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Abstract
Background and Purpose—The Network Modification (NeMo) Tool uses a library of brain
connectivity maps from normal subjects to quantify the amount of structural connectivity loss
caused by focal brain lesions. We hypothesized that the NeMo Tool could predict remote brain
tissue loss caused by post-stroke loss of connectivity.

Methods—Baseline and follow-up MRIs (10.7±7.5 months apart) from 26 patients with acute
ischemic stroke (age 74.6±14.1 years, initial NIH Stroke Scale 3.1±3.1) were collected. Lesion
masks derived from diffusion-weighted images were superimposed on the NeMo Tool’s
connectivity maps, and regional structural connectivity losses were estimated via the Change in
Connectivity (ChaCo) score (i.e., the percent of tracks connecting to a given region that pass
through the lesion mask). ChaCo scores were correlated with subsequent atrophy.

Results—Stroke lesions’ size and location varied, but they were more frequent in the left
hemisphere. ChaCo scores, generally higher in regions near stroke lesions, reflected this
lateralization and heterogeneity. ChaCo scores were highest in the postcentral and precentral gyri,
insula, middle cingulate, thalami, putamen, caudate nuclei, and pallidum. Moderate, significant
partial correlations were found between baseline ChaCo scores and measures of subsequent tissue
loss (r=0.43, p=4.6×10−9; r=0.61, p=1.4×10−18), correcting for the time between scans.

Conclusions—ChaCo scores varied, but the most affected regions included those with
sensorimotor, perception, learning and memory functions. Correlations between baseline ChaCo
and subsequent tissue loss suggest that the NeMo Tool could be used to identify regions most
susceptible to remote degeneration from acute infarcts.
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Introduction
In addition to primary neuronal death near the lesion site, ischemic stroke causes secondary
remote degeneration. Remote degeneration consists of anterograde degeneration of axons
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and their myelin sheaths after proximal axonal injury or retrograde dying back of neurons.
The causes and time course of remote degeneration have been studied in many diseases
(including stroke) via experimental procedures, pathology studies, and neuroimaging.1–6

Knowledge of how disconnection caused by remote degeneration affects distant brain
regions may be important, because losses in white matter (WM) integrity have been
associated with functional deficits, including motor recovery after stroke.3,7,8 Therefore, it
may be helpful for clinicians to be able to predict which regions are susceptible to remote
degeneration as it could enhance their prognostic abilities and enable more focused and
individualized rehabilitative strategies.9 Current MR imaging can only detect remote
degeneration after it has occurred; structural brain MRI can detect it in the chronic
phase,10–13 while diffusion MRI can detect it within 4 weeks after the acute event.14–16

In order to predict the progression of remote degeneration, the underlying WM fiber
architecture on which the degeneration propagates must be estimated. One way to
reconstruct underlying fiber architecture is with tractography, a process of computationally
reconstructing probable WM pathways based on diffusion MRI. Tractography methods
require expertise, and are even more difficult to employ in the case of a diseased or damaged
brain-factors which limit its clinical use. It is also not known if tractography methods that
are sensitive to noise can yield physiologically meaningful connectivity information in
abnormal brains,14,17,18 although some tractography studies have been performed in stroke
patients, particularly in the visual and motor systems.19–21 In addition, diffusion imaging
acquired with sufficient quality to perform tractography is rarely feasible in the case of
stroke due to the clinical acuity of this disorder.22 One particularly relevant study23 had
longitudinal MRI scans in 9 subjects before and after a single incident infarct. The authors
showed that areas with higher probability of connection to the lesioned area, as assessed
with tractography in the subject’s diffusion scan before the infarct, had higher rates of
atrophy compared to the rest of the brain. While this type of data and experimental design is
certainly optimal, it may be challenging to obtain clinically; the NeMo Tool allows similar
assessment using routinely-acquired images.

To overcome these limitations, we implemented a recently developed tool, called the
Network Modification (NeMo) Tool,24 that quantifies losses in the brain connectivity
network by mapping a specific patient’s lesions onto a large collection of healthy
tractograms. This process avoids the aforementioned issues with performing tractography in
patients and may better represent actual connectivity changes. This tool uses MRI sequences
that are routinely obtained in the acute clinical setting and does not require expertise in
advanced diffusion image processing and tractography techniques. This allows for a
clinically feasible method of quantitatively predicting from an MRI in the acute phase of
stroke which cortical and subcortical areas may subsequently be most affected by loss of
connectivity.

Methods
Study Design and Population

We identified all consecutive patients who presented to the New York Presbyterian
Hospital-Weill Cornell Medical Center with an acute ischemic stroke in 2010 and had both a
baseline MRI during the index hospitalization and a follow-up MRI performed at least 2
months after the initial event. Patients were identified by searching an administrative
database that captures all admissions for acute ischemic stroke. Among 305 total patients
diagnosed with ischemic stroke at our institution in 2010, 26 (17 female and 9 male, age
74.6±14.1 years, and NIH Stroke Scale [NIHSS] 3.1±3.1) fulfilled our eligibility criteria and
were included in the final analysis. These data were collected at Weill Cornell Medical
College under an Institutional Review Board approved protocol.
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Data and Image Processing
NIHSS and baseline and follow-up MR images (10.7±7.5 months between scans) were
collected. T1, T2 and diffusion-weighted images (DWI) were collected on 3.0 or 1.5 Tesla
GE Signa EXCITE scanners (GE Healthcare, Waukesha, WI, USA). The DWIs (on both 1.5
T and 3.0 T) were acquired axially via an echo-planar imaging sequence, with b = 1000 s/
mm2 and b = 0 s/mm2 from 30 5-mm thick slices and 128 × 128 matrix size, repetition time/
echo time/inversion time = 8000 or 10000/100/0 ms. T1 scans (1.5 T) were acquired axially
(repetition time/echo time/inversion time = 600/12/0 ms) with a 288 × 192 matrix over 30
5.0-mm thick slices. The T2 scan was an axial sequence (repetition time/echo time/inversion
time = 3500 or 6500/85/0 ms) with a 256 × 256 matrix (1.5 T) or a 416 × 256 matrix (3.0 T)
over 30 5.0-mm contiguous partitions. About half of the scans were acquired at 1.5 T
magnetic field strength (26/54 total). Lesion masks were created for each patient by
manually identifying image hyperintensities in the DWI scan. Each patient’s T2 image was
linearly coregistered to the corresponding DWI and then normalized to standard Montreal
Neurological Institute space using the non-linear normalization procedure within Statistical
Parametric Mapping 8.25 If a subject’s T2 image was not available, which happened in 3/52
cases, the corresponding T1 was used instead. The same transformation was then applied to
the lesion masks to obtain the standard Montreal Neurological Institute space lesion mask.
The Individual Based Atlas26 toolbox in Statistical Parametric Mapping 8 (IBASPM) was
used to segment WM and gray matter (GM) and further parcellate the GM into cortical and
subcortical regions as defined with the 116-region Automated Anatomical Labeling atlas27.
IBASPM is a commonly used toolbox that bases the GM segmentation and parcellation on
the tissue probability maps that are provided by the Statistical Parametric Mapping 8
toolbox. Our primary outcomes were cortical atrophy and mean diffusivity changes on
follow-up MRI. To determine atrophy, volumes were estimated by counting the number of
voxels assigned to each region and atrophy was calculated by taking the difference of these
values between the baseline and follow-up scans. Mean diffusivity changes on a regional
basis were calculated by taking the difference of the average mean diffusivity over a given
region at baseline and follow-up.

Our primary predictor variable was an output of the NeMo Tool, which uses a mask of WM
alterations to estimate changes to the structural connectivity network (Figure 1). It uses a
database of 73 normal control tractograms in a common space (Montreal Neurological
Institute). Regional changes are estimated via the Change in Connectivity (ChaCo) score,
defined for each GM region as the number of tracks that go through the lesion mask out of
the total number of tracks connecting to that region.

Statistical Analyses
Relationships between baseline WM disconnection measured by the ChaCo score and
longitudinal changes in GM integrity (atrophy and change in mean diffusivity) were
assessed by calculating Pearson’s partial correlation coefficient, controlling for the number
of days between scans. Due to the localized nature of stroke, the majority of the 116 GM
regions were unaffected – including these regions in the correlation analysis would risk
overwhelming the underlying signal with what is mostly noise. Furthermore, there may be
other factors that influence GM integrity (i.e., neurodegenerative disease, chronic
microvascular ischemia or other loss of vascular integrity). Since the focus of this paper was
on the WM connectivity disruption of an acute event on subsequent related GM loss,
correlations were assessed using only regions that had a ChaCo<−0.01 (i.e., regions with at
least 1% of the tracks affected by the stroke lesion). It has been shown previously that
ChaCo of less than 1% disconnection may be susceptible to noise in the image and
processing pipeline, so that value was the chosen threshold.24
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The inter-rater agreement of the hand-drawn lesion masks was assessed by calculating the
Pearson correlation of the lesion volumes as well as the Dice similarity index28 between two
raters. The Dice similarity index quantifies the amount of overlap of two binary masks,
where values between 0.6–0.8 are considered good or high.29 In a supplemental analysis
(please see http://stroke.ahajournals.org), the influence of variability in image acquisition
and processing on the results was also assessed.

Results
The Dice similarity index for inter-rater agreement was 0.70±0.12 (IQR: 0.64–0.83) and the
correlation of lesion volumes was r=0.99 (p=1.5×10−24). Lesion location and size varied
greatly (see Figure 1), but more network disruption was observed in this population in the
left hemisphere. Out of the 45 left-right pairs of GM structures in the atlas, only one
structure had larger median ChaCo in the right hemisphere. However, some of the largest
ChaCo score outliers were found in the right hemisphere of a few patients. Individual ChaCo
scores, which were generally higher in regions near the infarct, reflected the heterogeneity in
this population’s lesion locations. The ChaCo scores across the population are summarized
using barplots in Figure 2, where the color denotes the regional assignment of the given
region. In general, ChaCo was higher in the left hemisphere than the right and was high in
the postcentral and precentral gyri, insula, middle cingulate, thalami, putamen, caudate
nuclei, and pallidum. Disconnection scores were lowest in the occipital and cerebellar
regions.

We began with 116 regions for each of the 26 subjects; after thresholding to include only
subject’s regions with ChaCo<−0.01, we were left with 168 data points (Figure 3). Each
data point represents a particular region for a particular subject; 22 different subjects
contributed regions to the analysis, and 72 different regions were included. Supporting our
hypothesis that baseline connectivity disruption can be used to predict subsequent brain
tissue loss, we found moderate and highly significant partial correlations between ChaCo
scores at baseline and both regional atrophy (r=0.43, p=4.6×10−9) and change in average
regional mean diffusivity (r=0.61, p=1.4×10−18), see Figure 3.

Discussion
The NeMo Tool was used to calculate the amount of connection loss for each GM region
arising from DWI lesions in a cohort of 26 patients with ischemic stroke. Measures of
disconnection varied greatly in the population, but the most affected regions included those
with sensori-motor, perception, learning and memory functions. Moderate, significant
correlations were found between ChaCo scores that quantify this WM connection loss at
baseline and measures of subsequent neuronal loss on follow-up MR images, in agreement
with what was found by Deuring et. al23.

Regions closer to the stroke lesion tended to have higher disconnection than regions further
away from the lesion. This is not surprising, since proximity of the lesion to a region
increases the chances that its connecting WM fibers will be disrupted. In addition,
probabilistic tractography, which was used to create the NeMo tool, emphasizes shorter
tracts and deemphasizes long-range fibers.

Areas that had higher disconnection measures tended to have more atrophy and larger
changes in mean diffusivity. Baseline WM connectivity losses were more correlated with
change in mean diffusivity than change in volume, which may be due to increased
sensitivity of diffusion imaging in discerning tissue integrity. There are factors other than
remote degeneration that influence GM health, which may be why we found only moderate
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correlations. In fact, there were some regions that exhibited GM changes that did not have
ChaCo<−0.01. These regions may have been subject to damage from a separate event or
degeneration not related to the acute stroke. However, it is also possible that errors in the
data and processing pipeline contributed to this apparent discrepancy. Care was taken to
minimize the influence of pre-existing brain damage, including periventricular DWI
hyperintensities from “T2 shine-through” by excluding these lesions from the brain mask. In
addition, pre-existing GM damage would have been accounted for in the baseline GM
metrics.

Acute stroke lesions are usually hyperintense on DWI, indicating restricted diffusion,
although the exact cause of this phenomenon is unclear. A common viewpoint is that this
represents cytotoxic edema from ischemia-induced disruption of energy metabolism,
causing failure of ionic pumps, a loss of ionic gradients, and eventually a net translocation of
water into the intracellular space.30 However, additional factors such as increased tortuosity
of intra- and extra-cellular space pathways and changes in cell-membrane permeability may
also be involved. Therefore, it is unclear if restricted diffusion changes directly cause remote
brain degeneration or if it results from a secondary process.

Regions had non-zero ChaCo scores if they had lesions in their connecting WM, regardless
of whether the lesion was also partially inside that GM region. One cannot discern whether
changes that occurred in the MD were due to the primary lesion or the disruption of the
connecting WM. However, this effect should be less prominent in the atrophy metric as the
lesion’s effects on the GM volume measurement would also be present at baseline. The fact
that we see similar correlation with the atrophy measures strengthens our confidence that the
mean diffusivity results are not solely driven by a lesion’s presence within GM.

Diffusion images on which the lesion masks were based do have low resolution and are
subject to distortion. The raters were careful to not include any distortion artifacts, especially
in the areas of the temporal lobe. The Dice similarity index for inter-rater agreement of the
hand-drawn lesion masks was at a level that is considered in the good or excellent range,
similar to what has been shown in other studies.31,32 Additionally, analyses described in
supplementary material and summarized in Supplementary Figure I demonstrate (please see
http://stroke.ahajournals.org) that variability in the processing pipeline and scanner strength
did not influence the results.

Limitations
Our cohort was limited to those individuals in the database with ischemic stroke who 1)
survived the initial event and 2) had a second scan. These tended to be subjects with
relatively low NIHSS, so there is bias in this population toward milder strokes. We cannot
formally extend these results to more severe strokes; however, there is no reason to believe
that more severe strokes would have vastly different mechanisms of remote degeneration.

Tractography is a complicated process subject to several sources of error, even in normal
subjects. Specifically, probabilistic tractography used in the NeMo Tool deduces fibers that
are not always reproducible and has difficulty constructing long-range connections. Another
limitation of the NeMo Tool is that it uses sets of WM tracks derived from healthy subjects.
Because WM connections vary across the population and may be affected by stroke risk
factors and cerebrovascular disease,33 the NeMo tool results may not accurately represent a
given stroke subject’s connectivity; however, this effect is minimized by using a large
number of normal tractograms and reporting the results as a distribution over the population
(not shown). Since the stroke cohort structural images contain abnormalities, there may be
some errors in the normalization process. Normalization was checked visually for acceptable
accuracy, and in some cases, an extra hand alignment step was performed to improve
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accuracy. In addition, effects of any small misalignments are further mitigated by averaging
disconnection scores over the large number of normal tractograms used in the NeMo tool.

Despite these limitations, our findings, if validated, may have implications for
prognostication in patients with ischemic stroke. Providing patients and families with
accurate predictions of long-term recovery are important because these predictions often
inform decisions about life-sustaining care, rehabilitation strategies, and social and financial
planning. Current stroke prognostication instruments rely heavily on age, comorbidities, and
clinical stroke severity as assessed by tools such as the NIHSS.34,35 However, these tools
offer limited discrimination, and the resulting uncertainty impedes clinical care. We have
shown in other neurological diseases that clinicians’ predictions are only 80–90% reliable;36

given the high stakes of decisions regarding life-sustaining care, for example, tools to
improve clinical prognostication would clearly be welcome. Adding traditional imaging
markers, such as the size of baseline DWI lesions, to standard clinical prognostication scores
appears to result in uncertain and limited benefit, probably because the size of infarction is
already being captured by the clinical stroke severity scale37. The ability of the NeMo Tool
to predict the connectivity implications of an infarct, beyond simply its size, may thus
represent a more promising path for improving prognostication.

Summary/Conclusions
We sought to use the NeMo tool to predict the brain regions most affected by network
disruption caused by a focal stroke. Correlations between baseline ChaCo and subsequent
tissue loss suggest that the NeMo Tool could identify regions most susceptible to remote
degeneration from acute infarcts and therefore may enable more accurate prognosis.
Although larger studies are needed to better define the impact of network disruption on focal
and global neurological deficits and on stroke recovery, the present results suggest that the
NeMo tool has the potential to provide quantitative information that could possibly aid in
the early prediction of long term deficits in stroke patients.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The image processing workflow for determining connectivity loss due to infarction in
patients with acute ischemic stroke. Example lesion masks and their corresponding Change
in Connectivity (ChaCo) scores are shown using the glassbrain plot for three representative
subjects. The glassbrain plot contains a sphere drawn at the center of mass of each region in
the atlas, with the radius proportional to the ChaCo score of that region (larger = more
disconnection) and the color indicating the regional assignment (blue = frontal, magenta =
parietal, cyan = subcortical, green = occipital, yellow = cerebellar, red = temporal).
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Figure 2.
Bar plots of the ChaCo scores over the population for each region, color-coded by regional
assignment (blue = frontal, magenta = parietal, cyan = subcortical, green = occipital, yellow
= cerebellar, red = temporal). Many individual regions were outside of the limits of the y-
axis in this plot, but it was zoomed in to focus on the majority of the population.
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Figure 3.
Scatterplot of ChaCo score versus change in normalized volume (follow up minus baseline,
negative values indicate atrophy) (left) and change in Mean Diffusivity (baseline minus
follow up, negative values indicate an increase in Mean Diffusivity) (right). After
thresholding the ChaCo scores to include only those subject’s regions with disconnection of
more than 1%, we were left with 168 data points. Each data point represents a particular
region for a particular subject; 22 different subjects contributed at least one region to the
analysis, and 72 different regions were included.
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