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The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical
simulator in the temperature range of 1173∼1473K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved
Arrhenius-type constitutive model and the artificial neural network (ANN)model were established to predict the high temperature
flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN
model were further evaluated in terms of the correlation coefficient (𝑅), the average absolute relative error (AARE), and the relative
error (𝜂). For the former, 𝑅 and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%,
respectively. The relative errors (𝜂) of the improved Arrhenius-type model and the ANN model were, respectively, in the range
of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possesses 𝜂-values within ±1%, while,
as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the
improved Arrhenius-type constitutive model.

1. Introduction

20MnNiMo is a low carbon steel with moderate strength,
superior plasticity and toughness, good ductility and worka-
bility. Due to its low neutron irradiation sensitivity and supe-
rior performance, 20MnNiMo is increasingly and extensively
applied in manufacture of large and medium-sized nuclear
reactor pressure vessel [1]. The understanding of the flow
behaviors of metals and alloys at a hot deformation condition
has a great importance for designers engaged in metal form-
ing (hot rolling, forging, extrusion, etc.), since flow behaviors
have an effective role on material deformation pattern as well
as on the kinetics of metallurgical transformation. The con-
stitutive relationships are often used to describe the material
deformation pattern in a form that can be used in computer
codes tomodel the forging response ofmechanical part under
the prevailing loading conditions [2]. So far, Lee et al. [3] have
investigated the influence of composition and distribution
of carbides on the fracture toughness of 20MnNiMo steel.

Sun and his colleagues describe the mechanical responses
andmicrostructural evolutions of the 20MnNiMo steel under
various hot deformation conditions [4]. Nevertheless, there
is still a lack of basic understanding of the hot deformation
behavior of 20MnNiMo alloys until now [1, 3, 4]. Therefore,
it is necessary to investigate high temperature flow behavior
of 20MnNiMo alloy and accurately predict the stress.

Constitutive relationship is a mathematical representa-
tion for describing the correlation between flow stress, strain,
strain rate and temperature in a wide range of working
conditions [5, 6].Many researchers have attempted to develop
constitutive equations from the experimental data to accu-
rately describe the thermal deformation behavior ofmaterials
[7–11]. And constitutive model expressed by the hyperbolic
sine law has been extensively applied to describe the hot
deformation behavior of materials. Various modifications
of this model have also been suggested to improve its
predictability [8–13]. Slooff et al. [11] introduced strain-
dependent parameters in the hyperbolic sine constitutive
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model to predict the flow stress in a wrought magnesium
alloy. Lin et al. [12] developed the strain-dependent hyper-
bolic sine constitutive model by compensation of strain rate
in Zener-Hollomon parameter (𝑍 = ̇𝜀 exp(𝑄/𝑅𝑇)) to predict
flowbehavior of 42CrMo steel, and the results showed that the
strain-compensated Arrhenius-type equations could track
the deformation behavior more accurately than the other
equations. Later, an improved Arrhenius-type constitutive
equation incorporating a series of polynomial functions for
each coefficient followed by lin’s method was constructed
to describe the high temperature flow behaviors of AZ81
magnesium alloy [13].

However, the improved Arrhenius-type constitutive
model also has its own drawbacks in some certain cases such
as low accuracy for predicting the relationships between flow
stresses and processing variables and poor adaptability for
the new experimental data [13, 14]. Recently, the artificial
neural network (ANN) as an artificial intelligent approach
was introduced to establish the constitutive relationship and
further model the flow behaviors under hot compression
of many metals and alloys [15–17]. Owing to its inherently
high parallelism, ANN is ideally suited for the problem of
estimating the flow stress from the available experimental
data [16, 17]. It is in particular suitable for treating complex
and nonlinear relationships and has been successfully applied
to the prediction of constitutive relationships for some alloys
[18]. More importantly, it is quite convenient to present the
deformation behavior of materials with favorable accuracy
under hot working conditions [19]. Xiao et al. [20] make
a comparative study on the Arrhenius-type constitutive
model considering strain compensation and artificial neural
network models to predict the hot deformation behavior of
the 12Cr3WV steel, and the results showed that the ANN
model can predict the flow stress more efficient and accurate
than the Arrhenius-type constitutive equations.

The objective of this investigation is to make a com-
parative study on the improved Arrhenius-type Constitu-
tive model and artificial neural network models on their
capability to predict the high-temperature flow behavior
of 20MnNiMo alloy. Experimental data from isothermal
hot compression tests on Gleeble-1500 thermal-mechanical
simulator in a temperature range from 1173K to 1473K and a
strain rate range from 0.01 s−1 to 10 s−1 are used to resolve the
improved Arrhenius-type Constitutive model and to develop
artificial neural network model. Subsequently, the suitability
of these models to predict the elevated temperature flow
behavior was evaluated based on the correlation coefficient
(R), average absolute relative error (AARE), and relative error
(𝜂).

2. Materials and Experiment Procedures

The chemical compositions (wt%) of 20MnNiMo alloy were
C-0.2, Si-0.16, Mn-1.53, S-0.0022, P-0.0063, Ni-0.81, Mo-
0.57, Cr-0.14, V-0.005, Cu-0.04, and Fe (balance). Before the
experiment, the extruded rod was homogenized under tem-
perature 1523K for 12 h. Then the rod was scalped to height
12mm and diameter 10mm with grooves on both sides filled

with machine oil mingled with graphite powder as lubricant
to reduce friction between the anvils and specimen. On a
computer-controlled, servohydraulic Gleeble-1500 machine,
the specimens were resistance-heated at a heating rate of
10 K/s and held at a certain temperature for 180 s to ensure
a uniform starting temperature and decrease the material
anisotropy. Sixteen specimens were compressed with a height
reduction of 60% at four different temperatures of 1173 K,
1273K, 1373K, and 1473K and four different strain rates
of 0.01 s−1, 0.1 s−1, 1 s−1, and 10 s−1. During the compressing
process the variations of stress and strain were monitored
continuously by a personal computer equipped with an
automatic data acquisition system. The true stress-strain
relationships were derived from the nominal stress-strain
curves collected according to the following formula: 𝜎

𝑇

=

|𝜎

𝑁

(1 + 𝜀

𝑁

)|, 𝜀
𝑇

= | ln(1 + 𝜀

𝑁

)|, where 𝜎

𝑇

is the true stress,
𝜎

𝑁

is the nominal stress, 𝜀
𝑇

is the true strain, and 𝜀

𝑁

is the
nominal strain.

3. Results and Discussion

3.1. Flow Stress Behavior. The true stress-strain curves of
20MnNiMo alloy compressed at different deformation con-
ditions are shown in Figures 1(a), 1(b), 1(c), and 1(d).The flow
stress as well as the shape of the flow curves is sensitively
dependent on strain rate and temperature. Comparing these
curves with one another, it is found that, for a specific strain
rate, the flow stress decreases markedly with temperature,
while at a certain temperature, the flow stress generally
increases as the strain rate increases due to an increase of
dislocation density and the dislocation multiplication rate.

From the true stress-strain curves in Figures 1(a), 1(b),
1(c), and 1(d), it can be seen that the stress evolution
with strain exhibits three distinct stages [21]. At the first
stage, where work hardening (WH) predominates and causes
dislocations to polygonize into stable subgrains, flow stress
exhibits a rapid increase to a critical value with increasing
strain, resulting in equiaxed DRX grains. At the second stage,
flow stress exhibits a smaller and smaller increase until a
peak value or an inflection of work-hardening rate, which
shows that the thermal softening due to DRX and dynamic
recovery (DRV) becomes more and more predominant, then
it exceeds WH. At the third stage, three types of curve
variation tendency can be generalized as follows: decreasing
gradually to a steady state with DRX softening (1173∼1473K
and 0.01 s−1, 1373∼1473K, and 0.1 s−1), maintaining higher
stress level without significant softening and work-hardening
(1173∼1273K and 0.1 s−1, 1173∼1373 K and 1 s−1, 1173∼1373K
and 10 s−1), and increasing continuouslywith significantwork
hardening (1473K and 1 s−1, 1473 K and 10 s−1). Thus, it can
be concluded that the typical form of flow curve with DRX
softening, including a single peak followed by a steady state
flow as a plateau, is more recognizable at higher temperatures
and lower strain rates. That is because at lower strain rates
and higher temperatures, the higherDRX softening rate slows
down the rate of work-hardening, and both the peak stress
and the onset of steady state flow are therefore shifted to lower
strain levels [22–27].
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Figure 1: The true stress-strain curves of as-cast 20MnNiMo alloy under the different temperatures with strain rates (a) 0.01 s−1, (b) 0.1 s−1,
(c) 1 s−1, (d) 10 s−1.

3.2. Improved Arrhenius-Type Constitutive Model. In order
to further investigate the thermal deformation behaviors
of 20MnNiMo alloy, it is necessary to study the consti-
tutive characteristics. The stress-strain data obtained from
hot compression tests can be used to determine the mate-
rial constants of the constitution equation. The Arrhe-
nius equation is widely used to describe the relation-
ship between flow stress, deformation temperature, and
strain rate, especially at high temperature [28]. Further-
more, the effects of deformation temperature and strain
rate on the deformation behaviors can be represented by
Zener-Hollomon parameter (𝑍) in an exponential equa-
tion [29]. The two equations are mathematically expressed
as

𝑍 = ̇𝜀 exp (𝑄/𝑅𝑇) . (1)

̇𝜀 = 𝐴𝐹 (𝜎) exp (−𝑄/𝑅𝑇) , (2)

where,

𝐹 (𝜎) =

{

{

{

{

{

𝜎

𝑛

𝛼𝜎 < 0.8

exp (𝛽𝜎) 𝛼𝜎 > 1.2

[sinh (𝛼𝜎)]

𝑛 for all 𝜎
(3)

in which ̇𝜀 is the strain rate (s−1), 𝑅 is the universal gas
constant (8.31 J⋅mol−1⋅K−1),𝑇 is the absolute temperature (K),
𝑄 is the activation energy of DRX (kJ⋅mol−1), 𝜎 is the flow
stress (MPa) for a given stain,𝐴, and 𝛼 and 𝑛 are the material
constants, 𝛼 = 𝛽/𝑛.

It is commonly accepted that the effect of strain on
stress has not been considered in (1) and (2). Here the
effects of deformation strain on stress are investigated by the
consideration of the influence of strain on a series of variable
coefficients (including activation energy of deformation 𝑄,
material constants 𝑛 and 𝛼, and structure factor 𝐴) in
Arrhenius type model. The following is taking the strain of
0.2 as an example.
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Figure 2: The relationships between (a) ln𝜎 and ln ̇𝜀, (b) 𝜎 and ln ̇𝜀, (c) ln[sinh(𝛼𝜎)] and 𝑇

−1, and (d) ln[sinh(𝛼𝜎)] and ln ̇𝜀.

For the low stress level (𝛼𝜎 < 0.8) and high stress level
(𝛼𝜎 > 1.2), by substituting power law and exponential law of
𝐹(𝜎) into (2), the relationships between flow stress and strain
rate can be expressed in the following equations, respectively,

̇𝜀 = 𝐵𝜎

𝑛

. (4)

̇𝜀 = 𝐵

󸀠 exp (𝛽𝜎) , (5)

where 𝐵 and 𝐵

󸀠are the material constants that are dependent
of deformation temperatures. Taking natural logarithms on
both sides of (4) and (5), respectively, gives

ln𝜎 =

1

𝛽

ln ̇𝜀 −

1

𝛽

𝐵

󸀠

, (6)

𝜎 =

1

𝛽

ln ̇𝜀 −

1

𝛽

𝐵

󸀠

. (7)

Then, 1/𝑛 = d ln𝜎/dln ̇𝜀 and 1/𝛽 = d𝜎/d ln ̇𝜀.
Substituting the values of the flow stress and corresponding

strain rate at the strain of 0.2 into the logarithms (6) and (7)
gives the relationship between stress and strain rate as shown
in Figure 2. Figures 2(a) and 2(b) show the relationships of
𝜎 − ln ̇𝜀 and ln𝜎 − ln ̇𝜀 for 𝜀 = 0.2 at the temperatures of
1173 K, 1273K, 1373K, and 1473K. In Figure 2(a) the average
value of all the lines’ slopes is equal to the inverse of 𝑛-value,
thus 𝑛 = 7.30547MPa−1 for 𝜀 = 0.2.Meanwhile in Figure 2(b)
the average value of all the lines’ slopes is equal to the inverse
of 𝛽-value, thus 𝛽 = 0.098854MPa−1 for 𝜀 = 0.2. Then
𝛼 = 𝛽/𝑛 = 0.0011897.

For all the stress level (including low and high-stress
levels), (2) can be represented as follows:

̇𝜀 = 𝐴[sinh (𝛼𝜎)]

𝑛 exp (−𝑄/𝑅𝑇) . (8)

By substituting Zener-Hollomon parameter 𝑍 = ̇𝜀 exp
(𝑄/𝑅𝑇) into (8), the flow stress can be expressed as follows
(9):

𝜎 =

1

𝛼

ln{(

𝑍

𝐴

)

1/𝑛

+ [(

𝑍

𝐴

)

2/𝑛

+ 1]

1/2

} .
(9)
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Figure 3: Relationship between (a) Q, (b) n, (c) 𝛼, (d) ln𝐴 and true strain by polynomial fit of 20MnNiMo alloy.

Taking the logarithm of both sides of (8) gives

ln sinh (𝛼𝜎) =

1

𝑛

ln ̇𝜀 +

𝑄

𝑛𝑅𝑇

−

1

𝑛

ln𝐴. (10)

For the fixed temperature and strain, by differentiating
(10), the value of 𝑛 can be expressed as

1

𝑛

=

d ln sinh (𝛼𝜎)

d ln ̇𝜀

. (11)

The value of 𝑛 can be obtained from the slope in a plot of
ln sinh(𝛼𝜎) − ln ̇𝜀 by substituting the values of the flow stress
and strain rate for all the tested temperatures into (11) and the
linear relationships between ln sinh(𝛼𝜎) and ln ̇𝜀 at different
temperatures were fitted out as Figure 2(c). The mean value
of all the intercepts of ln sinh(𝛼𝜎) versus ln ̇𝜀 plots is accepted
as 𝐴 value; furthermore 𝐴 value for 𝜀 = 0.2 is obtained as
3.769 × 1012 s−1.

For the given strain rate conditions, differentiating (10)
gives

𝑄 = 𝑅𝑛{

d [ln sinh (𝛼𝜎)]

d (1/𝑇)

} . (12)

It is clear that the value of 𝑄 can be derived from the
slope in a plot of ln[sinh(𝛼|𝜎|)] as a function of 1/𝑇 as
shown in Figure 2(d). From a group of parallel and straight
lines in Figure 2(d), the value of activated energy (𝑄) as
744.34 kJ/mol can be easily evaluated by averaging the values
of (𝑄) under different strain rates.

Then, the values of material constants (𝑄, 𝑛, ln𝐴, and 𝛼)

of the constitutive equations were computed under different
deformation strains within the range of 0.05∼0.80 and the
interval of 0.025.The relationships between,𝑄, 𝑛, ln𝐴, 𝛼, and
true strain for 20MnNiMo alloy (Figure 3) can be polynomi-
ally fitted by the compensation of strain, as shown in (13).The
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Figure 4: Schematic illustration of the neural network architecture.

polynomial fit results of𝑄, 𝑛, ln𝐴, and 𝛼 of 20MnNiMo alloy
are provided in Table 1. Consider the following:

𝑄 = 𝑗 (𝜀) = 𝐵
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Substituting 𝑄, 𝑛, ln𝐴, and 𝛼 in (14) into (8) gives the
relationships between ̇𝜀, 𝑇, and 𝜎 as follows (14):

| ̇𝜀| = 𝑓 (𝜀) {sinh [𝑔 (𝜀) |𝜎|]}

ℎ(𝜀)

× exp(

𝑗 (𝜀)

8.31𝑇

) . (14)

Thus,𝑍 = | ̇𝜀| exp[𝑗(𝜀)/8.31𝑇]. Furthermore, the constitu-
tive equation for flow behavior of 20MnNiMo alloy in a wide
strain range of 0.05∼0.80 can be expressed as follows (15):

|𝜎| =

1

𝑔 (𝜀)

ln
{

{

{

(

| ̇𝜀| exp [𝑗 (𝜀) /8.314𝑇]

𝑓 (𝜀)

)

1/ℎ(𝜀)

+[(

| ̇𝜀| exp [𝑗 (𝜀) /8.314𝑇]

𝑓 (𝜀)

)

2/ℎ(𝜀)

+ 1]

1/2

}

}

}

,

(15)

where 𝑗(𝜀), ℎ(𝜀),𝑓(𝜀), and 𝑔(𝜀) are the polynomial functions
of𝑄, 𝑛, 𝐴, and𝛼 at different true strains, and their expressions
are as (13) and Table 1.

3.3. Artificial NeuralModel. Artificial neural network (ANN)
is a powerful treatment system for data information, which
can mimic complex and nonlinear relationships through
the application of many nonlinear processing units called
neurons. A typical artificial neural networks architecture
consists of an input layer, an output layer, and a hidden layer.
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Some neuron serves the input variables, some provide the
output, and the rest of the neurons remain hidden [30]. Back-
propagation algorithm is the typical means of adjusting the
weights and biases by utilizing gradient descent to minimize
the target error, which is approximated in the vector space
created by the weights and biases [31, 32]. Hence, a three-
layer feed forward back-propagation (BP) artificial neural
network (as shown in Figure 4) was employed to predict
the hot deformation behavior of 20MnNiMo alloy in present
work.The inputs of the ANNmodel are strain, log strain rate,
and temperature.The output of the ANNmodel is flow stress.

When developing the ANNmodel, 396 random data sets
from the true stress-true strain curves were used to train
the network model, and 100 data sets at true strain between
0.05 and 0.80 with interval of 0.025 were applied to test
the predictability of the ANN model. Before training the
network, both input and output variable datasets were scaled
between 0 and 1 in order to ensure that each variable lay in the
same range during the training and the testing.The following
equation was used widely for unification of data T, 𝜀, and 𝜎

[25]:

𝑋

󸀠

=

𝑋 − 0.95𝑋min
1.05𝑋max − 0.95𝑋min

, (16)

where𝑋 is the original data,𝑋min and𝑋max are theminimum
and maximum value of 𝑋, respectively, and 𝑋

󸀠 is the unified
data of the corresponding𝑋. Since the ̇𝜀 changed sharply and
theminimum value of ̇𝜀 after unificationwas too small for the
ANN model to learn, the following equation is developed to
unify the value of ̇𝜀:

̇𝜀

󸀠

=

(3 + lg ̇𝜀 ) − 0.95 (3 + lg ̇𝜀min)

1.05 (3 + lg ̇𝜀max) − 0.95 (3 + lg ̇𝜀min)
(17)

in which a constant 3 is defined to make the unified data be
positive [25]. The transfer functions were “tan sigmoid”, and
the training function was “Trainlm”.

In order to determine the appropriate number of neurons
in the hidden layer, the trial-and-error procedure was started
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Table 1: Coefficients of the polynomial for 𝑄, 𝑛, ln𝐴, and 𝛼.
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Figure 6: Correlation between the experimental and ANN predicted data for the (a) training and (b) test data.

with two neurons in the hidden layer and further carried out
with more neurons. Figure 5 shows the influence of number
of neurons in the hidden layer on the network performance.
The value of mean square error is applied to check the ability
of a particular architecture. It is founded that the value of
mean square error decreases to the minimum value when the
number of neurons is 23, which indicates that the network
with 23 hidden neurons was the optimal structure for the
prediction of flow stress of 20MnNiMo alloy.

Meanwhile, an evaluator, correlation coefficient (𝑅) and
average absolute relative error (AARE) are introduced in
training and testing datasets to evaluate the performance of
the ANN training work. These are defined as follows [18]:

𝑅 =

∑

𝑁

𝑖=1

(𝐸

𝑖

− 𝐸) (𝑃

𝑖

− 𝑃)

√
∑

𝑁

𝑖=1

(𝐸

𝑖

− 𝐸)

2

∑

𝑁

𝑖=1

(𝑃

𝑖

− 𝑃)

2

AARE (%) =

1

𝑁

𝑁

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝐸

𝑖

− 𝑃

𝑖

𝐸

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

× 100,

(18)

where 𝐸 is the sample of experimental value, 𝑃 is the sample
of predicted value by ANN model, 𝐸 and 𝑃 are the mean
value of 𝐸 and 𝑃, respectively, and𝑁 is the number of strain-
stress samples. Comparisons of ANNwith 23 hidden neurons
predicted flow stress with experimental ones during training
and testing are shown in Figures 6(a) and 6(b). Standard
statistical performance indices of the ANN model during
training, 𝑅 and AARE, are 0.9997 and 0.98%; and those of
test, 𝑅 and AARE, are 0.9997 and 1.02%, respectively. These
observations indicate that the trained ANN model with 23
hidden neurons has good capability to predict and generalize
the hot deformation behavior of 20MnNiMo alloy.

3.4. Comparative Evaluation of the Improved Arrhenius-Type
Constitutive Equations and the ANN Model. Figure 7 shows
comparisons of the experimental flow stress data with values
calculated by improved Arrhenius-type model for the four
different temperatures under strain rates of 0.01 s−1, 0.1 s−1,
1 s−1, and 10 s−1. It can be easily found that the case of high
strain rate of 1 s−1 and 10 s−1 is the best ideal one, and the
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Figure 7: Comparison between the experimental and predicted flow stress by improved Arrhenius-type constitutive model at different strain
rates and temperatures (a) 0.01 s−1, (b) 0.1 s−1, (c) 1 s−1, and (d) 10 s−1.

experimental and predicted results are in good agreement.
However, for the case of low strain rates of 0.01 s−1 and
0.1 s−1, there are obvious errors between the experimental
and predicted results. The predicted flow stress is larger than
the experimental one for the temperatures of 1273K, 1373K,
and 1473K at the strain rate of 0.01 s−1, while the contrary
conclusion will be obtained for the temperature of 1173 K and
1473K at the strain rate of 0.1 s−1. Furthermore, the predicted
flow stress can not accurately describe the DRX characteristic
very well.

The predicted flow stresses from ANN model and cor-
responding experimental ones at different temperatures and
strain rates are compared as shown in Figure 8. It could be
observed that the predicted values can track the experimental
results very well throughout both the work hardening stage
and dynamic softening stage (whatever it is DRX or DRV
softening mechanism) in a wide temperature range of 1173∼
1473K, a wide strain rate range of 0.01∼10 s−1, and a wide
strain range of 0.05∼0.8. All above suggests that the present

ANN model has an excellent capability and high accuracy
to describe the flow behavior of 20MnNiMo at different
temperature and strain rates.

The accuracy of the improved Arrhenius-type constitu-
tive equations and the ANN model was further quantified
by the correlation coefficient (𝑅) and the average absolute
relative error (AARE).They can be expressed as (18). Figure 9
shows the plots of experimental values and predicted values
predicted by improvedArrhenius-type constitutive equations
and the ANN model, respectively. It is clearly seen that most
of the data points lie very close to the line, and the correlation
coefficients (𝑅) for the Improved Arrhenius-type and ANN
models are 0.9954 and 0.9997, respectively. The average
absolute relative error (AARE) of the Improved Arrhenius-
type model is 5.26%, which is larger than the value 1.02% of
the ANNmodel.

The accuracy of the improved Arrhenius-type constitu-
tive equations and the ANN model was further investigated
by statistical analysis of the relative errors (𝜂) between
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Figure 8: Comparison between the experimental and predicted flow stress by ANNmodel at different strain rates and temperatures (a) 0.01
s−1, (b) 0.1 s−1, (c) 1 s−1, and (d) 10 s−1.

the experimental values and predicted values, which were
calculated by (19) as follows:

𝜂 (%) =

𝑃

𝑖

− 𝐸

𝑖

𝐸

𝑖

× 100%, (19)

where 𝐸 is the sample of experimental value, 𝑃 is the sample
of predicted value by one model, and 𝑁 is the number of
strain-stress samples. Figure 10 shows the relative errors (𝜂)
of two models depicted as relative frequency versus relative
error plot. It can be seen that the constitutive equations are
in the range of −39.99%∼35.05%; whereas those are found to
vary from −3.77% to 16.74% for the ANNmodel. Meanwhile,
the relative error (𝜂) within ±1% was observed for more than
79% of predicted data set of the ANN model while only for
16.3% of the predicted data sets for the constitutive equations,
which reveals the higher accuracy of the ANNmodel.

All the results obtained above obviously indicate that the
establishedANNmodel showed goodperformance and could
be applied to predict the flow behavior of 20MnNiMo alloys
more accurately than the Improved Arrhenius-type models.

This is because the response of deformation behaviors of
the materials under elevated temperatures and strain-rates is
highly nonlinear, and many factors affecting the flow stress
are also nonlinear, which make the prediction accuracy of
the flow stress by the constitutive equations low and the
applicable range limited [31, 32].

3.5. Prediction Potentiality of ANN Model Outside the Exper-
imental Condition. It is well known that the well-trained
ANN models could provide highly accurate prediction of
flow stress over a wider range of temperatures and strain
rates. Figures 11(a), 11(b), and 11(c) show the 3D surface
plots representing the relationships of predicted flow stress
versus strain and temperature, strain and log strain rate
and log strain rate and temperature, respectively, at a fixed
log strain rate of −1.5, temperature of 1223K, and strain
of 0.5. Each node of the surface plots represents a data
predicted byANNmodel andmost of the predicted data were
outside the experimental conditions. From Figure 11 it can
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Figure 9: Correlation between experimental and predicted flow stress data from (a) constitutive model and (b) ANN model.
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Figure 10: Distributions on prediction error by (a) constitutive model and (b) ANN model.

be seen that the flow stress varies from 0 to 200MPa with
increase in the strain rate from 0.01 to 10 s−1 and decrease
in temperature from 1173 to 1473K, which indicates that
the predictions are well in agreement with the experimental
knowledge.

4. Conclusions

The experimental stress-strain data from the isothermal
hot compression tests on a Gleeble-1500 thermomechanical
simulator, in a wide range of temperatures (1173∼1473K)
and strain rates (0.01∼10 s−1), were employed to develop
the Improved Arrhenius-type constitutive model and ANN
constitutive model for 20MnNiMo alloys. A comparative

studywas carried out on their capability to represent the high-
temperature deformation behavior of 20MnNiMo alloy. The
conclusions can be drawn as follows.

(1) The correlation coefficient (𝑅) and average absolute
relative error (AARE) for the improved Arrhenius-
type model are 0.9954 and 5.26%, respectively, while
their values for the ANNmodel are 0.9997 and 1.02%,
respectively. Higher𝑅-values and lower AARE-values
for the ANN model indicate that it has a good
predictability under limited experimental conditions.

(2) The relative errors (𝜂) of the improved Arrhenius-
type model and the ANN model were, respectively,
in the range of −39.99%∼35.05% and −3.77%∼16.74%.
As for the former, only 16.3% of the test data set
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Figure 11: ANN model prediction on the relationship of flow stress versus (a) strain and temperature at strain rate of 0.01 s−1 (b) strain and
log strain rate at temperature of 1273K (c) log strain rate and temperature at strain of 0.5.

possesses 𝜂-values within ±1%, while, as for the
latter, more than 79% possesses. The results indicate
that the ANN model presents a higher predictable
ability than the improvedArrhenius-type constitutive
model.

(3) The ANN model for as-cast 20MnNiMo alloy accu-
rately track the experimental data over a wider range
of temperatures and strain rates (not only under
limited experimental conditions but also outside of
experimental conditions). Well-trained ANNmodels
provide fast, accurate, and consistent results, making
them superior to the Improved Arrhenius-type con-
stitutive equation. The ANN could also be a good
forecast tool to study the high-temperature deforma-
tion behavior of other alloys in materials science.
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