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Genome-wide association studies have been successful in identifying common variants that influence the sus-
ceptibility to complex diseases. From these studies, it has emerged that there is substantial overlap in suscep-
tibility loci between diseases. In line with those findings, we hypothesized that shared genetic pathways may
exist between multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). While both diseases may have
inflammatory and neurodegenerative features, epidemiological studies have indicated an increased co-occur-
rence within individuals and families. To this purpose, we combined genome-wide data from 4088 MS patients,
3762 ALS patients and 12 030 healthy control individuals in whom 5 440 446 single-nucleotide polymorphisms
(SNPs) were successfully genotyped or imputed. We tested these SNPs for the excess association shared be-
tween MS and ALS and also explored whether polygenic models of SNPs below genome-wide significance
could explain some of the observed trait variance between diseases. Genome-wide association meta-analysis
of SNPs as well as polygenic analyses fails to provide evidence in favor of an overlap in genetic susceptibility
between MS and ALS. Hence, our findings do not support a shared genetic background of common risk variants
in MS and ALS.

INTRODUCTION

Multiple sclerosis (MS, OMIM: 126200) is a common disease of
the central nervous system characterized by inflammation, de-
myelination and axonal loss (1). Large extended families with
the disease are extremely rare (2), but a genetic component in
susceptibility to MS has been clearly demonstrated (1). Current-
ly known risk variants include four classical human leukocyte
antigen (HLA) alleles and .50 single-nucleotide polymorph-
isms (SNPs) outside the HLA region (3,4).

Amyotrophic lateral sclerosis (ALS, OMIM: 105400) is a neu-
rodegenerative condition with devastating impact. Multiple cel-
lular events contribute to the pathobiology, including
mitochondrial dysfunction, excitotoxicity, protein aggregation
in the cytosol, impaired axonal transport, neuroinflammation
and dysregulated RNA signaling (5). About 10–20% of cases
are familial, and up to 50% of these can be explained by
known mutations in 18 genes including SOD1, FUS, TARDBP
and C9orf72 (6). The majority of patients are isolated cases,
however. Not all results from genome-wide association studies
(GWAS) have been replicated, but two regions of association
have been confirmed in independent studies: a locus on chromo-
some 9 and variation in the UNC13A region (7–11).

One of the lessons learned in the GWAS era is the substantial
overlap in susceptibility loci between diseases. This has been
demonstrated for immune-related (12,13), metabolic (14) and
psychiatric (15) disorders and indicates, sometimes unexpected-
ly, commonalities and differences between diseases. MS indeed
shares several susceptibility loci with other immune-related dis-
orders, including type 1 diabetes and Crohn’s disease (3).
However, besides the immune component, key features of neu-
rodegeneration, i.e. axonal transection, neuronal cell atrophy
and neuronal death, are early pathological events in MS (1).
Moreover, the irreversible disability seen in patients correlates
stronger with neuronal damage than with inflammatory demye-
lination (16), although the cause of the neuronal damage remains
elusive. On the other hand, for diseases classified as neurodegen-
erative such as ALS, an inflammatory or immune component has
been implicated but is not yet conclusive (17,18). Case reports
have described patients affected by both diseases (19–24) and
an increased co-occurrence of MS and ALS compared with
what is expected has been observed (25,26). Studies also

report an increased risk of MS among relatives of patients suffer-
ing from ALS and vice versa (27–29), and some but not all
studies report geographical correlation in mortality rates of
both diseases (30,31).

In order to assess the shared genetic contribution between MS
and ALS, possibly through common pathways of neurodegen-
eration or inflammation, we investigated the overlap of
common susceptibility variants using available GWAS data.

RESULTS

We first investigated previously reported (3,4,7–11) susceptibil-
ity loci in one disease for evidence of association in the other.
None of the reported ALS susceptibility loci show evidence
for association with MS (Table 1). Out of 56 established, inde-
pendent MS susceptibility loci (3,4), 4 (7.1%) show nominal sig-
nificance for association with ALS, but none survived multiple
testing for the number of SNPs investigated (Table 2). As
expected because of the overlap between the datasets used
here and those used in the original studies of each disease separ-
ately, all previously reported risk factors for either MS or ALS
show the same direction of effect for the respective disease in
this dataset as in the original studies. Regarding the other
disease, 4/5 reported ALS risk SNPs show the same direction
of effect in MS as in ALS (sign test P ¼ 0.38), and among estab-
lished MS-associated SNPs, 26/56 (46%) SNPs show the same
direction of effect in ALS (sign test P ¼ 0.69). Four SNPs
were previously highlighted for reaching suggestive P-values
of ,10– 5 for association with disease course (bout onset
versus primary progressive MS) (3). Only one of these shows
evidence for association with ALS but in the opposite direction
(data not shown).

We next combined summary results from both MS and ALS
datasets in a meta-analysis, looking for modest effects in each
dataset that strengthen each other in the combined analysis.
The combined analysis of both diseases included a total of
5 440 446 SNPs (Fig. 1). The genomic inflation factor (ls) was
1.033 for MS, 0.997 for ALS and 1.005 for the combined MS–
ALS meta-analysis. In the meta-analysis, the HLA region
reaches genome-wide significance, but this is driven by the MS
component (P ALS with same direction of effect ≥0.01). One
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Table 1. Association for reported ALS susceptibility loci with MS

Chromosome Rsid Position (hg19) Gene Risk allele P ALS OR ALS P MS OR MS

1 rs6700125 59702797 FGGY (9) T 0.087 1.06 0.085 1.06
7 rs10260404 154210798 DPP6 (10) C 0.0049 1.10 0.55 1.02
9 rs3849942 27543281 C9orf72 (7,8) T 5.8E-06 1.19 0.26 1.04
12 rs2306677 26636386 ITPR2 (11) A 0.080 1.10 0.60 1.03
19 rs12608932 17752689 UNC13A (7) C 8.3E-09 1.21 0.39 0.97

Table 2. Association for independent, established MS susceptibility loci with ALS

Chromosome Rsid Position (hg19) Gene Risk allele P MS OR MS P ALS OR ALS

1 rs4648356 2709164 MMEL1 (TNFRSF14) C 0.012 1.09 0.97 1.00
1 rs11810217 93148377 EVI5 T 0.00032 1.14 0.12 0.94
1 rs11581062 101407519 SLC30A7 G 0.032 1.08 0.025 1.08
1 rs1335532 117100957 CD58 A 1.2E-08 1.35 0.97 1.00
1 rs1323292 192541021 RGS1 A 0.0098 1.11 0.53 1.03
1 rs7522462 200881595 C1orf106 G 0.00083 1.13 0.023 0.92
2 Rs6718520a (4) 43325570 ZFP36L2 (THADA) A 1.2E-05 1.16 0.84 1.01
2 rs12466022 43359061 ZFP36L2 (THADA) C 4.2E-05 1.16 0.76 0.99
2 rs7595037 68647095 PLEK T 1.6E-05 1.15 0.32 0.97
2 rs17174870 112665201 MERTK C 0.00012 1.15 0.79 1.01
2 rs10201872 231106724 SP140 T 0.00056 1.15 0.13 1.07
3 rs669607 28071444 intergenic C 2.5E-05 1.15 0.57 0.98
3 rs2028597 105558837 CBLB G 0.56 1.03 0.52 1.04
3 rs2293370 119219934 C3orf1 G 0.056 1.08 0.29 0.96
3 rs9282641 121796768 CD86 G 0.0015 1.22 0.52 0.96
3 rs2243123 159709651 IL12A C 0.17 1.05 0.25 1.04
4 rs228614 103578637 MANBA G 0.0092 1.18 0.23 0.625
5 rs6897932 35874575 IL7R C 0.0014 1.12 0.20 0.96
5 rs4613763 40392728 PTGER4 C 0.00014 1.19 0.87 0.99
5 rs2546890 158759900 IL12B A 3.8E-06 1.16 0.78 1.01
6 rs12212193 90996769 BACH2 G 0.0055 1.09 0.14 1.05
6 rs802734 128278798 PTPRK A 0.0014 1.12 0.89 1.00
6 rs11154801 135739355 AHI1 A 0.014 1.08 0.49 0.98
6 rs17066096 137452908 IL22RA2 G 0.00096 1.13 0.29 0.96
6 rs1738074 159465977 TAGAP C 0.00075 1.12 0.45 0.98
7 rs354033 149289464 ZNF767 G 0.00079 1.13 0.26 1.04
8 rs1520333 79401038 PKIA G 0.11 1.06 0.41 1.03
8 rs4410871 128815029 MYC C 0.018 1.09 0.54 1.02
9 rs2150702 5893861 MLANA G 2.5E-05 1.14 0.015 1.08
10 rs3118470 6101713 IL2RA C 0.00078 1.12 0.76 1.01
10 rs1250550 81060317 ZMIZ1 A 0.0024 1.11 0.66 0.98
10 rs7923837 94481917 HHEX G 0.015 1.08 0.18 0.96
11 rs650258 60832282 CD5 C 0.00018 1.14 0.097 0.95
11 rs630923 118754353 CXCR5 C 0.033 1.11 0.066 1.08
12 rs1800693 6440009 TNFRSF1A G NAb NA 0.67 1.01
12 rs10466829 9876091 CLECL1 A 0.0009 1.11 0.49 0.98
12 rs12368653 58133256 AGAP2 A 0.0018 1.10 0.31 0.97
12 rs949143 123595163 ARL6IP4 G 0.015 1.08 0.57 0.98
14 rs4902647 69254191 ZFP36L1 C 0.00022 1.12 0.72 0.99
14 rs2300603 76005557 BATF T 0.014 1.10 0.10 0.94
14 rs2119704 88487689 GPR65 C 0.045 1.13 0.23 0.93
16 rs2744148 1073552 SOX8 G 0.023 1.10 0.30 0.95
16 rs7200786 11177801 CLEC16A A 8.8E-05 1.14 0.58 0.98
16 rs13333054 86011033 IRF8 T 0.063 1.09 0.98 1.00
17 rs9891119 40507980 STAT3 C 0.00016 1.13 0.86 0.99
17 rs180515 58024275 RPS6KB1 G 0.093 1.06 0.74 1.01
18 rs7238078 56384192 MALT1 T 0.00075 1.13 0.99 1.00
19 rs1077667 6668972 TNFSF14 C 0.033 1.10 0.10 0.94
19 rs8112449 10520064 CDC37 G 0.14 1.05 0.83 0.99
19 rs874628 18304700 MPV17L2 A 0.021 1.09 0.65 0.98
19 rs2303759 49869051 DKKL1 G 0.0075 1.11 0.034 1.08
20 rs2425752 44702120 NCOA5 T 0.0001 1.14 0.40 0.97
20 rs2248359 52791518 CYP24A1 C 0.00085 1.12 0.29 1.04
20 rs6062314 62409713 ZBTB46 T 0.047 1.14 0.52 1.04
22 rs2283792 22131125 MAPK1 G 0.00036 1.12 0.23 1.04
22 rs140522 50971266 ODF3B T 0.0022 1.12 0.72 0.99

Source of variants: (3), except where specified: (4).
ar2 ¼ 0.15 with adjacent variant rs12466022, bNo SNP with r2 . 0.6.
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region, near NPEPPS on chromosome 17 (rs2935183), reaches
suggestive association levels of P , 5 × 1027 but is once again
driven by MS [P (MS)¼ 6.5 × 1027; P (ALS) ¼ 0.41].

Lastly, we investigated the possibility of an overlap of small
susceptibility effects (polygenic score or ‘en masse’ effect).
Therefore, we tested collectively SNPs that reached certain
thresholds in the MS or ALS GWASs for association with
ALS and MS, respectively. After correction for multiple
testing, none of the models were significantly associated with
disease (Tables 3 and 4), with the best model for each disease
explaining only 0.05% of the phenotypic variance. To test
whether the lack of association may have been affected by

association results in the HLA region (which is known to be
strongly associated with MS, but not with ALS), we repeated
the polygenic analysis excluding SNPs in the HLA region (re-
moving all SNPs on chromosome 6 between 29 and 33 Mb).
This did not influence the results (Supplementary Material,
Table S1).

DISCUSSION

In this study, we have applied several statistical approaches to
the investigation of shared susceptibility loci between the

Figure 1. Manhattan plot of (A) a combined MS–ALS analysis and (B) an overlay of the individual components consisting of both diseases (blue: MS, red: ALS).
The y-axis has been cut off at -logP ¼ 10. Red and blue horizontal lines indicate genome-wide (P , 5 × 1028) and suggestive (P , 5 × 1027) evidence.

Table 3. Polygenic score based on MS data in ALS

Model P-value Number of SNPs Nagelkerke r2 corrected
for baselinea

,5E28 0.820 75 5.4E206
,5E27 0.963 90 2.0E207
,5E26 0.987 114 0.0E+00
,5E25 0.827 184 5.0E206
,5E24 0.880 633 2.4E206
,5E23 0.414 3454 6.9E205
,0.05 0.775 22284 8.5E206
,0.1 0.848 38861 3.8E206
,0.2 0.986 66276 1.0E207
,0.3 0.743 89109 1.1E205
,0.4 0.459 108626 5.7E205
,0.5 0.412 125558 7.0E205

aBaseline: PC1-3, dummy-coded cohorts.

Table 4. Polygenic score based on ALS in MS

Model P-value Number of SNPs Nagelkerke r2 corrected
for baselinea

,5E28 0.843 3 4.5E206
,5E27 0.785 4 8.4E206
,5E26 0.500 7 5.2E205
,5E25 0.452 49 6.4E205
,5E24 0.928 389 9.3E207
,5E23 0.306 3075 1.2E204
,0.05 0.032 22315 5.2E204
,0.1 0.050 38922 4.4E204
,0.2 0.040 66738 4.8E204
,0.3 0.057 89592 4.1E204
,0.4 0.048 108839 4.4E204
,0.5 0.074 125337 3.6E204

aBaseline: PC1-5, dummy-coded cohorts.
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neurological diseases MS and ALS, which are both thought to
involve inflammatory and neurodegenerative components
(1,17,18) and for which case reports and epidemiological
studies have reported co-occurrence within individuals or fam-
ilies (19–29). The strength of the study is that different statistical
approaches are consistent in demonstrating that the number of
regions in the genome with evidence for an overlap in suscepti-
bility between the two diseases is not more than expected by
chance. Among 65 loci having previously been implicated in
one disease or disease subgroup, only 5 show nominally signifi-
cant association with the other disease and none survive correc-
tion for multiple testing. There was no significant enrichment for
the same direction of effect in both diseases. In a combined ana-
lysis of both diseases, no region outside of the HLA reaches
genome-wide significance and only one reaches suggestive asso-
ciation levels of P , 5 × 1027. Moreover, for both these regions
with evidence for association in both diseases, results appear
driven by strong evidence in MS, despite sample sizes of
similar magnitude for both diseases. Furthermore, the polygenic
analysis demonstrates that it is unlikely that many common var-
iants with effect sizes that are beyond the detection threshold for
association are shared between the two diseases. This contrasts
with other diseases where a polygenic risk score calculated for
one disease is associated with related diseases, as in the
example of schizophrenia and bipolar disorder (15).

MS is a clinically heterogeneous disease, with the majority of
patients (�80%) suffering from a bout onset form of the disease
with relapses and remissions, possibly followed by secondary
progression, and the remaining 20% being characterized by pro-
gression from onset (1). It has been speculated that both forms
represent a continuous spectrum of disease phenotypes with
risk factors driving the balance between inflammation and neu-
rodegeneration (32). Genetic association studies have so far not
provided evidence for a different pathogenesis of the two forms
(3). On the contrary, HLA-DRB1∗1501, the strongest risk factor
in MS and especially immunological in nature, is shared between
both bout onset and primary progressive MS. In this study, there
was no evidence for shared loci with the same direction of effect
between ALS and primary progressive MS.

A total of .50 common risk variants for MS have now been
identified (3,4). There is a highly significant enrichment for
immune system genes in this list, with only few variants
having a potential neurological function (3). GWAS studies in
ALS have seen limited success (8). This discrepancy in the
number of common risk variants identified between immuno-
logical and other diseases has been suggested to reflect a
history of selection and adaptation of variants influencing the
immune system (33,34). Mutations in several genes cause famil-
ial forms of ALS, and it has been thought that less common (1–
5%) or rare (,1%) variants play a role in sporadic forms of the
disease as well (35). Similarly, first reports of less common and
rare variants in MS are emerging (36,37). This category of var-
iants, which are not well captured by current genome-wide asso-
ciation studies, may explain part of the heritability in MS and
ALS that remains unaccounted for by common variants
(‘missing heritability’), and potentially the shared neurodegen-
erative component. Next-generation sequencing offers a tech-
nology suited to address this hypothesis.

It has recently been demonstrated that a large proportion of
ALS is related to a GGGGCC hexanucleotide repeat expansion

in intron 1 of C9orf72 (38,39), located in a region on chromo-
some 9p previously highlighted in GWAS studies of ALS
(7,8). We did not observe any association of the C9orf72
region with MS. This is in line with the fact that no repeat expan-
sions were observed in a cohort of 215 MS patients (25). Hence,
C9orf72 variation does not appear to be a risk factor for MS. It
has been suggested that MS can act as a modifier that increases
the likelihood of C9orf72 expansions becoming penetrant and
causing concurrent ALS (25), although further investigation is
required (40).

In summary, the overlap of common variants between MS and
other autoimmune disorders is not matched by a similar overlap
between MS and other neurological disorders, such as ALS
in this study. Whether less common or rare variants explain
some of the shared neurodegenerative or neuroinflammatory
aspects of both diseases cannot be addressed with the currently
available datasets and remains to be examined with emerging
technologies.

MATERIALS AND METHODS

We used data from 6 datasets totaling 4088 MS patients and 7144
controls from a recent meta-analysis of MS genome-wide asso-
ciation studies (4). Imputation was performed using Beagle v3.1
and the 1000 Genomes Project (1000G) Phase I (a) reference
panel (2010/11 data freeze, 2011/6 haplotypes), and analysis
was performed as described previously using the post-
imputation probabilities and the first five principal components
(PC) as covariates (4), leading to association results for a total
of 6 948 682 SNPs with INFO of .0.10 and a minor allele fre-
quency of .0.01 in all 6 datasets.

The ALS study population consists of 3 762 patients and 4 886
controls over 11 cohorts, for which details have been described
previously (7,41). Imputation was performed using Beagle
v.3.1.1. software with the 1000G CEU Aug 2010 reference
panel. Analysis on dosage data including 3 PC led to association
results for 12 249 385 SNPs.

A/T and C/G SNPs were removed, and results from both data-
sets on 5 440 446 overlapping SNPs were combined using an
inverse variance fixed-effects model as implemented in the
PLINK software package (42). Power was .99% for OR of
≥1.2 and .80% for OR of ≥1.15 at a typical risk allele fre-
quency of 30% and genome-wide significance (P , 5 × 1028).

Polygenic risk scores were calculated per individual to test the
collective impact of SNPs that are associated with ALS on MS
and vice versa. For each trait (MS and ALS), we first pruned
the association results of the GWAS by linkage disequilibrium
(r2 ¼ 0.1), preferentially keeping SNPs with lower P-values.
We selected twelve sets of SNPs (models) based on their
GWAS P-values (,5 × 1028, ,5 × 1027, ,5 × 1026,
,5 × 1025, ,5 × 1024, ,5 × 1023, 0.05, ,0.1, ,0.2,
,0.3, ,0.4 and ,0.5). The smallest model contains three
SNPs, whereas the models of P , 0.5 contain .125 000 SNPs
(Table 3). Next, we calculated a polygenic risk score in all indi-
viduals of the other GWAS by summing up the dosages of the
risk alleles in each model, multiplied by the log-odds. We then
tested the association between the risk score and the phenotype
using logistic regression with the same number of PCs as used
in the original analysis of each trait (ALS: PC1-3, MS: PC1-5)
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and dummy-coded cohorts as covariates. Nagelkerke r2 was cal-
culated to test the variance explained by each model (43).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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