitor gefitinib further increased radio-
sensitization (D0 = 0.785 Gy) (54). The administration of re-
combinant MnSOD (rMnSOD) was also effective in enhancing
radiosensitivity of cancer cells (20).

Radioresistance

Although some studies suggest a radiosensitizing role for
MnSOD, other studies show that MnSOD is important in

radioresistance of cancer cells. Qu et al. (172, 173) found that the
CNE1 human nasopharyngeal cell line was more radioresistant
than the CNE2 cell line, which correlated with increased ex-
pression and activity of MnSOD in the CNE1 cell line.
Knockdown of MnSOD in CNE1 cells decreased radio-
resistance (172, 173). Feng et al. generated a radioresistant
CNE2 cell line (CNE2-IR) by treating parental CNE2 cells with
five rounds of sublethal IR. Gene expression between CNE2
and CNE2-IR cells was compared, and there was an increase in
MnSOD expression, among other genes, in the radioresistant
cell line (64). MnSOD expression correlated well with radio-
resistance in nasopharyngeal tumors (64, 172), suggesting that
MnSOD may be predictive in determining radioresistance of
tumors. An important mechanism of radioresistance is cell
cycle arrest at the G2 phase of the cell cycle after exposure (66,
109). Scavenging of hydrogen peroxide by catalase expression
or treatment with NAC abolished MnSOD-induced radio-
resistance (199). Using a systems biology approach, Niciforovic
et al. discovered that radioresistance was associated with a
positive feed-forward cycle with hydrogen peroxide-induced
elevation of MnSOD expression (148).

MnSOD is a major target gene for the NF-jB pathway (116,
117, 223). The NF-jB pathway is vital for conferring radiation
resistance in cancer cells (124), and a major mechanism of
NF-jB-dependent radioresistance is induction of MnSOD
[reviewed in ref. (96)]. For example, Guo et al. (84) discovered
that MnSOD expression was significantly increased as part of
a radioadaptive response in MCF-7 human breast cancer cells.
This radioresistance was replicated by stable overexpression
of MnSOD, and several NF-jB target genes important for
survival were expressed in both radioadapted cells and cells
overexpressing MnSOD (84). Work by this laboratory has
focused on the mechanisms by which the alternative NF-jB
pathway increases radioresistance in prostate cancer cells. In a
study by Josson et al., (108) nuclear localization of RelB
(a component of the alternative NF-jB pathway) (187) was
significantly higher in aggressive PC-3 human prostate cells
compared to LNCaP cells and correlated with increased
MnSOD expression and radioresistance (108). Inhibition of
the alternative NF-jB pathway by expression of RelB-specific
siRNA, overexpression of a dominant-negative p100 (108),
treatment with the peptide inhibitor SN52 (to prevent nu-
clear translocation of RelB) (222), or administration of 1a,25-
dihyroxyvitamin D3 (to inhibit RelB expression) (221), all
resulted in a decrease in radiation-induced MnSOD expres-
sion and an increase in radiosensitivity in PC-3 cells.

CuZnSOD can also confer radioresistance in cancer cells.
Gao et al. (72) reported that the overexpression of CuZnSOD
in U118-9 human glioma cells increased radioresistance
compared to vector control and parental cells. ROS accumu-
lation occurred in parental and vector control cells starting at
2 days postirradiation and remained elevated up to 8 days
after radiation. This late accumulation of ROS was suppressed
in CuZnSOD-overexpressing cells. CuZnSOD overexpression
also increased the accumulation of the cells at the G2 phase of
the cell cycle, as well as decreased cyclin B1 expression (72).

SODs are a double-edged sword
in the radiation response of cancer cells

The studies highlighted above suggest a more complicated
role for SODs in the response of cancer cells to ionizing

SODS AND RADIATION THERAPY 1579



radiation. This dual role for SODs may be due to differences in
the expression and/or activity of other antioxidant enzymes
in various types of cancer cells. For example, well-differentiated
hepatocellular carcinoma cell lines have higher activity or ex-
pression levels of catalase, glutathione reductase, CuZnSOD,
and MnSOD compared to poorly differentiated cell lines
(227). In patients with renal cell carcinoma, there was a sig-
nificant reduction in the activity of GPx and catalase in cancer
tissues compared to normal tissues (166). On the other hand,
other studies have demonstrated an elevation in the expres-
sion and activity of some antioxidant enzymes in cancer cells.
Increased expression of MnSOD and catalase were observed
in gastric carcinoma cells compared to noncancerous cells
(101), and increased MnSOD expression was associated with
lymph node metastasis in gastric cancer patients (132).
Overexpression of SODs in cancer cells expressing low levels
of other antioxidant enzymes that remove hydrogen peroxide
may have a radiosensitization effect, perhaps because of in-
creased hydrogen peroxide levels after irradiation. Con-
versely, overexpression of SODs in cancer cells with high
levels of hydrogen peroxide-scavenging enzymes may have a
radioresistant effect because of increased dismutation of su-
peroxide radicals generated after irradiation and the ability to
handle the resultant increase in hydrogen peroxide produced.

Given the dual effect of SODs on the response of cancer
cells to ionizing radiation, careful screening of the antioxidant
status of tumor tissues should be considered before embark-
ing on the use of SOD therapy in parallel with radiation
therapy. This screening of tumor tissues may include ex-
pression of different antioxidant enzymes alone, or even ratios
of different enzymes, as well as a comparison of antioxidant
enzyme expression between tumor and normal tissues. This
approach would better tailor the therapy to each patient and
maximize the effectiveness of the therapy to destroy cancer
tissue and mitigate normal tissue injury.

Methods Exploiting SOD for Radiation Response

Because of the detrimental effects of ionizing radiation on
normal tissues, the resistance of tumor tissues to radiation
therapy, and the role of ROS in these processes, methods that
can increase SOD expression and/or activity may prove to be
important adjuvants to radiotherapy to increase radiosensi-
tivity in tumor tissues and protect normal tissues. An impor-
tant mechanism for the effects of SOD overexpression on the
simultaneous radioprotection of normal tissues and radio-
sensitization of tumor tissues may be diminished expression of
other antioxidant enzymes, especially catalase, in most cancer
tissues compared to normal tissues (9, 20, 21, 41, 154, 196, 197).
These enzymes catalyze the decomposition of hydrogen per-
oxide to molecular oxygen and water. Cancer cells are under
higher levels of oxidative stress than nontumorigenic cells (91,
153). Therefore, overexpression of SODs in cancer cells may set
up a condition whereby exposure to ionizing radiation results
in a greater ROS insult than in normal tissues, resulting in
greater cell death and cell cycle arrest. In contrast, over-
expression of SODs in normal tissues is radioprotective because
of the increased antioxidant capacity in normal tissues to
handle the ROS burst resulting from radiation exposure. Dis-
cussed below are several strategies that have been devised to
increase SOD activity and/or expression in vivo for modulation
of the radiation response in normal and tumor tissues.

Overexpression of SOD

Plasmid/liposome therapy. MnSOD-PL are useful for in-
creasing the expression of MnSOD in tissues. This particular
approach has proven effective in protecting lung tissue (29, 53,
57), the oral cavity (52, 85), and the esophagus (55, 58) from
ionizing radiation-induced damage. Interestingly, this therapy
also simultaneously sensitizes cancer cells to ionizing radiation.
For example, Epperly et al. (50) discovered that the over-
expression of MnSOD using MnSOD-PL inhibited radiation-
induced GPx expression in SCC-VII murine and OC-19 human
SCC cells and 3LL murine lung carcinoma cells and increased
radiosensitization of SCC-VII and OC-19 cells, but did not af-
fect the radiosensitivity of 3LL cells, in vitro. In MEFs, radiation
had no effect on GPx activity, but significantly reduced re-
duced glutathione (GSH) levels, and the administration of
MnSOD-PL significantly increased GSH levels after irradiation,
suggesting a radioprotective effect on normal cells in vitro.
In vivo, the administration of MnSOD-PL had no effect on
radiation-induced reduction in GSH in oral cavity SCC-VII
orthotopic tumor tissue, but significantly reduced GPx activity
in conjunction with radiation. In adjacent normal oral mucosal
tissue, MnSOD-PL protected from radiation-induced changes
in GSH levels and GPx activity (59). Intraoral administration
of the MnSOD-PL therapy significantly decreased the num-
ber of ulcerations 5 days after irradiation compared to irradi-
ated control mice. Interestingly, the administration of the
MnSOD-PL therapy did not protect SCC-VII tumors from the
effects of radiation (85). These results suggest a potential for
radioprotection of normal tissue and radiosensitization of tu-
mor tissue by MnSOD-PL.

Virus-mediated overexpression. The use of viruses is
another efficient method for overexpression of MnSOD to
alter radiation response. Adenovirus-mediated over-
expression of MnSOD, both in vitro (234) and in vivo (51),
confers protection to lung tissue and lung epithelial cells
against radiation-induced damage. For example, intratracheal
injection of MnSOD adenovirus significantly decreased al-
veolitis, in part, by suppressing radiation-induced expression
of different inflammatory cytokines (transforming growth
factor-beta [TGF-b], TNF-a, and interleukin-1) (51). Retroviral
transduction of a MnSOD construct in hematopoietic cells
protected the cells from ionizing radiation-induced DNA
damage both in vitro and in vivo (193). Intraluminal admin-
istration of a herpes simplex virus-MnSOD virus had a ra-
dioprotective effect on the small intestine (86). Transfection
of urothelia (bladder) with MnSOD transgene did not protect
bladders from the acute effects of radiation early after expo-
sure (as measured by transepithelial resistance and perme-
abilities to water and urea) but did enhance recovery at 4
weeks after irradiation compared to controls (110). These re-
sults suggest a persistent effect of ionizing radiation on oxi-
dative metabolism lasting for weeks after radiotherapy and
the ability of SOD overexpression to ameliorate this effect.

Recombinant protein

Administration of a recombinant form of MnSOD can also be
radioprotective. Borrelli et al. (20) found that treatment with
rMnSOD sensitized cancer cells to ionizing radiation and pro-
tected normal cells from ionizing radiation in vitro. In vivo, in-
traperitoneal administration of rMnSOD after irradiation, with
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subsequent rMnSOD treatments for an additional 6 days, sig-
nificantly diminished radiation-induced organ damage and
increased survival compared to animals receiving phosphate-
buffered saline only (20).

SOD mimetics

Another attractive approach to increase the SOD activity
in normal tissue and cancer is the use of SOD mimetics. Sev-
eral manganese porphyrin compounds, as well as non-metal-
based compounds, have been developed with variable
superoxide-scavenging properties, pharmacokinetics and
tissue and subcellular localization (11, 138), and several of
these porphyrin-based mimetics (Fig. 10) are effective in de-
creasing radiation-induced damage in normal tissue and
radiosensitizing tumor tissue.

Mn(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin
(MnTE-2-PyP5 + ) protects from bone marrow suppression
induced by total body irradiation by inhibiting oxidative
damage induced by ionizing radiation in hematopoietic stem
cells and progenitor cells (125). MnTE-2-PyP5 + has also pro-
ven effective in delaying the onset of ionizing radiation-
induced lung injury in rats, as indicated by diminished
breathing frequency, reduced lung fibrosis, and less hydro-
xyproline content (indicating collagen deposition) compared to
irradiated rats receiving no mimetic (212). MnTE-2-PyP5 + de-
creased oxidative stress, blocked the activation of HIF-1a and
TGF-b, and suppressed the upregulation of carbonic anhy-
drase-IX and VEGF expression. The protective effect of MnTE-
2-PyP5 + can also occur long after the irradiation event. The
administration of MnTE-2-PyP5 + at 3 days and 8 weeks post-
irradiation, while not affecting radiation-induced oxidative
DNA damage, significantly reduced histopathological damage
in the lungs compared to animals not receiving mimetic (74).

While MnTE-2-PyP5 + is effective in radioprotection of
normal tissues, Mn(III) 5,10,15,20-tetrakis(N-hexylpyridinium-
2-yl)porphyrin (MnTnHex-2-PyP5 + ) has been proven to be

even more efficacious than MnTE-2-PyP5 + due to its greater
lipophilicity and higher biodistribution (218). At high con-
centrations, MnTnHex-2-PyP5 + can cause toxicity, which may
be due to its micellar properties (73). Another SOD mimetic
useful in suppressing radiation-induced lung damage after
both single-dose (175) and fractionated radiotherapy (176)
is Mn(III) tetrakis(N,N¢-diethylimidazolium-2-yl)porphyrin
(AEOL 10150). Potential mechanism of diminution of radia-
tion-induced lung damage include reduction in inflammatory
cytokines in both plasma (212) and lung tissue (74), suppres-
sion of oxidative DNA and protein damage (176), as well as a
decrease in radiation-induced apoptosis (224).

Not only do SOD mimetics have radioprotective effects on
normal tissues, but they can also have radiosensitization ef-
fects on cancerous tissues. Moeller et al. (139) found that the
SOD mimetic MnTE-2-PyP5 +, at all doses tested, was not cy-
totoxic on the different tumor and endothelial cell lines tested
and neither sensitized nor protected the cells from radiation
treatment in vitro. Interestingly, MnTE-2-PyP5 + inhibited the
radioprotective effects of tumor cell-conditioned medium on
endothelial cells in vitro and enhanced radiation-induced
damage to tumor vasculature and delayed tumor growth
in vivo (139), suggesting that SOD mimetics may disrupt
communication between tumor and endothelial cells, leading
to breakdown of tumor vasculature after radiation and dis-
ruption of the tumor microenvironment.

Concluding Remarks

Ionizing radiation is an efficient method for the treatment of
cancer. However, the development of normal tissue injury can
limit the effectiveness of radiotherapy. ROS are important me-
diators of radiation therapy and can also participate in the dif-
ferential effect of radiation in cancer cells and in normal cells due
to differences in the antioxidant potential between tumor and
normal tissues. Bystander effects play an important role in the
response of cancerous and normal tissues to ionizing radiation,

FIG. 10. Various SOD mimetics used in studies on radiotherapy in vivo. All three mimetics discussed in this article have
the same porphyrin core and differ only in the substituents on porphyrin. AEOL 10150 contain N,N¢-diethylimidazolium,
whereas MnTE-2-PyP5 + and MnTnHex-2-PyP5 + contain an ethyl and hexyl hydrocarbon chain, respectively, on the nitrogen of
the pyridine ring. AEOL 10150, Mn(III) tetrakis(N,N¢-diethylimidazolium-2-yl)porphyrin; MnTE-2-PyP5 + , Mn(III) 5,10,15,20-
tetrakis(N-ethylpyridinium-2-yl)porphyrin; MnTnHex-2-PyP5 + , Mn(III) 5,10,15,20-tetrakis(N-hexylpyridinium-2-yl)porphyrin.
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potentially leading to radioresistance of cancer cells and radio-
sensitization of normal cells. ROS are key mediators of radiation-
induced bystander effects. Bystander effects are also important
for the effects of tumor microenvironment on radiation respon-
siveness, with communication between tumor and stromal cells
conferring radioprotection and increased aggressiveness of
tumor cells. SODs, the main ROS scavengers of the cell, play a
complex role in the response of cancer cells to ionizing radiation.
Increasing the expression and/or activity of SODs, especially
MnSOD, through the use of gene-expressing plasmid delivery
systems, viral vectors, administration of recombinant protein,
or the use of SOD mimetics, can increase the radiosensitivity of
cancer cells while simultaneously increasing the resistance of
normal tissues to radiation-induced injury in vivo. Development
of these techniques for use in humans may provide unique tools
for the radiation oncologist to improve treatment efficacy and
enhance the quality of life for cancer patients in the future.
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Abbreviations Used

AEOL 10150¼Mn(III) tetrakis
(N,N¢-diethylimidazolium-2-yl)
porphyrin

CHO¼Chinese hamster ovary cells
COX-2¼ cyclooxygenase-2

CuZnSOD¼ copper-zinc superoxide dismutase
Cx43¼ connexin-43
cytc¼ cytochrome c

DMBA¼ 7,12-dimethylbenz(a)-anthracene
ecDNA¼ extracellular DNA
ECSOD¼ extracellular superoxide dismutase

ER¼ endoplasmic reticulum
ETC¼ electron transport chain
GJIC¼ gap junction intercellular

communication
GPx¼ glutathione peroxidase
GR¼ glutathione reductase

GSH¼ reduced glutathione
GSSG¼ oxidized glutathione

HIF-1a¼hypoxia-inducible factor-1a
HUVEC¼human umbilical vein endothelial cells

IFN-b¼ interferon-b
IGFBP-3¼ insulin growth factor binding protein 3

LET¼ linear energy transfer
MEF¼mouse embryonic fibroblast

MnSOD¼manganese superoxide dismutase
MnSOD-PL¼MnSODcDNA-expressing

plasmid/liposome complexes
MnTE-2-PyP5+¼Mn(III) 5,10,15,20-tetrakis

(N-ethylpyridinium-2-yl)porphyrin
MnTnHex-2-PyP5+¼Mn(III) 5,10,15,20-tetrakis

(N-hexylpyridinium-2-yl)porphyrin
mtDNA¼mitochondrial DNA

NAC¼N-acetylcysteine
NHLF¼normal human lung fibroblasts

NOX¼NADPH oxidase
PRX¼peroxiredoxin

Ptch1¼Patched-1
rMnSOD¼ recombinant MnSOD

ROS¼ reactive oxygen species
SCC¼ squamous cell carcinoma
SOD¼ superoxide dismutase

SOD1¼ copper-zinc superoxide dismutase
SOD2¼manganese superoxide dismutase
SOD3¼ extracellular superoxide dismutase
TGF-b¼ transforming growth factor-beta
TNF-a¼ tumor necrosis factor-alpha

TPA¼ 12-O-tetradecanoylphorbol-13-acetate
VEGF¼vascular endothelial growth factor

XO¼ xanthine oxidase
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