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Abstract
Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular
membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the
extracellular domains of the outermost layer of skin, the stratum corneum, which is required for
terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability
barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide
and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal
keratinocytes. Recent studies have further demonstrated that a ceramide metabolite,
sphingosine-1-phosphate, modulates innate immune function. Ceramide already has been applied
to therapeutic approaches for treatment of eczema associated with attenuated epidermal
permeability barrier function. Pharmacological modulation of ceramide and its metabolites
signaling can also be applied to cutaneous disease prevention and therapy. The author here
describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues,
including epidermis.
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1. Introduction
Ceramide constitutes the backbone structure of all sphingolipids, as well as being a minor
component of cellular membranes. In addition, ceramide has a unique role in the skin,
forming the epidermal permeability barrier at the extracellular domains of the outermost
layer of skin, the stratum corneum, which is required for terrestrial mammalian survival
(Fig. 1) [1,2] (also see J.A. Bouwstra, K. Sandhoff, Y. Uchida et al. chapters elsewhere in
this volume). In addition to ceramide’s structural roles in cells and tissues, over the past two
decades, ceramide and its metabolites have been recognized as signaling lipids that modulate
cellular function (Fig. 1) [3,4]. Concurrent with elucidating the signaling roles of ceramide
and its metabolites in cells, pharmacological modulation of cellular ceramide levels has been
applied as a therapeutic approach for the treatment and prevention of diseases, such as
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cancers, cardiovascular disease, immune dysfunction [4–6], and eczema associated with
attenuated epidermal permeability barrier function [7]. The author describes here the
signaling roles of ceramide and its metabolites in mammalian cells and tissues, including
epidermis.

2. Ceramide Structures in Epidermis
Ceramides consist of long-chain amino alcohol, sphingoid bases, and amide-linked fatty acid
(Fig. 2). Sphingosine (carbon chain lengths 18–20) and non-hydroxy fatty acids (carbon
chain length 16–24) are major ceramide constituents in mammalian cells. In addition to
these ceramide species, dihydrosphingosine (sphinganine) and 1,3,4-
trihydroxydihydrosphingosine (phytosphingosine), which contain ceramide species, are
present. Ceramide species containing 6-hydroxysphingosine are contained in epidermis. 2-
hydroxy fatty acids also make up ceramide (as amide-linked fatty acids), and are relatively
abundant in brain, kidney [8], and differentiated layers of epidermis [9]. Moreover, ultra-
long chain non-hydroxy, omega-hydroxy and omega-O-acyl fatty acids (carbon chain
lengths 36), essential to forming the epidermal permeability barrier, are contained within
ceramide species in differentiated layers of the epidermis [1]. In contrast to glycerolipids,
which contain saturated, mono, and polyunsaturated O-esterified fatty acids, saturated or
monosaturated fatty acids dominate in amide-linked (N-acylated) fatty acids of ceramides.
Recent studies have revealed that different structures of ceramide play distinct signaling
roles in cells (see below, 3. Ceramides signal to modulate cellular function).

3. Signaling Ceramide Generation
Three sources of ceramide contribute to the initiation of signals; i.e., 1) Increases in
sphingomyelin hydrolysis by activation of sphingomyelinases, as described above. Six
isoforms of sphingomyelinase have been identified to date in mammals; i.e., acid
sphingomyelinase, four types of neutral sphingomyelinase, and alkaline sphingomyelinase
[10]. But the sphingomyelinase(s) that produces ceramide signals are localized in the plasma
membrane and endoplasmic reticulum (ER). Alkaline sphingomyelinase catalyzes the
hydrolysis of sphingomyelin to lysophosphatidylcholine and platelet activating factor (PAF)
to suppress inflammatory responses, in addition to sphingomyelin to ceramide conversion
(signaling role of alkaline sphingomyelinase is unknown); 2) increased de novo synthesis of
ceramide due to activation of serine palmitoyl transferase and/or ceramide synthase [11,12].
Six isoforms of ceramide synthase have been characterized which showed different
substrates as well as tissue specificity; e.g., chain length of fatty acyl-CoA (also see R.
Sandhoff chapter elsewhere in this issue). Different chain lengths of the amide-linked fatty
acid chain of ceramide, generated by specific isoforms of ceramide synthase, demonstrate
different biological activities; i.e., acyl carbon chain length 16 ceramide, synthesized by
ceramide synthase 6, protects squamous carcinoma cells from ER stress and apoptosis, while
carbon chain length 18 ceramide, synthesized by ceramide synthase 1, inhibits cell growth
[13]; and 3) increased sphingosine-1-phosphate hydrolysis by sphingosine-1-phosphatase to
produce sphingosine followed by ceramide synthesis by ceramide synthase. In addition to
these three pathways, hydrolysis of glucosylceramide, galactosylceramide, and ceramide-1-
phosphate by β-glucocerebrosidase, β-galactocerebrosidase and ceramide-1-phosphate
phosphatase, respectively, conversely increase cellular ceramide levels and decrease
ceramidase activity, albeit these pathways have not yet been defined to generate a
subsequent signaling mechanism.
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4. Ceramide signaling modulates cellular function
The first report of ceramides modulating cellular function was in 1974 [14]. During studies
involving erythropoietic activity of lipid soluble extracts of leukocytes, ceramides were
identified as stimulating rabbit erythroblast maturation [14]. This study further characterized
the most potent ceramide species that enhanced erythroblast maturation; i.e., ceramides
containing amide-linked C24:0 or C24:1 fatty acid and sphingosine, dihydrosphingosine
(sphinganine) or 1,3,4, trihydroxy dihydrosphinganine (phytosphingosine); shorter amide-
linked fatty acid (<C20) ceramide species were less potent [14]. The signaling roles of
glycosphingolipids and their downstream signaling mechanisms began to be explored in the
1980s in several mammalian cell types. Ten years after the first report of ceramide signaling,
the signaling roles of ceramide in mammalian cells were rediscovered. Increased cellular
ceramide from sphingomyelin hydrolysis by activation of sphingomyelinase, in response to
either vitamin D or phorbol ester treatment, induced cell cycle arrest and stimulated
differentiation of leukemia cells [15–17]. Moreover, increased cellular ceramide occurred
following various stimuli such as oxidative stress [12,18], pathogenic bacterial invasion
[19,20], and initiation of an inflammatory cytokine cascade [21]. Shortly thereafter, it was
also demonstrated that ceramides induce both apoptosis [22] and autophagy [23,24].

Mimicking activation of endogenous sphingomyelinase, both exogenous bacterial
sphingomyelinase and cell-permeable, synthetic short chain amide-linked fatty acid (C2–8)
ceramide demonstrated ceramide-dependent regulation of functions in many types of cells,
including keratinocytes [25,26]. Because natural ceramides consisting of amide-linked
longer chain fatty acid (>C12) have a low solubility in aqueous solutions, short chain
ceramides and bacterial sphingomyelinase have been used instead to advance research as
ceramide signaling. Yet, since short chain ceramide is absent or only at residual levels in
cells, concerns were raised that the effects of short chain ceramides do not represent natural
cellular phenomena in response to exogenous stimuli. However, incorporated short chain
ceramide cells are hydrolyzed to sphingosine and fatty acid producing sphingosine as a
substrate for ceramide synthesis with the increase of endogenous, longer chain length fatty
acids (natural ceramide) [27,28]. Therefore, utilization of short chain ceramide can be
justified in most studies (although monitoring changes in ceramide levels is important).
Alternatively, natural ceramides dissolved in dodecane-ethanol solution become cell
permeable [29], but optimization of dodecane-ethanol concentration is necessary to
minimize non-specific effects, including cellular toxicity.

It is noted that ceramide (or its metabolites) signaling roles and their mechanisms in
carcinoma cells or immortalized cells will not always be identical to those in normal cells.
Yet, for example, increased metabolic conversions of ceramide to its metabolites account for
a drug-resistant mechanism in some cancer cells. These metabolic conversions serve as a
rescue mechanism from ceramide-induced cell death in normal keratinocytes (and possibly
in other normal cells), suggesting that the insights gained from carcinoma cells could dictate
some signaling roles of ceramide and its metabolites in normal cells. In addition, modulating
cellular functions in response to signals by ceramide and its metabolites is dependent upon
tissues and cells.

5. Ceramide signaling mechanism
Several downstream signals, initiated by elevation in ceramide, have now been
characterized, including activation of ceramide-activating serine/threonine phosphatases
(CAPS), i.e., protein phosphatase 1A (PP1A) and protein phosphatase 2A (PP2A) [30],
protein kinase C (PKC) ζ [31], catepsin D [32], and kinase suppressor RAS (KSR) [33].
CAPS, PP1A and PP2A inactivate PKCα [34], and AKT (or protein kinase B [PFB]) [35].
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These downstream signaling activities mediate diverse responses in a variety of cell
responses, which are dependent upon cell and tissue types, and changes in the levels of
ceramide (for signal intensities, period, see below, 7.2 Metabolic pathways that rescue
keratinocytes from ceramide-induced apoptosis). In addition to these specific targets,
ceramide permeabilizes mitochondrial outer membranes releasing molecules <60,000-
dalton, leading to mitochondrial-mediated apoptosis [36]. This non-protein-mediated signal
of ceramide could occur ubiquitously in mammalian cells.

6. Ceramide-mediated cell death pathways
The mechanisms accounting for ceramide-induced apoptosis have been extensively
investigated. Ceramide-mediated cell death, including apoptosis and autophagy, is a
mechanism of chemotherapy for cancer [37,38].

A) TNF receptor pathways
The activation of the TNF receptor super family, which includes TNFR1 and the TNF-
related apoptosis-inducing ligand (TRAIL) receptors, such as TRAILR1 (DR4), TRAILR2
(DR5) and CD95, increases ceramide production by activation of sphingomyelinase. Both
acidic and neutral sphingomyelinases account for these pathways [39–41]. Formation of a
platform on plasma membranes and modulating membrane protein localization and/or
clustering by increased ceramide have been postulated to initiate specific apoptosis signaling
pathways [19,42–47]. Acidic sphingomyelinase localized in the lumen of lysosomes is
transferred to plasma membranes in response to TRAIL2 and CD95 activation. In addition
to these sphingomyelinase activation mechanisms, internalization of TNF-receptors
following ligand binding activates lysosomal acidic sphingomyelinase, followed by
increasing ceramide to activating cathepsin D [32,48,49]. Activated cathepsin D then
translocates into the cytosol, where it stimulates apoptotic signals [32,48,49].

B) Non-TNF receptor mediated mechanism
Oxidative stress occurs within cells in response to a myriad of stimuli, including irradiation
(e.g., ultraviolet, infrared, γ-irradiation), inflammation, bacterial infection, and metal ions.
These forms of stress stimulate ceramide production by sphingomyelinase activation, as well
as by stimulating de novo ceramide production. Increased ceramide then activates specific
proteins (as above in #3. Ceramide signaling mechanism), initiating mitochondrial-
mediated-caspase-dependent apoptosis, via cytochrome release [50], activations of SMAC
(Second Mitochondria-derived Activator of Caspase) [51], DIABRO (Direct IAP-Binding
protein with low PI) [52], and AIF (apoptosis inducing factor) [53]. AIF, HtrA serine
protease 2, and endonuclease activation account for caspase-independent apoptosis. In
addition to activation of specific apoptosis-inducing proteins, as above, ceramide-mediated
mitochondrial outer membrane permeabilization contributes to mitochondrial-dependent
apoptosis [36].

DNA breakage occurs in response to γ-irradiation for tumor therapy. Insights from acid
sphingomyelinase-deficient mouse studies reveal that increased ceramide by activation of
acid sphingomyeliase induces apoptosis in both cancer cells and epithelial cells, where
acidic sphingomyelinase is highly expressed; e.g., in the gastrointestinal tract, [54–56].
These studies are not only elucidating roles of acid ceramidase in radiation therapy, but they
also could point to more potent therapy for cancer with minimal adverse effects of γ-
irradiation to normal cells.
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7. Signaling roles of ceramide in epidermis
Signaling roles for ceramide in proliferation, differentiation, and apoptosis also have been
demonstrated in epidermis and cultured keratinocytes (Table 1). Exogenous short chain
ceramides suppressed cell proliferation of the human squamous cell carcinoma cell line,
DJM-1 [25]. DNA synthesis is suppressed for a few hours following exogenous bacterial
sphingomyelinase, but then is restored in parallel with increased ceramide to
glucosylceramide conversion by glucosylceramide synthase activation in spontaneously
immortalized, nontransformed HaCat human keratinocytes [57]. Ceramide also regulates the
interferon-gamma-induced intercellular adhesion molecule (ICAM)-1 and human leukocyte
antigen (HLA)-DR expression in normal human keratinocytes [26]. Exogenous short chain
ceramides activate apoptosis signal-regulating kinase (ASK1), and then p38 MAP kinase,
resulting in enhanced differentiation in normal human keratinocytes [58]. Exogenous short
chain ceramides also stimulate the production of caspase-14 (a key enzyme involved in
epidermal terminal differentiation) [59]. Moreover, ceramides stimulate the transmembrane
lipid transporter, ATP binding cassette transporter, family 12 (ABCA12) expression [60].
Ceramide-induced ABCA12 expression is attenuated by silencing proliferator-activated
receptor (PPAR) δ expression, suggesting that ceramide activates PPAR δ, leading to
stimulation of ABCA12 production [60]. Since PPAR δ stimulates keratinocyte
differentiation [61], ceramide-induced keratinocyte differentiation could be via this PPAR δ
mechanism. ABCA12 is critical in delivering glucosylceramide into lamellar bodies, a
prerequisite for epidermal permeability barrier formation [62]. ABCA12 mutations underlie
the pathogenesis of the most severe ichthyosis, Harlequin ichthyosis, as well as a subgroup
of autosomal recessive ichthyoses, with lamellar ichthyosis phenotypes [62] (also see M.
Akiyama). In keratinocytes, ABCA12 transports glucosylceramides, which are immediate
precursors of all ceramide species in the stratum corneum, into epidermal lamellar bodies
[62]. Recent studies demonstrate that neonatal demise occurs in glucosylceramide-deficient
mice associated with abnormal epidermal lamellar body formation [63,64]. Therefore, both
glucosylceramide and ABCA12 are required for epidermal permeability barrier formation
[63].

Ceramide signals are responsible in part for TNFα and 1α,25-dihydroxyvitamin D3-
mediated keratinocyte differentiation; i.e., 1α,25-dihydroxyvitamin D3 increases TNFα
production and TNFα increases ceramide production from sphingomyelin by activating
sphingomyelinase [65]. Increased cellular ceramide induces apoptosis in keratinocytes in
response to ultraviolet (UV) B irradiation [12,66]. UVA increases ceramide production,
without activating ceramide metabolic enzymes, but leads to increased ICAM-1 expression
by activation of transcription factor AP2 [67], while increased ceramide following
irradiation in turn activates serine palmitoyl transferase (by autocrine pathway), which is a
first step and a rate-limiting enzyme of ceramide synthesis (Fig. 3) [68]. Because UV
irradiation alters cellular metabolism, including increased hydrolysis of esterified lipids to
free fatty acids, an elevated pool of the precursor to ceramide synthesis, free fatty acid, can
increase ceramide production without activating enzymes.

However, increased sphingomyelin to ceramide conversion occurs in protein-free liposomes
following either UVA irradiation or singlet oxygen exposure [67]. Yet, no other studies are
available that show non-enzymatic conversion of sphingomyelin to ceramide by oxygen
radicals. Finally, ceramides also alter cellular function in other epidermal cells, such as
melanocytes. Exogenous, short chain ceramides inhibit melanocyte proliferation via Akt
inactivation and induction of melanin production in the spontaneously immortalized mouse
melanocyte cell line, Mel-Ab [69]. As noted above, ceramide molecular heterogeneity is
unique to epidermis. These heterogeneous ceramides are distributed in the extracellular
spaces of the stratum corneum, where they incorporate into stable lamellar membrane
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structures [2,70]. Therefore, it is unlikely that ceramide in the stratum corneum-derived
signals alter cellular function in the nucleated layer of epidermis. Most of the immediate
precursors of these barrier ceramides, glucosylceramides, which are not used for cellular
membrane constitution, are sequestrated into lamellar bodies [71,72]. These sequestrated
lipids are unable to generate signals because of being located in cellular compartments to
modulate cellular function; e.g., plasma membranes, mitochondria. Yet, prior studies
demonstrated that exogenous glucosyl omega-O-acyl-ultralong chain ceramide induces
keratinocyte differentiation [73,74]. If a non-sequestrated pool of epidermal unique
glucosylceramide and/or its metabolites is available and/or lamellar bodies diffuse to apical
surface of plasma membrane during transition of stratum granulosum to stratum corneum,
these lipid species could generate regulatory signals.

Note: Alterations of proliferation, differentiation, cell death, cell-cell attachment, and other
cellular functions in epidermis of transgenic mice affect epidermal permeability barrier
function. Diminished barrier function also affects cellular proliferation and differentiation in
epidermis and results in secondarily changing other epidermal functions. Therefore, it is
difficult to distinguish between primary and secondary effects of a targeted enzyme. Hence,
utilization of transgenic mice to elucidate a signaling role of ceramide in epidermis should
be limited. Pharmacological inhibition or gene silencing of a specific ceramide metabolic
enzyme in cultured epidermal keratinocytes should be more precise in representing roles of
ceramide and its metabolites in epidermis than use of transgenic animals.

8. Protective mechanisms used against ceramide-induced apoptosis
Ceramide-induced apoptosis plays a beneficial role in cancer treatment, as well as in the
elimination of abnormal cells that carry potentially detrimental mutated genes. Yet,
increased apoptosis in normal cells allows expansion of cancer cell population. Epidermis is
situated uniquely at the environmental interface, so this external organ is continuously at
risk from exposure to oxidative stressors such as UV irradiation and xenotoxic compounds.
Moreover, during differentiation, keratinocytes produce abundant amounts of ceramides to
form the epidermal permeability barrier [71,75,76]. Therefore, normal cells, in particular
keratinocytes, need to deploy protective mechanisms against ceramide-induced apoptosis.

8.1 Metabolic conversion of ceramide to non-apoptotic metabolites
The metabolic conversion of ceramides to non-apoptotic metabolites (Figs. 3 and 4)
increases in some cancer cells, as well as in drug-resistant cancer cells. For example acidic
ceramidase expression increases in head and neck squamous carcinoma cells [77], and in
some melanoma [78], prostate [78], and colon cancer [78] cell lines. Sphingosine kinase 1 is
overexpressed in head and neck squamous carcinoma cells [79] and prostate cancer [80],
suggesting ceramide conversion beyond sphingosine to sphingosine-1-phosphate. Ceramide
kinase, which generates ceramide-1-phosphate, is overexpressed in breast cancer cells [81].
Glucosylceramide synthase expression increases in some cell lines (including multidrug
resistance) of breast cancer [82], prostate cancer [82], colon cancer [83,84], and leukemia
[84,85]. Thus, inhibition of one or more of these ceramide metabolic enzymes could
represent a strategy to enhance anti-cancer treatments. Conversely, the metabolic
conversions of ceramides to its non-apoptotic metabolites also serve to protect normal cells
from ceramide-induced apoptosis.

8.1.1 Conversion of ceramide to sphingosine to sphingosine-1-phosphate—
Ceramide is hydrolyzed to sphingoid base and fatty acid by ceramidase (Fig. 3). Five
ceramidase isoforms, which show different pH optima and different subcellular
distributions, have been characterized in mammals; i.e., 1) acid ceramidase (lysosomal
distribution); 2) neutral ceramidase (plasma membrane and mitochondrial membrane
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distribution) [86,87]; 3) alkaline ceramidase 1 (a differentiated keratinocyte specific isoform
expressed in Golgi apparatus and endoplasmic reticulum [ER]) [88]; 4) alkaline ceramidase
2 (Golgi apparatus and ER) [89]; and 5) alkaline ceramidase 3 (or phytoalkaline
ceramidase), which hydrolyzes ceramide species containing dihydrosphingosine
(sphinganine), 1,3,4-trihydroxydihydrosphingosine (phytosphingosine), and amide-linked
unsaturated fatty acids (Golgi apparatus and ER) [90]. Epidermal keratinocytes express all
five isoforms of ceramidase, with different expression profiles of each isomer across the
different cell layers of epidermis [88]. The sphingosine kinase converts sphingosine to
sphingosine-1-phosphate (Fig. 3). Two isoforms of sphingosine kinase, sphingosine kinase 1
[91] and sphingosine kinase 2 have been identified in mammals [92]. The sphingosine
kinase isoform, sphingosine kinase 1, is localized in cytosol [91], while sphingosine kinase 2
localizes in ER and nucleus [92]. Both isoforms are expressed in keratinocytes [93].
Sphingosine-1-phosphate can be further metabolized to phosphoethanolamine and
hexadecanal by spingosine-1-phosphate lyase [94,95].

8.1.2 Conversion of ceramide to ceramide-1-phosphate—Ceramide kinase
phosphorylates ceramide, generating synthesize ceramide-1-phosphate in the trans Golgi
network (Fig. 3). Two isoforms of ceramide kinase, ceramide kinase 1 and 2, have been
characterized in mammalian tissues [96], including epidermis . Ceramide delivered from ER
by ceramide transfer protein (CERT) is utilized for the generation of ceramide-1-phosphate
generation [97].

8.1.3 Conversion of ceramide to glucosylceramide—Ceramide is transferred from
ER to cis Golgi by vesicle transport and then glucosylated to glucosylceramide at cis Golgi
by glucosylceramide synthase (Fig. 3) [98,99]. Glucosylceramide is a dominant
glycosphingolipid species (>95%) in epidermis [100]. Other glycosphingolipids’ (such as
gangliosides) syntheses also occur in Golgi. Gangliosides also regulate epidermal functions
(see Section 9.4).

8.1.4 Conversion of ceramide to sphingomyelin—Differing from ceramide transfer
for glucosylceramide synthesis from ER to Golgi, ceramide transferred from ER to trans
Golgi by ceramide transfer protein (CERT) [101] precedes ceramide to sphingomyelin
conversion, which is synthesized by sphingomyelin synthase 1 (Fig. 3) [102,103].
Sphingomyelin synthesis also occurs at the plasma membrane by sphingomyelin synthase 2
[102,103].

8.2 Metabolic pathways that rescue keratinocytes from ceramide-induced apoptosis
Ceramide-induced apoptosis occurs in keratinocytes following high doses of ultraviolet B
(UVB) irradiation [12], while low doses of UVB irradiation only inhibit cell proliferation
[93]. Interestingly, both low and high doses of UVB irradiation increase ceramide
production to the comparable levels at early time points, but ceramide levels return toward
normal ranges following low (but not high) doses of UVB irradiation by metabolic
conversion of ceramide to sphingosine, followed by further conversion to sphingosine-1-
phosphate in human keratinocytes [93]. This ceramide metabolic pathway does not operate
efficiently in cells after high levels of ultraviolet insults [93]. Because the ceramide transfer
function, CERT, declines after formation of a stable production of homotrimer following
oxidative stress [104], ceramide to sphingomyelin (and likely ceramide to ceramide-1-
phosphate) conversion does not upregulate in response to oxidative stress [104].
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9. Ceramide metabolites and their downstream signals
9.1 Sphingoid base

Sphingosine inhibits protein kinase C activated by diacylglycerol, Ca2+, and phorbol ester
[105,106], while sphingosine activates sphingosine dependent kinase, which is produced by
proteolysis of protein kinase δ [107,108]. Sphingosine-dependent kinase accounts for
apoptosis in astrocytes [107]. Sphingosine induces apoptosis through caspase-dependent
pathways [109–111]. In addition, since sphingosine has detergent properties, increased
sphingosine could alter membrane fluidity (membrane curvature) and alter cellular
functions.

9.2 Sphingosine-1-phosphate
Sphingosine-1-phosphate is generated by sphingosine kinase 1 and has been shown to
activate anti-apoptotic activity to protect cells from ceramide-induced apoptosis, to stimulate
cell proliferation, to increase cell motility [112,113], and to stimulate wound healing [114–
118], while sphingosine kinase 2 localized in nucleus generates sphingosine-1-phosphate,
which induces cell cycle arrest [119]. Sphingosine-1-phosphate produced in endoplasmic
reticulum by sphingosine kinase 2 is dephosphorylated by sphingosine-1-phosphate
phosphatase and is converted to ceramide by ceramidase synthase, resulting in apoptosis
[120]. In keratinocytes, sphingosine-1-phosphate induces differentiation, but does not
stimulate proliferation [121]. Lipid transporters, ATP binding cassette, i.e., ABCA1,
ABCC1 [122], and Spinster 2 [123,124] are involved in sphingosine-1-phosphate efflux
from cells. Sphingosine-1-phosphate regulates cellular functions through the activation of
plasma membrane localized G-protein coupled sphingosine-1-phosphate receptor. Five
isoforms of sphingosine-1-phosphate receptors have been characterized in mammals, and all
five receptors are expressed in keratinocytes. Activation of sphingosine-1-phosphate
receptors modulates cellular function through a number of downstream signaling pathways,
including activations of phospholipase C followed by increased intracellular Ca2+ [125,126],
and PI3 kinase followed by Akt/Rac activation [127], PKCδ activation accompanied with
Akt inactivation [128], and Smad 3 activation [113]. In addition to sphingosine-1-phosphate
receptor-dependent signal, sphingosine-1 -phosphate modulates cellular functions through
sphingosine-1-phosphate receptor independent pathways; i.e., sphingosine-1-phosphate can
directly modulate histone acetylation [129] and is a cofactor in the classical RelA pathway
leading to polyubiquitination of receptor interacting protein 1 (RIP1) and NF- κB activation
[130].

Moreover, recent studies demonstrated that sphingosine-1-phosphate produced in epithelial
cells, including keratinocytes, in response to subtoxic levels of ER stress (which can be
initiated by subtoxic levels of external stress, such as UVB irradiation, or epidermal
permeability barrier perturbation) stimulate a major innate immune element, cathelicidin
antimicrobial peptide via increased ceramide production followed by increasing
sphingosine-1-phosphate that activates NF-κB and then c/EBPα (Fig. 5) [28]. In addition,
the mechanism of sphingosine-1-phosphate-induced NF-κB activation has been shown
through a receptor-independent pathway [28].

As above, acid ceramidase expression increases in prostate cancer, suggesting the
involvement of tumor growth [131]. It is likely that pro-mitogenic sphingosine-1-phosphate
rather than ceramide or sphingosine is responsible for tumor growth. Keratinocytes, acid
ceramidase and alkaline ceramidase 1 enhance Ca2+-induced cell cycle arrest and
differentiation [116]. Overexpression of alkaline ceramidase 2 increases β1 integrine
maturation and cell adhesion [132]. Alkaline ceramidase 2 and 3 have been shown to
coordinately regulate keratinocyte proliferation and apoptosis [133]; i.e., silencing alkaline
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ceramidase 3 increases alkaline ceramidase 2 expression and results in increased ceramide,
which contains unsaturated fatty acids, that inhibit cell proliferation through upregulation of
increased cycline-dependent kinase inhibitor p21C1P/WAF1 expression and suppressed
apoptosis [133].

9.3 Ceramide-1-phosphate
Ceramide-1-phosphate stimulates cell proliferation [134] and is implicated in neutrophil
phagocytosis [135]. Ceramide-1-phosphate receptor has not been identified. Instead,
ceramide-1-phosphate directly interacts with and activates cytosolic phospholipases, and
releases arachidonate to increase prostanoid production. Ceramide-1-phosphate-mediated
increases in prostaglandin E2 production to stimulate inflammatory responses in cells [136–
138]. However, ceramide-1-phosphate inhibits TNFα converting enzyme to suppress TNFα-
induced-NF-κB activation [139] and also Toll-like receptor 4 (TLR4)-induced NF-κB
activation [140], suggesting ceramide-1-phosphate has an anti-inflammatory effect.
Ceramide-1-phosphate stimulates cell proliferation [141,142] and cell migration [143,144],
inhibits apoptosis [141,145,146] and increases glucose uptake [147].

9.4 Glycosphingolipids
Prior studies demonstrated the signaling roles of glycosphingolipid in epidermal cellular
function, c.f. review articles [148]. In epidermis, glucosylceramide is a dominant
glycosphingolipid (>98 %) species, while di- or polyglycosylated sphingolipid species, such
as GM3 gangliosides and other gangliosides, are also present as minor components [100].
An earlier study demonstrated that GM3 ganglioside modulates tyrosine phosphorylation of
the epidermal growth factor receptor and suppresses cell growth of cell lines of epidermal
carcinoma cell, A431 (human) and KB (mouse) cells [149]. In normal human keratinocytes,
GM3, GD3, 9-O-acetyl GD3, and GD1b ganglioside also inhibit proliferation, but do not
induce differentiation [150], while GT1b ganglioside likely increases keratinocyte
differentiation [151] and inhibits cell adhesion [152]. In addition, as above, epidermal
unique, glucosyl omega-O-acyl-ultralong chain ceramide induce keratinocyte differentiation
[73,74].

10. Conclusion
The role of ceramide in epidermal permeability barrier structure in the stratum corneum is
widely-recognized. Ceramide also serves as a signaling lipid to modulate epidermal
function. As discussed above, ceramide, including epidermal unique omega-O-acyl-
ultralong chain ceramide, which constitute the epidermal barrier in the stratum corneum,
becomes a signaling agent. Most of the immediate precursors of these barrier ceramides
(glucosylceramides), which are not used for cellular membrane constitution, are sequestrated
into lamellar bodies, and are unable to generate signals because of not being located in the
cellular compartment (unlike plasma membranes and mitochondria). Yet, it is possible that a
non-sequestrated epidermal unique glucosylceramide and/or diffusing lamellar bodies into
plasma membrane, these lipid species serve as a signaling lipid. Finally, sphingosine-1-
phosphate, a distal metabolite of ceramide, stimulates innate immunity. Modulation of
ceramide and its metabolite signals could regulate self defense systems and also modulate
inflammatory responses in skin.
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Highlights

Ceramide has a unique role in the skin to form the epidermal permeability barrier.

This barrier role of ceramide is not the focus of this review.

Ceramide and its metabolites have a signaling role in regulating cellular function.

Cells deploy protective mechanism against ceramide-induced cell death.
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Fig. 1.
Roles of Ceramide and Its Metabolites in Epidermis
Glycosphingolipid lipids, ceramide metabolites, also are signaling lipid (not included in this
figure, see 7 and 9.3, below)
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Fig. 2.
Ceramide (N-octadecanoyl sphingosine) Structure
Ceramides in the stratum corneum show structural variation, including hydroxylation (α, ω,
4, and 6 position). Sphingosine (carbon chain lengths 18–20) and non-hydroxy fatty acids
(carbon chain length 16–24) are major ceramide constituents in mammalian cells and these
major ceramdie species ubiquitously serve as signaling lipid in mammalian cells, including
epidermis.
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Fig. 3.
Ceramide Metabolic Pathway in Epidermis
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Fig. 4.
Protective Mechanism Against Ceramide-Induced Apoptosis in Response to Oxidative
Stress in Epidermis
Toxic levels of stress overwhelms these protective mechanism and results in increased
apoptosis [93]. Since CERT (ceramide-transfer protein) forms stable homotrimer that
diminishes ceramide transfer function under oxidative stress, sphingomyelin synthesis does
not increase [104].
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Fig. 5.
Ceramide metabolite, sphingosine-1-phosphate signals to stimulate antimicrobial defense.
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Fig. 6.
Signalings of ceramide and its metabolites to alter cellular functions in normal keratinocytes
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Table 1

Ceramide and its metabolites signal to modulate keratinocyte function

Treatment Cell Effect Mechanism

Ceramide

Exogenous

  short chain ceramide
  sphingosine

DJM ↓proliferation, ↑differentiation
↑(modest) proliferation, ↔differentiation

not determined [25]

  sphingomyelinase HaCaT ↓proliferation not determined [57]

  inhibitors of ceramide synthesis
  (fumonisin B1, cycloserine)

NHK ↓Interferon gamma-induced ICAM1
and HLA-DR expression

not determined [26]

  short chain ceramide NHK ↑differentiation ASK1 and p38MAP
kinase activation [58]

  short chain ceramide NHK ↑caspase-14 expression not determined [59]

  short chain ceramide and/or
  inhibition of ceramide conversion to
  its metabolites

NHK ↑ABCA12 PPARδ activation [60]

1α,25-dihydroxyvitamin D3 HaCaT ↑differentiation (1 α,25-dihydroxy-
vitamin D3→↑TNFa→↑ceramide)

not determined [65]

ultravioret B irradiation NHK irradiation→↑ceramide→↑apoptosis caspase independent? [12]

ultravioret B irradiation irradiation→↑ceramide→↑apoptosis not determined [66]

ultravioret A irradiation NHK irradiation→↑ceramide →↑ICAM1
(enzyme independent sphingimyelin→↑ceramide
and later ↑Cer→↑serine palmitoyltransferase)

AP2 activation [67,68]

Glucosylceramide

Exogenous

  glucosyl ceramides,
  including epidermal unique glucosyl

FRSK ↑differentiation ↑intracellular Ca2+

  omega-O-acylceramide and PKC activation [73]

  (chemicallysynthesized) glucosyl
  omega-O-acylceramide

NHK ↑differentiation not determined [74]

  GM3 ganglioside A431 and KB ↓proliferation ↓tyrosine phosphorylation of
EGF [149]

  GM3 ganglioside NHK ↓proliferation ↓tyrosine phosphorylation of
EGF [150]

  GT1b ganglioside NHK ↑differentiation protein kinase C independent
[151]

NHK ↓cell adhesion not determined [152]

Sphingosine-1-phosphate

Exogenous

  sphingosine-1-phosphate NHK ↑chemotaxis and induce differentiation sphingosine-1-phosphate
receptor 2/3→↑Ca2+ [153]

  sphingosine-1-phosphate NHK ↑differentiation ↑sphingosine-1-phosphate
receptor dependent /
independent/[121]

  sphingosine-1-phosphate NHK protect against TNFα-induced apoptosis ↑ sphingosine-1-phosphate
receptor 3→↑eNOS [154]

  sphingosine-1-phosphate NHK ↑laminin 5 synthesis→?↑wound healing not determined [117]

  sphingosine-1-phosphate NHK ↑migration, ↓cell proliferation Smad3 activation [113]

  sphingosine-1-phosphate NHK protect against 1α, 25-dihydroxyvitamin
D3-induced apoptosis

not determined [120]
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Treatment Cell Effect Mechanism

  sphingosine-1-phosphate NHK restrains insulin-induced cell proliferation ↑sphingosine-1-phosphate
receptor 2→↑PKCδ ↓AKT [128]

ER stress→↑ceramide→ NHK ER stress→↑→↑ceramide→ sphingosine-1-
phosphate
→↑cathelicidin anti microbial peptide

↑NF-κB→↑c/EBPα [28]

DJM, human squamous cell carcinoma cell; HaCaT, immortalized, nontransformed human keratinocyte; FRSK, fetal rat skin keratinocyte cell;
NHK, primary normal human keratinocyte; epidermal cartinoma cell, A431 (human) and KB (mouse) cells
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