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Abstract
Background—Plasma glucose levels are tightly regulated within a narrow physiologic range.
Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from
nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway
regulating both glucose clearance and appearance has not been described. The metabolism of
glucose to produce ATP is generally considered to be the primary stimulus for insulin release from
beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the
primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C).
These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis.

Scope of review—A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and
PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-
stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence
for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver,
mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with
a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the
production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin
release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in
gluconeogenic tissues for the production of glucose. This review will focus on the possibility that
PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion
and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating
multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be more
important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient
sensing pathways.

Major conclusions—PEPCK-M, initially believed to be absent in islets, carries a substantial
metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-
stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in
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glucose producing tissues and could potentially be an unappreciated but important source of
gluconeogenesis.

General Significance—The generation of PEP via PEPCK-M may occur via a metabolic
sensing pathway important for regulating both insulin secretion and gluconeogenesis.

Keywords
PEPCK-M; mitochondrial GTP; anaplerosis; Succinyl Coenzyme A Synthetase; mitochondrial
metabolism; insulin secretion; gluconeogenesis; Diabetes Mellitus

1. Introduction
The body regulates blood glucose levels to maintain glucose homeostasis. Together the rates
of glucose entry and clearance from the circulation establish blood glucose levels. In the
absence of exogenous nutritional sources an organism preserves normal blood glucose levels
through a combination of glycogenolysis (glycogen breakdown) and gluconeogenesis (de
novo glucose production) [1]. An increase in glucose levels results in insulin secretion from
the pancreas and clears blood glucose acutely by promoting tissue glucose uptake and
suppressing glucose production [2, 3] (Fig. 1).

While glucose production and insulin secretion oppose each other, at a cellular level, these
two distinct cellular processes share metabolic and biochemical features. Namely the
biochemical reaction in which oxaloacetate (OAA) is decarboxylated to
phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxykinase (PEPCK) (EC number
4.1.1.32) is central to both processes. This shared biochemistry leads to similarities in how
these processes are regulated. This reaction requires GTP and is essential to support
phosphoenolpyruvate (PEP) synthesis for insulin secretion as well as gluconeogenesis [4-7].
PEPCK exists in two isoforms: a cytosolic (PEPCK-C) and a mitochondrial (PEPCK-M)
form [8]. Most research focused on the function and regulation of PEPCK-C, and glucose
production is most commonly ascribed to this isoform. Curiously, the first function of
PEPCK-M in mammals was found in glucose-stimulated insulin secretion (GSIS), a function
on the diametrically opposite side of glucose production [7, 9]. In the pancreatic β-cell, PEP
synthesis by PEPCK-M couples mitochondrial metabolism to insulin release in a mechanism
distinct from ATP production by oxidative phosphorylation. Mitochondrial PEP (mtPEP)
synthesis is coupled to the TCA cycle via the production of mitochondrial GTP (mtGTP)
that is produced by substrate-level synthesis via the enzyme succinyl-CoA synthetase (SCS)
in the TCA cycle. Consequently, both glucose production and glucose clearance could be
determined, at least in part, by a common mitochondrial metabolic pathway.

Flux through this metabolic “tachometer” derived from mtGTP production by the TCA
cycle followed by mtGTP hydrolysis by PEPCK-M may be a common reaction to both β-
cells and gluconeogenic tissues. This review will focus on this potential duality of function
where PEPCK-M senses TCA cycle flux through mtGTP production.

2. Glucose Homeostasis
Many important functions of the body depend on glucose. Throughout the day plasma
glucose concentrations remain within a relative narrow window from about 3 to 8 mM [10,
11]. However, nutrition is variable and stored glucose (in the form of glycogen) is a finite
supply that can be depleted. In order to maintain glucose homeostasis, glucose that is
leaving the circulation must be balanced by the addition of glucose to the system (Fig. 1).
Insulin is the hormone that largely determines the rate of clearance of glucose into
peripheral tissues at rest. The source of the glucose, on the other hand varies. During meals,
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intestinal absorption is a major contributor but during fasting and exercise glucose comes
primarily from two other pathways: gluconeogenesis (de novo glucose production in kidney
and liver) and glycogenolysis (glycogen breakdown in muscle and liver) [1, 12, 13]. Only
the liver and kidney can release glucose into the blood because they have the enzyme
glucose-6-phosphatase [14]. Gluconeogenesis is a continuous process that supports both
glycogen synthesis as well as endogenous glucose production. Interestingly, even in the
immediate post-absorptive state when glycogen levels are high, gluconeogenesis still
contributes about half of endogenous glucose production [15]. During a prolonged fast as
glycogen stores become progressively depleted then the relative contribution of
gluconeogenesis approaches 100%. It is particularly important to note that inappropriately
elevated gluconeogenic flux is associated with and may be causal for diabetes mellitus [16,
17].

Gluconeogenesis and glycolysis share many of the same enzymes that catalyze reversible
reactions lying close to their equilibrium. However, three glycolytic reactions (hexokinase/
glucokinase, phosphofructokinase, and pyruvate kinase) are exchanged with kinetically
more favorable reactions (glucose-6-phosphatase, fructose-1,6-biphosphatase, and PEPCK,
respectively) during gluconeogenesis. The reactions of gluconeogenesis occur
predominantly in the cytosol with the exception of glucose-6-phosphatase (lumen of the ER)
and PEPCK that can either take place in the cytosol (PEPCK-C) or the mitochondrial matrix
(PEPCK-M). Interestingly, to some degree both gluconeogenesis and glycolysis occur
simultaneously in the liver with significant cycling of plasma glucose into the mitochondria
and back out [18-20].

The hormone insulin has a key role in normal glucose homeostasis opposing
gluconeogenesis. Many of the features of the control of glucose homeostasis under basal
conditions can be explained by a simple feedback loop between the liver and the pancreatic
β-cell in the islets of Langerhans (Fig. 1). Endogenous glucose production supplies glucose
through a combination of gluconeogenesis and glycogenolysis to support energy demand in
peripheral tissues. If supply outstrips demand, then plasma glucose levels begin to rise. β-
cells metabolically sense glucose as well as other nutrient levels and release insulin into the
blood stream. Insulin decreases blood glucose acutely by promoting tissue glucose uptake,
suppressing gluconeogenesis in both the liver and kidney as well as inhibiting
glycogenolysis and promoting glycogen synthesis in liver [2, 3].

3. Sensing TCA cycle flux
Mitochondria are intimately involved in both processes of glucose sensing and
gluconeogenesis. The TCA cycle is the “central wheel” of energy metabolism and is the
final common pathway for the aerobic oxidation of fuel molecules. However, biosynthetic
intermediates can leave the TCA cycle and be converted to products such as glucose,
nucleotides, lipids, or non-essential amino acids [6]. The removal of TCA cycle
intermediates is called cataplerosis (of Greek origin, kata=”downward” and plerotikos= “to
fill”). If carbons are removed from the TCA cycle, they must be replaced. The replenishment
of TCA cycle intermediates is termed anaplerosis (of Greek origin, ana=”up” and
plerotikos= “to fill”) [6]. To maintain the appropriate balance of carbon flow in the TCA
cycle for various metabolic processes, cataplerosis and anaplerosis must be maintained in
equilibrium. If this does not occur, the cycle either accumulates or loses metabolites, either
of which could impair TCA flux when excessive. Thus, anaplerosis and cataplerosis must be
balanced so that during different physiologic conditions (e.g. fasting, feeding or exercise),
the pool size of TCA intermediates remains consistent [21]. How, then, do mitochondria
know how much is coming in and going out?
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A key insight was obtained from the molecular characterization of a rare disease of familial
hypoglycemia, known as Hyperinsulinemia-Hyperammonemia (HI/HA) syndrome. This
autosomal dominant disease is associated with a gain-of-function mutation in the
mitochondrial enzyme glutamate dehydrogenase (GDH) [22, 23]. GDH is a key net entry
point for glutamate into the TCA cycle. Glutamate is oxidatively deaminated to produce
anaplerotic α-ketoglutarate and free ammonia. Unrestrained glutamate entry into the TCA
cycle is detrimental in the patients due to excessive amino acid catabolism that increases
levels of ammonia as a toxic by-product. This process is normally tightly regulated by
opposing allosteric signals: mtGTP (inhibitory) and leucine (activating). As long as there are
adequate levels of TCA flux then mtGTP will prevent the excessive entry of anaplerotic
glutamate by inhibiting GDH. Leucine is one of the essential amino acids and its levels
generally only increase following a protein-rich meal. Activation of GDH by leucine
provides a mechanism of redirecting the carbons from amino acids into other metabolic
pathways during times of excess. The balance of mtGTP and leucine regulation is lost in
patients with HI/HA due to a mutation in GDH that impairs the ability of mtGTP to turn off
the enzyme [22, 23]. During protein-rich meals, leucine potently over-activates the enzyme.
Consequently, glutamate catabolism increases inappropriately and results in excessive
insulin secretion with hypoglycemia. While it may not be surprising that excessive TCA flux
in β-cells could promote insulin secretion, the characterization of these mutations identified
mtGTP as a key metabolic regulatory signal in the mitochondria [9, 22, 23].

3.1. Mitochondrial GTP
The synthesis of ATP in the mitochondria by oxidative phosphorylation is well
characterized. Here TCA cycle metabolism provides reducing equivalents (e.g. NADH and
FADH2) that donate electrons to the electron transport chain with molecular oxygen as the
final acceptor at complex IV. Electron transport then pumps protons out of the matrix
generating a proton motive force across the inner mitochondria. This provides the driving
force for ATP synthesis as protons translocate back into the matrix through complex V
along their electrochemical gradient. There are other pathways that allow the protons to
“leak” back into the matrix so the efficiency of oxidative phosphorylation depends, in part,
on the tightness of coupling of the proton motive force to ATP synthesis. ATP generated in
the matrix is then rapidly and efficiently transported out into the cytosol in exchange for
ADP.

Mitochondrial GTP (mtGTP) synthesis is quite different. First, mtGTP is formed by
substrate-level phosphorylation of mitochondrial GDP via GTP-forming succinyl-CoA
synthetase (SCS-GTP) [24]. Synthesis rates of mtGTP are directly related to flux through
the TCA cycle (at least for the SCS step where approximately one molecule of mtGTP is
built per one molecule of glucose) but independent of electron transport and oxidative
phosphorylation. In contrast, the TCA cycle generates little mitochondrial ATP (mtATP) by
the ATP forming isoform of SCS (SCS-ATP). Oxidative phosphorylation generates the
majority of mtATP, which is controlled by the transmembrane mitochondrial potential (ΔΨ).
The ΔΨ controls important mitochondrial functions, such as protein import, heat formation,
free-radical generation, ion transport, in addition to generating ATP. Consequently, the yield
of mtATP from one glucose molecule can in theory vary between 1 and 29 [9]. This is
particularly relevant in pancreatic beta-cells that are known to have a large proportion of the
membrane potential uncoupled from oxidative phosphorylation [25]. In this manner, mtGTP
is better poised to be an indicator of TCA cycle flux than ATP generation in a mechanism
that is metaphorically similar to the tachometer of an engine [9].

Considered within the framework of GDH regulation, if the intermediates of the TCA cycle
are becoming depleted, then GTP levels will drop reducing the restraint on GDH. As noted
above, this is evident in the disease Hyperinsulinemia Hyperammonemia syndrome, where
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mutations in GDH lacking the GTP “off-switch” become profoundly hypoglycemic from
excessive amino acid induced insulin secretion. Similarly, glucose deprivation depletes TCA
cycle flux and intermediates and reduces mtGTP, consequently relieving inhibition of GDH
and enhances GDH activation by the amino acid leucine. In mice expressing the mutant
human GDH, amino acids are much more potent insulin secretagogues. Even in normal
mouse islets, the longer the duration of hypoglycemia in run down experiments leads to a
greater responsivity of insulin secretion to amino acids suggesting that this is a normal
physiologic mechanism regulated by mtGTP [26]. If needed, glutamate carbons can
replenish the TCA cycle, and in the process will generate more mtGTP leading to feedback
inhibition of GDH. Such a feedback circuit limits amino acid catabolism via GDH as long as
sufficient glucose is present to maintain levels of TCA cycle intermediates that permit
adequate TCA cycle flux and mtGTP production. For amino acids to be oxidized, there must
be net loss of the amino group as ammonia or urea. This mechanism may also indirectly
favor glucose and fatty acids over amino acids as oxidative substrate since ammonialysis
catalyzed by GDH is required not just for anaplerosis, but also for complete amino acid
oxidation This preserves the amino acid pools and keeps ammonia levels low. Thus, GDH is
a major regulatory site for ammonialysis, whereas mtGTP is a major regulator.

Another unique contrast with mitochondrial ATP is that transport of GTP or GDP into or out
of the mitochondria is very slow [27, 28]. Yeast lack a mechanism to synthesize mtGTP and
therefore are dependent on a mitochondrial GTP transporter [29]. To date, no transporter has
been identified in higher eukaryotes and any measurable transport activity is orders of
magnitude slower than ATP [27, 28]. This has important implications for mtGTP. First,
since it is not in equilibrium with the cytosolic pool, then it can act as a mitochondrial
metabolic sensor. Second, there must either be a mechanism to hydrolyze GTP back to GDP
or another GDP-independent mechanism to metabolize succinyl-CoA to succinate.
Otherwise, GDP would become rate-limiting for the TCA flux.

3.2. Regeneration of mitochondrial GDP by the mitochondrial GTP cycle
Mitochondrial GTP is synthesized in the TCA cycle via succinyl-CoA synthetase (SCS)
[24]. This mitochondrial matrix enzyme catalyzes the reversible reaction: Succinyl-CoA to
succinate and CoA with the generation of a purine triphosphate in the process:

Initially it was believed that, in contrast to the ADP-dependent reaction observed in single
celled organisms, the reaction was entirely GDP-dependent in higher organisms. Later two
isoforms of SCS were identified in the mitochondrial matrix – one ATP forming (SCS-
ATP), the other GTP (SCS-GTP) forming [30]. Succinyl-CoA synthetase is a heterodimer,
with a common α subunit (SUCLG1) and two distinct β subunits encoded by separate
nuclear genes that impart the GDP (SUCLG2) and ADP (SUCLA2) nucleotide specificity.
The β subunits are highly homologous and the enzymatic characteristics of the two isoforms
are similar differing primarily in their nucleotide specificity. Both isoforms work in parallel
in the mitochondria with varying SCS-GTP/SCS-ATP ratios. There is a preponderance of
the GDP-specific isoform in synthetic tissues (e.g. liver and kidney) while the ADP-specific
isoform can be more commonly found in oxidative tissues (e.g. brain and skeletal muscle)
[24, 31]. As a consequence, the stoichiometry at which GTP is made by the TCA cycle is
dependent on the ratio of SCS-GTP/SCS-ATP. If ADP and GDP are not limiting and there is
no other source of GTP, then GTP production will be proportional to the TCA cycle [9]. At
high SCS-GTP/SCS-ATP ratios this would approach a maximum of one GTP per turn of the
TCA cycle. The “gain” of the signal will be reduced by increasing amounts of the ATP
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isoform. Thus, in principle, the mtGTP production rates can be tuned with respect to the
TCA flux in a tissue-specific manner.

There may be additional advantages to having two parallel pathways for succinate synthesis
besides just changing the GTP production rate. For instance, if GDP becomes rate-limiting
during states of high metabolic flux, then a switch to the SCS-ATP isoform could maintain
the TCA cycle flux since the adenine nucleotide transporter is very efficient. Secondly, since
both isoforms catalyze reversible reactions, the phosphate potential of ATP/ADP and GTP/
GDP could be distributed across both isoforms. For example, if GTP/GDP concentrations
are high relative to ATP/ADP, then succinate + GTP + CoA may react in reverse via SCS-
GTP to make succinyl-CoA + GDP + Pi. The succinyl-CoA formed by the reverse reaction
may then contribute to the forward reaction through SCS-ATP to convert ADP to ATP. In
this manner, the two isoforms may perform a function akin to the nucleotide
diphosphokinase reaction (NDPK). Thus, if equilibration across the SCS isoforms is
sufficiently fast relative to GTP consumption, then the ATP/ADP and GTP/GDP could be
functionally linked. Additionally, metabolites such as succinate that enter distal in the TCA
cycle to SCS are not known to directly generate mtGTP. However, reverse flux of SCS-ATP
could generate succinyl-CoA without the need for a pyruvate cycling pathway.
Consequently, forward flux through SCS-GTP could then provide a source of mtGTP.
Presently, there is no experimental evidence we are aware of to support bi-directional fluxes
across SCS isoforms in intact cells.

Prior to the identification of the ATP and GTP isoforms of SCS in mammalian cells, a
mitochondrial matrix NDPK was proposed as a mechanism to return mtGTP back to the
GDP state by the transfer of the γ-phosphate to ADP forming ATP [32]. Indeed, initial data
supported the presence of this activity in isolated mitochondria and it appeared to co-
immunoprecipitate with SCS [33]. Subsequent studies now suggest that mitochondrial
NDPK is primarily localized to the intermembrane space. Given that SCS-ATP and SCS-
GTP together catalyze the NDPK reaction, then in the presence of contaminating levels of
CoA and phosphate, the phosphate transfer might be falsely attributed to NDPK. The
mitochondrial isoform of NDPK (nm23-H4) is homohexameric with two faces that bind to
cardiolipin [34, 35]. Recently it has been described as an enzyme that transfers cardiolipin
between leaflets of the inner and outer mitochondrial membrane as well as performing an
NDPK function [36]. Interestingly, it also associates with OPA-1, the intermembrane
GTPase required for fusion of mitochondrial membranes and cristae remodeling. Here it
may convert ATP from oxidative phosphorylation into GTP needed for these functions.
Regardless, NDPK activity in mitochondria is two orders of magnitude lower than SCS such
that, even if it were in the matrix, it would not be likely to significantly alter the nucleotide
ratios.

Neither NDPK nor the combined enzymatic activities of SCS-ATP and SCS-GTP
adequately explain why mtGTP is synthesized in the first place. If there is already an ATP-
specific SCS isoform then why go to the trouble of making GTP if it will be only used to
make ATP? Identification of a significant matrix GTPase could potentially explain its
purpose. PEPCK is a GTPase that decarboxylates OAA to form GDP and PEP. Hahn and
Novak first proposed in 1975 that the cytosolic form of the enzyme might function as a
GTPase to regenerate mtGDP in brown adipose [37]. Brown adipose, which has high
activities of PEPCK, is the tissue for non-shivering thermogenesis and in a
transmitochondrial, heat-generating futile cycle. They proposed that excessive mtGTP made
by SCS-GTP would be transported out of mitochondria and hydrolyzed by PEPCK-C in the
cycle. The cytosolic GDP would be then returned to the matrix to support further TCA flux.
However, as mentioned above, lack of a mitochondrial GTP/GDP transporter makes this
cycle less likely. There may be other mitochondrial processes besides PEP synthesis such as
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formation of iron sulfur complexes and mitochondrial protein synthesis that are dependent
on mtGTP [38]. A few other mitochondrial GTPases of unknown function have been
identified [39] suggesting there may be other possible roles for this metabolic signal. In
metabolically active cells like liver and beta-cells expressing high levels of SCS-GTP these
other GTPases may be quantitatively much less significant. For instance, as high as 30-40%
of glycolysis flows into the PEPCK-M pathway in islets [7]. With the remaining glycolytic
flux going into PDH, then virtually all of the predicted mtGTP synthesis would support the
PEPCK-M reaction.

Drahota et al. identified very high specific activities of PEPCK-M in brown adipose [40]. In
addition, they reported high rates of PEP export from mitochondria supplied with malate and
alpha-ketoglutarate. They proposed that a PEP cycle involving pyruvate carboxylase (PC),
PEPCK-M and pyruvate kinase might facilitate uncoupling by reducing the mitochondrial
phosphate potential. Here, PEP would leave the mitochondria via the citrate isocitrate carrier
(CIC) in exchange for malate and could be inhibited by 1,2,3-benzenetricarboxylate. In this
PEP cycle, ATP consumed by PC and GTP used by PEPCK-M in the mitochondria would
generate a single ATP in the cytosol. Such a cycle would help maintain high TCA flux rates
by restoring the mitochondrial GDP pool for use by SCS-GTP. Lambeth et al. also proposed
a cycle in which PEPCK-M and PEPCK-C collaborate to provide mtGDP for the succinyl-
CoA synthetase step while transferring a high energy phosphate to the cytosol [24]. In this
mechanism PEPCK-M consumes mtGTP from SCS-GTP to make PEP. PEP is transported
out of the mitochondria where it serves as a high-energy phosphosphate donor to generate
GTP in the cytosol via PEPCK-C (working in the reverse direction). Cytosolic malate
dehydrogenase (cytMDH) then reduces OAA to malate that can return to the matrix to be
oxidized back to OAA by the mitochondrial isoform completing the cycle. [24]. Such a PEP
cycle would only be possible in tissues that contain PEPCK-C, an enzyme that is less widely
expressed compared to PEPCK-M. With the exception of possibly brown fat, reversed flux
(in the direction of OAA synthesis) by PEPCK-C would be counterproductive for
gluconeogenesis and glyceroneogenesis.

Thus, a mitochondrial GTP cycle where SCS-GTP and PEPCK-M interact to generate and
hydrolyze mtGTP respectively appears feasible. Possible functions of the cycle include 1)
transferring the ATP and/or GTP phosphate potential to the cytosol, 2) regenerating GDP to
maintain TCA flux rates, 3) energy consuming futile cycling, and 4) increasing cataplerotic
flux. It is worth noting that tissues with high rates of anaplerosis (e.g. liver, kidney, islets
and heart) express significant levels of PEPCK-M and SCS-GTP. In principle, linking
mtPEP synthesis to mtGTP synthesis may secure an appropriate TCA cycle intermediate
pool before draining carbon into cataplerotic pathways. Regulating TCA cycle pool size is
important or it could grow indefinitely. The mtGTP sensing PEPCK-M-driven PEP cycle
provides a cataplerotic pathway to balance anaplerosis. In general, these are all homeostatic
functions not directly tied to the generation of a metabolic signal or product per se.

4. Glucose “sensing” in the mitochondria of pancreatic β-cells
The canonical model for glucose-stimulated insulin secretion is dependent on the metabolic
generation of ATP. According to this model, glucose is metabolized by glycolysis and the
TCA cycle to generate ATP that increases the cytosolic ATP/ADP ratio that in turn closes
the KATP channel. KATP channel closure depolarizes the plasma membrane and activates
voltage-gated calcium channels. As calcium floods into the cytoplasm, fusion of insulin
granules with the plasma membrane is triggered so that insulin can be released. However, it
has become increasingly more evident that this mechanism cannot explain the entirety of
metabolism-coupled insulin secretion. Notably, mice that have the KATP channel knocked
out still experience glucose-stimulated insulin secretion that is coupled to cytosolic calcium
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oscillations [41, 42]. This, among other observations have lead a number of investigators to
search for alternative mechanisms to link glucose metabolism with insulin release.

4.1. Metabolic cycling in insulin secretion
Without other carbon additions (anaplerosis) or losses (cataplerosis), the TCA cycle
consumes as much OAA as it produces. Pyruvate from glycolysis enters the TCA cycle
either via pyruvate dehydrogenase (PDH) reaction or the pyruvate carboxylase (PC)
reaction. While the oxidative PDH reaction generates acetyl-CoA, the ATP-dependent PC
reaction is anaplerotic and consumes ATP to generate OAA. Considering the canonical view
that mitochondrial ATP stimulates insulin secretion, it was somewhat surprising that the
mitochondria of the pancreatic beta-cells express high levels of PC. This is because
increased glycolytic carbon entry via PC would lead to ATP consumption rather than
production [43-45]. In addition, since the fluxes of PC and PDH are roughly equivalent, then
about half the carbon that could go towards oxidation would be diverted into an anaplerotic/
cataplerotic cycle [46]. How then does PC flux increase insulin secretion if not through ATP
production? NMR isotopomeric analysis of the flux of carbons in β-cell lines has
demonstrated the strongest correlation of insulin secretion with pyruvate cycling and not
with ATP [47-49]. A pyruvate cycle requires reactions that first carboxylate pyruvate
followed by the decarboxylation back to pyruvate through a different reaction. Since β-cells
do not express PEPCK-C [50], it was initially assumed that malic enzyme was the only
metabolic pathway for the decarboxylation of malate into pyruvate. In that regard the
anaplerotic pyruvate cycling has been postulated from multiple laboratories to be a critical
component of the mechanism regulating GSIS [48, 49, 51-58]. Several cycles (Fig. 2) have
been proposed to account for the observed cycling of carbons to pyruvate including (for
review, see Ref. [59]):

1. pyruvate-malate cycling

2. pyruvate-citrate cycling

3. pyruvate-isocitrate cycling (isocitrate-α-ketoglutarate shuttle)*

Each of these cycles increases cytosolic NADPH via the activity of either malic enzyme or
isocitrate dehydrogenase. While an increase in the NADPH/NADP ratio may be important
for glucose-stimulated insulin secretion, interestingly it does not appear to play a role in
amino acid-stimulated insulin secretion [60]. *Of note, the pyruvate-isocitrate cycle is not
actually a true pyruvate cycle, but rather an extramitochondrial loop of the TCA cycle since
it does not require net cycling through pyruvate. In this shuttle citrate or isocitrate exit the
mitochondria and are oxidized by the cytolosic isoform of isocitrate dehydrogenase before
returning to the TCA cycle as α-ketoglutarate but not as pyruvate. The NMR methods used
to identify pyruvate cycling require that there is a net flux of carbon out of the mitochondria
and back into pyruvate and therefore the pyruvate-isocitrate cycle would not be detected by
this method. For this reason has been more appropriately defined as an isocitrate-α-
ketoglutarate shuttle [61]. This does not rule out a role for cytoplasmic metabolism of
isocitrate in insulin secretion, but it does rule out a direct connection between the observed
pyruvate cycling and this pathway. The shuttle could, however, occur in tandem with a true
pyruvate cycle such as the pyruvate-malate or pyruvate citrate cycle. Regardless, all these
pyruvate cycles are all dependent upon malic enzyme whose role in insulin secretion
remains unresolved [52, 53, 58].

It is particularly relevant to note, that at the time NMR isotopomer modeling techniques
were developed to measure pyruvate cycling, malic enzyme was assumed to be the sole path
back to pyruvate (i.e. PEPCK flux of carbons to PEP and then back to pyruvate were
assumed to be absent) [49]. As will be discussed below, this is not the case. Thus, any
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estimate of pyruvate cycling by these techniques includes an indistinguishable component of
PEP cycling. So, in addition to the pyruvate-malate and pyruvate-citrate cycle, the PEP
cycle can also be explained by the high rates of PC flux in β-cells. It will be, therefore,
important in future studies to distinguish the individual malic enzyme and PEPCK
contributions when considering the relationship between pyruvate cycling and insulin
secretion.

4.2. The mitochondrial GTP cycle in energy sensing
As noted above, mtGTP was implicated in insulin secretion by human mutations in GDH.
Insulin secreting cell lines were also noted to have both ATP and GTP-specific isoforms of
SCS in comparable amounts [31]. The possibility that mtGTP synthesis rates might be
directly linked to glucose-stimulated insulin secretion was first demonstrated by individually
silencing the ATP- and GTP-specific isoforms of SCS in insulin secreting cell lines and
rodent islets [9]. The hypothesis was that silencing one isoform would redirect metabolic
flux through the other isoform. This would impact mitochondrial GTP synthesis rates
primarily since ATP synthesis is predominantly performed by oxidative phosphorylation.
Indeed, silencing the two isoforms had the predicted effects on SCS enzyme activities but
did not lead to a reduction in oxygen consumption, NAD(P)H levels or mitochondrial
membrane potential. However, there was a strong association between the rate of mtGTP
synthesis and insulin secretion through a mechanism that involved cytosolic calcium.
Surprisingly cellular mitochondrial ATP synthesis rates, ATP levels and ATP/ADP ratios
did not correlate with GSIS. These data support the idea that β-cells sense glucose
metabolism, at least in part, by the coupling of mtGTP production to the TCA flux rate.
However, given that mtGTP is trapped in the mitochondrial matrix, another mechanism is
needed to communicate the flux signal to the cytosol.

4.3. Anaplerosis meets the mtGTP cycle: The PEP cycle
The enzyme PEPCK-M lies at the intersection between anaplerosis and the mtGTP cycle.
Since PEPCK-M consumes both anaplerotic OAA and mtGTP to produce PEP it could
integrate TCA cycle and anaplerotic metabolism with insulin secretion. Because of its
dependence upon mtGTP, maximal mitochondrial PEP cycle flux is limited to TCA cycle
flux through SCS-GTP. This may in part explain the observation that the best correlation of
“pyruvate” cycling with insulin secretion includes both PC and TCA flux [48]. The
discovery of PEPCK-M in the pancreatic β-cell and identification of its crucial role in
insulin secretion provided the first unique metabolic role for the enzyme [7]. Here, PEPCK-
M plays an important part in the process of metabolic sensing and insulin secretion. Islet
glucose metabolism generates mtGTP by SCS-GTP that is proportional to TCA cycle flux
[9]. While mtGTP is trapped in the mitochondrial matrix due to the lack of a transporter
[29], PEPCK-M can then utilize mtGTP to convert OAA into mtPEP. Mitochondrial PEP
can then escape the mitochondria to cycle back into pyruvate completing a full PEP cycle
(Fig. 2) [7]. Both cellular PEP concentrations as well as flux through PEPCK-M increase at
rates proportional to the glucose concentration. It is a particularly high metabolic flux with
rates as high as 40% of the glycolytic rate in islets. Silencing PEPCK-M prevents insulin
secretion in response to glucose as well as reduces PEPCK-M flux.

Considering that glycolysis also produces PEP, it is still unclear how PEP derived from the
mitochondria goes on to stimulate insulin release in the cytosol. One may speculate that
mtPEP is the molecule that transfers the “energy-sensing” signal from the mitochondria into
the cytosol where it can be used for other signaling pathways (by transferring its phospho
group to generate ATP or GTP) or through other biosynthetic processes. Indeed, PEPCK-M
synthesis of PEP in the mitochondria increases PEP export from the mitochondria [62]. This
transport is carrier-dependent and occurs primarily by the CIC or in exchange for ADP by
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the adenine nucleotide transporter (ANT) in the inner mitochondrial membrane [63]. A PEP/
pyruvate transporter has also been postulated [64]. Since the synthesis of mtGTP depends on
substrate flux, biosynthetic processes in the cytosol using mitochondrial derived PEP would
be also dependent on substrate availability. However, the export of mtPEP into the cytosol
also affects the cellular energy balance via regulation of mitochondrial Ca2+ levels that
control TCA cycle flux rates. Mitochondrial free Ca2+ activates PDH, isocitrate
dehydrogenase and α-ketoglutarate dehydrogenase [65]. Given that the mitochondrial matrix
buffers intramitochondrial Ca2+ by forming an insoluble calcium-phosphate complex that
depends on the accompanying Pi accumulation, the release of intramitochondrial free Ca2+

is a function of intramitochondrial Pi and ATP levels as well as PEP [66]. Studies show that
PEP regulates both mitochondrial calcium transport and ATP/ADP exchange [57, 66-73].

There could be distinct advantages to having a metabolic signal dependent upon both
anaplerotic and oxidative metabolism. For instance, a dependence on anaplerosis would
prevent fatty acid oxidation by itself from contributing solely to insulin secretion.
Dependence on mtGTP would limit the maximal mtPEP production rate to the TCA cycle
rate and ensure ample ATP and TCA intermediates to maintain normal mitochondrial and
cellular function. In the absence of activation of GDH by leucine from a protein meal,
mtGTP would prevent glutamate, the most abundant intracellular amino acid, from
stimulating insulin secretion inappropriately. Thus, substrate level synthesis of mtGTP by
SCS-GTP provides energy for PEP synthesis in the mitochondrial matrix by PEPCK-M and
thereby link PC flux with TCA cycle flux to stimulate insulin release [7].

5. PEPCK-M
PEPCK was first found in chicken liver (where only the mitochondrial isoform is present)
and believed to fix carbon dioxide by the conversion of pyruvate into OAA. This reaction
was called Wood-Werkman pathway [74]. The first published reference of PEPCK occurred
in 1953 by Utter and Kurahashi [75] with the title, “Mechanism of Action of Oxalacetate
Carboxylase from Liver.” Later the enzyme was given the name phosphoenolpyruvate
carboxylase [76]. Interestingly, the first and only isolated isoform of PEPCK was PEPCK-M
from chicken liver [77] but later most studies have focused upon PEPCK-C.

5.1. PEPCK-M expression and activity
Humans express PEPCK-M in most tissues but especially in liver and kidney [78]. The
pancreas also expresses PEPCK-M but unlike liver and kidney, PEPCK-C is not expressed
[50, 79-81]. Much emphasis has been placed on the relative enzyme activities of the PEPCK
isoforms as a reflection of their contribution to gluconeogenesis. Human livers show equal
distribution of PEPCK activity, whereas in the liver of chickens almost all PEPCK activity is
attributed to PEPCK-M but in the kidney of chickens both isoforms are equally active.
Guinea pig liver and kidney has about 80% PEPCK-M activity. While perhaps the most
cited references suggest that the rat and the mouse have a PEPCK-C/PEPCK-M ratio of 9 to
1 [76], some authors [82-85] detected more than 10% PEPCK-M activity in rodent liver.
These discrepancies may be due to the differences in the enzymatic activity assay used
(Table 1 and reviewed in [7]).

5.2. PEPCK gene expression at different stages of development
Interestingly, PEPCK-C and PEPCK-M show different expression profiles during
development [86, 87] and also gluconeogenic activity in mammal liver. Gluconeogenesis is
absent before birth as glucose is provided by the mother [88], and is thought to start with
birth [89] as a result of decreasing plasma blood glucose levels and subsequent hormonal
changes, namely a decrease in insulin and increase in cAMP, glucagon as well as
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epinephrine [90, 91]. The prenatal mammalian liver does not express PEPCK-C, thus
PEPCK-M is the only PEPCK isoform present before birth [92]. After birth and postnatal
development the liver undergoes major metabolic alterations increasing PEPCK-C
transcription and protein maturation [93-95]. In contrast to liver, fetal kidney expresses
PEPCK-C, which significantly rises after birth [96-98]. Glucocorticoids and acid/base status
are also stimuli for postnatal PEPCK-C gene expression in kidney [99].

5.3. The PEPCK gene
Mammals have two different nuclear genes for the two PEPCK isoforms. PCK1 encodes
PEPCK-C and resides on human chromosome 20q13.31. PCK2 encodes PEPCK-M and
resides on human chromosome 14q11.2 [100]. The human genes for PEPCK-M and
PEPCK-C contain the same genetic organization: 10 exons and 9 introns, whereas the length
of PEPCK-C (5345 bp) is smaller than PEPCK-M (9839 bp), due to expanded intronic
length in PEPCK-M [78, 101]. However, the PEPCK-C and PEPCK-M proteins have a
similar molecular weight (69,289 for rat PEPCK-C and 69,522 for chicken PEPCK-M). The
human proteins are composed of 622 (PEPCK-C) and 640 (PEPCK-M) amino acids,
respectively [76]. Both PEPCKs share 68% identity as well as 82% similarity in their
sequence [76, 78, 100].

5.4. The PEPCK protein
While GTP-dependent (in higher eukaryotic species) and ATP-dependent PEPCKs (in
bacteria, yeast, C-4 plants) share little sequence homology (< 20%), the active sites and
structures are reasonably conserved and suggests an important similarity in function and
regulation via enzyme confirmation [102]. Mammal GTP-dependent PEPCK isoforms have
nearly identical protein folds [103]. The protein folds as a single domain with an N-terminal
lobe and a C-terminal lobe forming an active site that carries out the decarboxylation/
carboxylation and phosphoryl transfer half-reactions as well as stabilization of the enolate
intermediate [102-109]. The active sites involve reactive cysteine residues located in a P-
loop (phosphate-binding loop/kinase-1a motif) [103]. The specific modification of a single
cysteine residue inactivates the enzyme [110, 111], which is Cys288 in rat PEPCK-C [103,
111] and the homologous cysteine in chicken PEPCK-M is Cys307 [107]. Oxidative state,
cation redistribution, and/or pH influence PEPCK function via P-loop confirmation and
therefore suggest that different metabolic states lead to loss or gain of function. Given that,
PEPCK contains sulfhydryl groups and its activity depends on critical cysteine residues,
PEPCK likely requires another protein to maintain its redox state [76]. A class of proteins
termed ferroactivators is one possibility as they enable Fe2+ to stimulate PEPCK-C [112,
113]. These ferroactivators were subsequently identified as catalase and glutathione
peroxidase [114, 115]. In bovine erythrocytes a similar ferroactivator protein, a green
hemoprotein, was purified [116]. Another PEPCK-C stabilizing protein of 29,000 kDa, p29,
was isolated and supports Mg2+-induced activation. This protein was later identified as
phosphoglycerate mutase and is highly expressed in the liver [117, 118].

PEPCK-M binds a single divalent cation in tetrahedral coordination in the absence of
substrates with Mn2+ being the most activating cation. In the presence of nucleotide an
additional cation is bound in form of a cation-nucleotide complex [102]. In the fully ligated
state both metal ions are octahedrally coordinated [103]. No large domain movements or
conformational changes occur upon binding of GTP [103]. During the catalytic cycle,
conformational changes occur at the active site. The most prevalent mobile feature is a 10-
residue Ω-loop domain, which functions like an active site lid. Closure of the lid reduces the
active site region between the N- and C-terminal lobes and the P-loop, and shifts the
location of the bound substrates [105]. The close lid confirmation stabilizes and sequesters
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the reactive enolate intermediate, places the substrates in the correct position, minimizes
non-specific reactions and ensures efficient PEPCK-mediated catalysis [102, 104].

5.5. The PEPCK enzyme – catalytic properties
PEPCK-C and PEPCK-M share similar kinetic characteristics and Michaelis constants for
their substrates and products [119] as well as similar pH optima at around 7 [120]. Both
PEPCKs are active as a monomer and catalyze the same reaction, namely decarboxylating
OAA with the concomitant transfer of the γ-phosphate of GTP (or ITP): OAA + GTP →
PEP + GDP + CO2. PEP formation is the preferred direction of both enzymes [76]. The only
reported substrates for both PEPCKs are GTP (or GDP) and ITP (or IDP) [76, 121].
Dissociation constants of PEPCK-C, measured by isothermal titration calorimetry, are 0.5
μM for GTP, 4 μM for ITP and for the other nucleotides >100 μM [103].

In addition, both isoforms require two divalent cations: Mg2+ and Mn2+. Other divalent
metal ions such as Fe2+, Co2+, Zn2+ and Cd2+ stimulate PEPCK, but to a lesser extent [107,
122]. Noteworthy, PEP carboxylation by PEPCK-C absolutely requires Mn2+, whereas
Mg2+ can replace it for OAA decarboxylation [123]. Ash et al. [124] proposed that Mg2+

binds GTP and builds the metal nucleotide substrate, whereas Mn2+ associates with PEPCK-
C serving as an activator, although Mg2+ can substitute. The Mg-GTP complex binds and
activates PEPCK-C and then decarboxylates OAA ligated to the Mn2+ site of PEPCK-C.
The Mg-GTP complex phosphorylates the enolate of pyruvate to PEP [124]. In contrast to
PEPCK-C, Mn2+ is the best activator for PEPCK-M in chicken [125], whereas the
selectivity of PEPCK-M for Mn2+ was 1000-fold greater than for Mg2+ [126]. Further Mg2+

has been noted to reduce PEPCK-M activity [80]. Both enzymes can randomly bind their
substrate, although PEPCK-M usually binds GTP before OAA and has a slow off-rate [107,
122]. Once GTP is bound, it has a high likelihood of progressing to product (PEP, CO2, and
GDP) [76]. Whether mitochondrial OAA or mtGTP are rate-determining for PEPCK-M is
unclear, but the tight association between mtGTP synthesis and PEP production would
suggest mtGTP is rate-limiting [127].

5.6. Regulation of PEPCK-M enzyme expression and activity
The two PEPCK isoforms are regulated differently. While PEPCK-C expression can be
robustly stimulated by glucagon and suppressed by insulin, PEPCK-M is not known to be
under such hormonal control and appears to be constitutively expressed [76, 78]. Although
sequence analysis of the PEPCK-M promoter region revealed several potential regulatory
elements, including SREBP, CREB, C/EBP, AP-1, AP-2, and SRY elements [128]. Indeed,
hormonal treatment of chicken hepatoma cells does not affect PEPCK-M mRNA expression
[76, 129]. Due to the mitochondrial location of PEPCK-M, it is a weaker candidate for rapid
transcriptional regulation, and further, no post-translational modifications or allosteric
effectors are known. Recently, posttranslational modification of PEPCK to regulate its
activity has been suggested for PEPCK-C. Acetylation of PEPCK-C determines its stability
as it targets the enzyme for ubiquitylation and subsequent proteasomal degradation, hence
deactivates PEPCK-C [130-132]. The regulatory significance of acetylation of the enzyme
remains to be established. Moreover, PEPCK-M mRNA half-life is relative long, namely
~50 hours, while the half-life of PEPCK-C mRNA is short (~30 min) and transcriptional
changes that affect PEPCK-C mRNA levels occur within 1-2 hours [76]. During the shift to
lactation, both PEPCK isoform activities increase in the mammary gland – a tissue with no
known gluconeogenic activity, where they may support fat deposition (glyceroneogenesis)
and subsequent milk production during lactation. During this time PEPCK-C activity (~11-
fold) and expression increase, but in contrast to a dramatic increase in PEPCK-M activity
(~43-fold) there are no changes in PEPCK-M expression [133, 134]. Thus at least for
PEPCK-M, activity levels do not necessarily parallel changes in gene expression. However,
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PEPCK-M expression may change under pathological conditions as observed in the diabetes
model of the chronically glucose-infused rat [135]. Diabetic rats show elevated plasma
insulin and glucagon levels as well as hepatic glucose production accompanied with raised
PEPCK-M but decreased PEPCK-C expression. Whether PEPCK-M expression is altered by
the combination of insulin and glucagon or some other signal remains to be clarified.

Recent work suggests a possible regulatory mechanism of PEPCK-M that operates at the
enzyme level by transitioning between inactive tetrahedral and active octahedral
coordination geometry, and represents a previously unappreciated mechanism of regulation
[108]. Unlike PEPCK-C, the predominant conformation of the P-loop is the tetrahedral
coordination of the reactive cysteine residue (Cys307) to Mn2+. This loop confirmation
stabilizes the hyper-reactive cysteine, prevents nucleotide-binding and represents a
catalytically incompetent state of the enzyme [107]. Further, pH-rate studies propose that the
protonation of this cysteine residue is required for optimal interaction of PEPCK-M with its
substrates [126]. Catalytic studies revealed that Zn2+ inhibits PEPCK-M activity in the
direction of OAA formation because it favors sulfhydryl ligands and stabilizes the Cys307-
coordinated tetrahedral geometry. Further, in vitro PEPCK-M activity studies require β-
mercaptoethanol (β-ME), suggesting that the inactive conformation is stabilized without, and
diminished with β-mercaptoethanol [111]. Transcriptional control tightly mediates PEPCK-
C expression, and since the PEPCK-C protein has a half-life of six hours [136], this
mechanism of conformational regulation could also provide a mechanism of immediate
regulation of PEPCK-C. Indeed, the requirement of reducing agents in enzymatic assays,
such as dithiothreitol (DTT) or β-ME was also noted for PEPCK-C [119]. Importantly, the
optimal pH for both PEPCK reactions depends on the divalent metal ion utilized because of
subtle different secondary and tertiary enzyme structure at different proton concentrations
[107, 119, 125].

In summary, since PEPCK activity relies on the availability of divalent metals as well as
OAA and GTP, PEPCK seems to be prone to substrate regulation. Moreover, energy
metabolism, redox state, ATP/ADP ratio as well as TCA cycle flux are other factors
regulating PEPCK activity [137]. Given the lack of known regulators of PEPCK-M
expression, its enzymatic flux is consequently much more susceptible to vary based on
product and substrate concentrations. Hormones, such as insulin, glucagon, catecholamines
and cortisol may all indirectly regulate PEPCK-M via controlling gluconeogenic substrate
availability.

6. Is there a role of PEPCK-M in gluconeogenesis?
Presently, PEPCK-C is generally believed to account for virtually all the gluconeogenesis
from mitochondrial-derived precursors, at least in rodents [138]. PEPCK-C is often
considered as the only isoform and it is even frequently abbreviated simply as PEPCK.
However, as noted above, it is less appreciated that there are actually two distinct isoforms
that reside in either the cytosol or the mitochondria [8]. The cytosolic isoform has attracted
the majority of attention despite PEPCK-M being the first isoform discovered and 40% of
the cellular PEP can be found in the mitochondrial fraction [139-142].

PEPCK-C is well-known for its role in gluconeogenesis and its function has been
extensively studied and reviewed [76, 86, 138, 143, 144]. Apart from gluconeogenesis the
following functions has been suggested: glyceroneogenesis, cataplerosis/anaplerosis, amino
acid synthesis, PEP/pyruvate cycling. Similar functions of both PEPCK enzymes are
suggested since they both catalyze the same reaction [76]. The common denominator of both
PEPCK enzymes is PEP as a product that may be utilized for biochemical processes. PEP is
needed for glucose production but also serves for triglyceride, amino acids and nucleic acid
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synthesis. The source of PEP for these synthetic processes may be dependent on the tissue,
metabolic condition, energy status and precursor availability [100]. While PEPCK-C
function is remarkably well studied, the biology of PEPCK-M is poorly investigated.
PEPCK-M is highly conserved in all eukaryotes studied, suggesting PEPCK-M an important
biological role [138].

An inferior role for PEPCK-M in gluconeogenesis has primarily been supported by in vitro
studies [145-148]. Deletion and overexpression studies of PEPCK-C in the liver confirmed a
role of PEPCK-C in gluconeogenesis and glyceroneogenesis [137, 145-147, 149, 150].
Surprisingly, though, several genetic models of PEPCK-C deletion maintain normal fasting
glucose and glucose turnover rates. This suggests that other mechanism(s) must exist that
can support glucose production [146, 147]. Notably, there is no correlation between PEPCK-
C mRNA, protein, or activity in humans with diabetes [151]. The current dogma of PEPCK-
C as sole regulator of cataplerotic PEP production may need to be recalibrated. Here, we
will consider the possibility that PEPCK-M has been overlooked and might have a potential
role in gluconeogenesis.

6.1. A hint from PEPCK-C knockout animals
In support for an exclusive role of PEPCK-C in glucose production, homozygous whole-
body PEPCK-C knockout mice die within 2-3 days of birth that is associated with
hypoglycemia [146, 147]. However, these pups could not be rescued by exogenous glucose
and had normal plasma lactate. Interestingly, deletion of glucose-6-phosphatase in mice did
not cause death until the age of 10 days. These mice were profoundly hypoglycemic due to
diminished gluconeogenesis, but, in contrast, the mice could be rescued by glucose [152].
Noteworthy, given that PEPCK-C is dramatically induced at time of birth [89], it may be
possible that these PEPCK-C null mice could survive once they made it through the neonatal
phase (for example as a cre/lox mice with 80% reduction at birth and a 90-100 % reduction
later on). Neonatal death of homozygous whole-body PEPCK-C knockout animals may
indicate other important functions of PEPCK-C.

Based on current models of gluconeogenesis, one would predict hepatic PEPCK-C
deficiency would cause hypoglycemia, in particular during states of negative energy balance
such as fasting. Surprisingly, heterozygous mice lacking hepatic PEPCK-C
(PCK1lox/lox Alb-Cre) remain euglycemic under fed and fasted conditions, although these
mice show evidence of hepatic steatosis, insulin resistance and exercise intolerance
[145-147]. Even with less than 10% of whole body PEPCK-C activity (a level comparable to
endogenous PEPCK-M) mice have normal concentrations and turnover rates of glucose,
lactate, and glycerol in vivo [146, 147]. In this setting, the absolute rates of PEP production
necessary for gluconeogenesis are not significantly reduced [148]. Only, when PEPCK-C is
completely eliminated does a significant reduction in PEP synthesis occur in perfused livers
[148]. This degree of PEPCK-C suppression does not occur in vivo and suggests other
physiologic mechanisms normally regulate PEPCK flux besides just PEPCK-C expression.
In order to explain the observed euglycemia in PEPCK-C knockout animals, extra-hepatic
gluconeogenesis was suggested to compensate, whereas the alternative hepatic pathway to
glucose production was ruled out due to the assumed lack of PEPCK-M activity in rodent
liver [146]. This is supported by the observation that renal gluconeogenesis has an enormous
capacity and can completely compensate during the extrahepatic phase of liver transplants
[13, 153-155]. Intriguingly, liver-specific PEPCK-C deficient mice develop fatty livers,
have reduced TCA cycle flux, and accumulate TCA cycle intermediates indicating that they
are indeed PEPCK-C deficient [137, 146, 147, 156].

Both PEPCK isoforms depend on normal mitochondrial function to generate energy and
gluconeogenic precursors. However, PEPCK-C knockout animals have varying severity of
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mitochondrial dysfunction [145, 148, 156]. Notably, the degree of PEPCK-C deficiency in
liver-specific knockout mice correlates with the extent of the TCA cycle defect. Complete
PEPCK-C loss impairs mitochondrial function with a 20% reduction in O2 consumption and
85% reduction in the TCA cycle flux [148]. Consequently, liver-specific PEPCK-C
knockout mice accumulate mitochondrial intermediates (including citrate, succinate,
fumarate, malate and aspartate), have a high mitochondrial NADH/NAD+ ratio and severe
fatty livers (but normal malonyl CoA). In addition, these mice show changes in expression
of metabolic and mitochondrial genes. Recently, these mice have been used to confirm a
role of PEPCK-M in gluconeogenesis [145]. However, a 100-fold overexpression of
PEPCK-M in livers of these mice did not have any detectable consequence in vivo and just a
marginal improvement (~8%) of glucose production from PEP in perfused livers. The
interpretation was that PEPCK-M lacks a primary role and only supports PEPCK-C as
primary determinant of gluconeogenesis. Another interpretation is that rodent livers do not
actually lack PEPCK-M (table 1) but rather the normal levels of PEPCK-M cannot work in
the setting of severely impaired mitochondrial function. Of note, β-cells have equally high
levels of anaplerotic and cataplerotic metabolism compared to the liver. However, β-cells do
not express PEPCK-C [7], and still have properly functioning mitochondria. Thus, there
must be something unique to hepatic PEPCK-C null mice causing mitochondrial
dysfunction. Accordingly, it is difficult to conclude if changes in gluconeogenesis are
caused by the loss of PEPCK-C enzymatic activity per se or because of other metabolic
deficiencies. However, in contrast to the perfused livers from these mice, in vivo basal
gluconeogenesis is not reduced in different PEPCK-C knockout animals. Regardless, given
the dependence of both isoforms on normal mitochondrial function, results from PEPCK-C
knockouts do not preclude a significant role for PEPCK-M.

Besides the general view that PEPCK-M is not sufficiently active in rodent liver, a few
publications (Table 1) [82-85, 135] suggest contrary and would challenge the above
mentioned studies [137, 146, 147]. Surprisingly, in the livers of chronically glucose-infused
rats, a model of Type-2 diabetes with inappropriate increases in glucagon and insulin,
PEPCK-C was suppressed but PEPCK-M increased in accordance with endogenous glucose
production rates [135]. These results point towards an undiscovered role for PEPCK-M in
gluconeogenesis [146, 147]. Finally, PEPCK-C and PEPCK-M may operate in parallel, thus
PEPCK-M may compensate for PEPCK-C knockout animals as long as mitochondrial
function remains intact. Taken together, there does appear to be a potential role for PEPCK-
M in gluconeogenesis, but inactivation or inhibition of the mitochondrial isoform would
need to be performed to solidify its role.

6.2. Could PEPCK-M participate in Gluconeogenesis?
Given the possibility that PEPCK-M's activity in liver may have been underestimated, is
there a possibility that it has a role in gluconeogenesis? Unlike PEPCK-C, PEPCK-M is
constitutively expressed, hence could provide a continuous supply of PEP. PEPCK-M is not
inducible by glucagon [157] but this also does not rule out a gluconeogenic role. Both
PEPCK isoforms convert OAA to PEP [158]. However, a potential limitation of the PEPCK-
M pathway is its dependency on mtGTP. One TCA cycle turn makes only one mtGTP.
Unless there is an alternative source of mtGTP during states of high demand, SCS-GTP flux
would set an upper limit to mtPEP production. Presently the capacity of PEPCK-M to
accommodate mtGTP from the TCA cycle in rodent liver is unknown. In contrast, PEPCK-C
is not dependent on mtGTP and in principle would have the capacity to produce extra PEP
albeit at higher energetic cost (Fig. 5). So while PEPCK-M may support basal needs, during
times of high glucose demand, collaboration between the isoforms may likely be required.
Thus, a system with two PEPCKs would provide an increased degree of metabolic
flexibility.
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In addition to changes in protein expression induced by hormonal signaling, gluconeogenic
flux is potentially regulated turning on and off a futile PEP cycle
(pyruvate→OAA→PEP→pyruvate) [4, 5, 7, 159]. Here, this anaplerotic/cataplerotic cycling
could operate in three ways: 1) redirecting anaplerotic substrates to pyruvate (including
substrates that enter the TCA cycle as 4- and 5-carbons such as aspartate, glutamate and
glutamine) and 2) consuming ATP that could otherwise be used for gluconeogenesis to
buffer substrate flux and 3) providing additional amounts of metabolic cycling to fine tune
metabolic flux while ensuring adequate TCA cycle intermediates [4].

6.3. Gluconeogenic Substrates
Generally, any metabolite that enters the TCA cycle to build OAA can contribute to glucose
production once converted to PEP (Fig. 3). Glucose can be synthesized de novo from
mitochondrial-dependent substrates (e.g., lactate, pyruvate, glutamine, alanine, and
propionate) or from cytosolic substrates (e.g., glycerol and fructose). All of the
mitochondrial gluconeogenic precursors have an absolute requirement for the PEPCK
reaction. During each turn of the TCA cycle, citrate synthase consumes as much OAA as is
produced by malate dehydrogenase (MDH). Balanced carbon outflow into synthetic
pathways (cataplerosis) requires compensation by carbon inflow (anaplerosis) into the TCA
cycle pool. Thus, the carbons of acetyl-CoA generated by lipolysis or PDH cannot directly
contribute to gluconeogenesis without an additional source of OAA. Unlike fatty acids from
triglyceride breakdown, glycerol can contribute to glucose production and enters
gluconeogenesis (or glycolysis) via glyceraldehyde-3-phosphate. Pyruvate, lactate, and
alanine become anaplerotic substrates when they are carboxylated into OAA by PC. The
amino acids alanine and glutamine must first be deaminated in order for them to enter the
TCA cycle. Since aminotransferase reactions require a net acceptor of the amide nitrogen,
amino acids must be either oxidatively deaminated by GDH to release ammonia or
processed in the ornithine cycle to generate urea. Methionine, threonine and the branched
chain amino acids are added to the TCA cycle through metabolism to propionyl-CoA.
Similarly the final γ oxidation of the occasional odd-chain fatty acids also generates
propionyl-CoA. Propionyl-CoA then must be carboxylated by the biotin-dependent enzyme
propionyl-CoA carboxylase before it can enter the TCA cycle as succinyl-CoA [20]. Lactate
forms in the muscle during anaerobic glycolysis and enters the gluconeogenic pathway via
pyruvate and is the main gluconeogenic precursor in the kidney and liver. Noteworthy, the
kidney has been suggested to prefer glutamine [160] while the liver may favor alanine as
gluconeogenic precursors [13].

Each mitochondrial substrate has its own advantages and disadvantages. Based on turnover
rates, lactate produced by the Cori cycle is quantitatively the most important gluconeogenic
substrate. Given that glucose is the predominant source of lactate, once glycogen stores are
depleted, lactate cannot make a net contribution to the glucose pool in the setting of ongoing
glucose oxidation. Pyruvate, too, is derived primarily from glucose, but because of rapid
equilibration across lactate dehydrogenase (LDH) is about one tenth the concentration of
circulating lactate. Alanine is a significant gluconeogenic contributor, but about half the
carbon in the glucose-alanine cycle also comes from glucose itself with the remaining
coming from amino acids from protein breakdown [12, 15]. Glutamine is the most
concentrated circulating amino acid and only a small fraction contains carbons from glucose
making it a net contributor to the glucose pool. Some propionate comes from the breakdown
of certain amino acids and odd-chain fatty acids, but its significant contribution to
gluconeogenesis comes from the gut flora following meals and is an especially important
source of glucose for ruminants.
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Each mitochondrial substrate may favor one or the other PEPCK isoform in order to provide
PEP while maintaining a favorable cytosolic redox. Ultimately, all mitochondrial substrates
entering gluconeogenesis oxidize NADH at the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) step. If glucose is made from lactate, NADH for GAPDH is produced in the
cytosol by LDH [161]. Therefore, when the substrate for gluconeogenesis is lactate,
PEPCK-M is favored since a shift of reducing equivalents from the mitochondria to the
cytosol is not required (Fig. 4) [78]. The study from Gstraunthler et al. [162] identifies
lactate as a likely substrate for PEPCK-M. Cells from pig kidney cortex (LLC-PK1F+)
expressing both PEPCK isoforms grow in a medium containing pyruvate and lactate,
whereas cells from opossum kidney (OKGNG+) that express only PEPCK-M could be only
maintained in a medium with lactate. This may be explained by the requirement of pyruvate,
propionate or alanine to generate cytosolic NADH. In this case, mitochondrial-derived OAA
was proposed to be converted to malate in the matrix and shuttled to the cytosol where
cytMDH would make both NADH and OAA [76]. Subsequently, PEPCK-C metabolizes
cytosolic OAA to PEP, leaving NADH for GAPDH step of gluconeogenesis [76]. Special
consideration for alanine depends on whether its amide nitrogen is eventually disposed as
ammonia or as urea. While ammonia release (via transamination of α-ketoglutarate into
glutamate followed by GDH metabolism) generates mitochondrial NAD(P)H, urea
metabolism could increase NADH in the cytosol or mitochondria depending on where the
MDH reaction needed for the ornithine cycle occurs. Glutamine catabolism may be
advantageous during a prolonged fast as it provides the energy, carbons, as well as mtGTP
for efficient mtPEP formation. Again, the mechanism of ammonia disposal may determine
whether PEPCK-C or PEPCK-M is favored.

6.4. PEPCK-M is the more direct pathway for PEP production
As noted, lactate is quantitatively the most important mitochondrial gluconeogenic substrate.
Lactate is continuously produced (even in times of hyper- or hypoinsulinemia) and lactate
turnover increases during euglycemic hyperinsulinemic clamps. Since PEPCK-C is
suppressed by insulin but PEPCK-M is constitutively expressed, then the mitochondrial
isoform is well poised to continuously produce PEP from lactate. In contrast, the release of
amino acids into the blood from skeletal muscle is variable and therefore requires the
hormone-regulateable adaptation of PEPCK-C gluconeogenesis [78]. Thus, it has been
suggested that PEPCK-M is the enzyme for gluconeogenesis from lactate while PEPCK-C is
preferred for glucose production from pyruvate and amino acids depending on supply and
demand [163]. Taken together, in terms of energetics, enzymatics, and transport, PEPCK-M
metabolism of lactate is a more efficient pathway from mitochondrial OAA to cytosolic PEP
(Fig. 4). Indeed, a mitochondrial PEPCK location makes sense since the initial step of OAA
formation also occurs in the mitochondria. In principle, there are four possible pathways to
generate PEP in the cytosol [76] (Fig. 4 and Fig. 5):

1. PEPCK-M pathway (conversion to PEP via PEPCK-M and SCS-GTP)

2. PEPCK-C/aspartate pathway (transamination to aspartate by AAT)

3. PEPCK-C/malate pathway (reduction to malate via MDH)

4. PEPCK-C/citrate pathway (conversion to citrate by citrate synthase)

In theory, a PEPCK-M pathway (Fig. 5a) would need just two enzymes (SCS-GTP and
PEPCK-M) in order to generate mtPEP and is independent of the need for oxidative
phosphorylation. The transport of mtPEP into the cytosol via the CIC then occurs with the
lowest cumulative energetic cost [7]. In contrast, to deliver OAA in the cytosol for PEPCK-
C, the OAA first must be transferred out of the mitochondria. Since OAA lacks a transporter
then it is either transaminated to aspartate or reduced to malate.
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The PEPCK-C/aspartate pathway (Fig. 5b) is more complex and involves four enzymes,
electron transport and oxidative phosphorylation. OAA is first transaminated to aspartate in
the mitochondria and subsequently transported into the cytosol where it is transaminated
back into OAA via cytosolic aspartate aminotransferase. Continuous transport of glutamate
into, and α-ketoglutarate out of the mitochondrion is required for the transamination reaction
and therefore the process is restricted by the availability of these other substrates [20]. Four
transporters are involved to obtain cytosolic PEP from mitochondrial OAA. This raises the
energetic cost to 40% because two additional protons must be delivered to the matrix
coupled to the transport of glutamate and ATP.

The PEPCK-C/malate pathway (Fig. 5c) utilizes mtMDH to reduce OAA to malate and is
favored by a highly reduced matrix. Malate shuttles to the cytosol where cytMDH oxidizes
malate and uses NAD+ to generate OAA and an excess NADH. The PEPCK-C/malate
pathway then requires the glycerol-3-phosphate dehydrogenase shuttle in order to balance
cytosolic redox. Altogether, it needs four enzymes, energetic expensive shuttles as well as
the electron transport and oxidative phosphorylation for a net cost of >60% more energy.

The PEPCK-C/citrate pathway (Fig. 5d), if solely used to generate PEP, is energetically the
most expensive pathway to generate PEP in the cytosol. It requires four enzyme reactions
(citrate synthase, ATP-citrate lyase, NDPK, PEPCK-C), two transporters (DIC, ANT),
electron transport and oxidative phosphorylation. Further, it would cost two pyruvates and
two ATPs (for PC and ATP-citrate lyase reaction). Also, pyruvate is not fully oxidized in the
TCA cycle and carbons are instead transferred to the cytosol to form OAA and acetyl-CoA.
Thus, considering the loss of acetyl-CoA oxidation, then the energetic cost for this pathway
is very expensive (~49 protons). Citrate export favors lipid synthesis rather than
gluconeogenesis as it generates acetyl-CoA and OAA in the cytosol. Formation of NADPH
by malic enzyme could then energize lipid synthesis, but would deprive the cytosol of PEP
that could be used for gluconeogenesis.

In summary, the PEPCK-M pathway is in theory the most direct pathway for PEP
production in the cytosol. It offers significant metabolic advantages over any described
PEPCK-C pathways. These include greater energy efficiency and less dependence upon
oxygen consumption - qualities especially favorable for fasting and exercise. This efficiency
may explain why PEPCK-M is the only isoform found in the livers of birds of flight that are
highly dependent on Cori cycling [163, 164]. At this time, PEPCK-M has not been directly
evaluated experimentally as a potential contributor to gluconeogenesis. Here we raise the
interesting possibility that it may be more significant than previously considered.

7. PEPCK-M deficiency
Alterations in PEPCK-C gene expression and its metabolic effect have been intensively
studied in animal models [24, 137, 146, 147, 165-168]. To date there has been no animal
model studied with altered PEPCK-M expression. Human cases of PEPCK-M deficiency
were initially reported in some children that died prematurely due to liver failure. Analysis
of fibroblasts (which only have PEPCK-M) detected the defect and the residual PEPCK
activities were 18 % and 16 % respectively [169-171]. The deficiency was observed with
failure to thrive, fasting hypoglycaemia, glucagon insensitivity, lactic acidaemia, hypotonia,
hepatomegaly and liver function impairment. Autopsy revealed massive fat deposition in
liver and kidneys. However, a later study suggested that the lowered PEPCK-M activity was
not the primary defect and that mitochondrial DNA depletion was to blame [172]. The
reports of Vidnes and Sovik in 1976 [173-175] describe the phenotype of a boy whose liver
lacked PEPCK-C and suffered from persistent hypoglycemia and died in his early
childhood. PEPCK-C activity was virtually zero [175]. Interestingly, total hepatic PEPCK
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activity was normal, and closer investigation revealed that the boy did not have primary
PEPCK-C deficiency but rather suppressed PEPCK-C expression due to hyperinsulinema.
Predominant α-cells over β-cells and hyperplasia of the islets of the endocrine pancreas
suggest the possibility of a hormonal defect rather than PEPCK-C deficiency. Noteworthy, it
is uncertain whether a primary gene defect exists or any other defect regulating PEPCK
activity (e.g. hormones, another PEPCK regulating protein). In addition, the performed
PEPCK activity assays did not distinguish between the two isoforms. However, total
PEPCK deficiency (low PEPCK-C plus PEPCK-M activity) is likely to cause severe
hypoglycemia and early death [169, 176, 177].

8. Summary and concluding remarks
Since the discovery of PEPCK, the knowledge of its characteristics and biological role has
increased tremendously. The enzyme is not exclusively involved in glucose production but
may have broader metabolic functions in “balancing” the TCA cycle. Indeed, it plays an
important role in cataplerosis of TCA cycle intermediates and is required for
gluconeogenesis and glyceroneogenesis. In the past, PEPCK (mainly PEPCK-C) was shown
to play a pivotal role as a regulator of both carbohydrate and lipid metabolism. Prior to the
cloning of the genes of each isoform, it was not appreciated that each PEPCK isoform
comes from two distinct nuclear genes, from different chromosomes with different
sequences and catalytic properties. The cytosolic isoform has had considerable attention in
the livers of most studied animals – the rat and the mouse – because of reports of
insignificant PEPCK-M [8, 76, 89, 137, 146, 147, 178-181]. This conclusion, as well as
strong hormonal transcriptional regulation led to considerable early enthusiasm primarily for
PEPCK-C.

Nevertheless, mammalian livers express two PEPCK isoforms (PEPCK-C and PEPCK-M).
Both catalyze the metabolism of OAA into PEP using GTP as a phosphodonor [76]. As the
two isoforms are highly homologous and depend upon GTP hydrolysis, the function, as well
as regulation, of PEPCK-M has been assumed to be similar to PEPCK-C [100, 138]. At the
present time, the metabolic contribution of PEPCK-M to gluconeogenesis and
glyceroneogenesis remains unknown. Upon reconsideration, PEPCK-C may be favored to
convert pyruvate and amino acids to glucose during fasting while PEPCK-M may favor
lactate from the Cori cycle [76]. Another way to interpret the lack of hormonal regulation of
PEPCK-M is that it is constitutively active, unlike PEPCK-C that disappears when insulin is
elevated. It is tempting to speculate that PEPCK-M provides the foundation of
gluconeogenesis while PEPCK-C contributes additional capacity to augment glucose
production in times of need.

The regulation of PEPCK-M may be explained not by expression but rather by its
dependency upon mtGTP. It is well disposed to regulate cataplerosis when there is adequate
TCA flux. In pancreatic β-cells this mitochondrial metabolic flux pathway couples TCA
cycle flux with anaplerotic flux to trigger insulin secretion. In the gluconeogenic tissues we
raise the hypothesis that a similar pathway exists. Thus the mtGTP/PEPCK-M pathway may
be a significant determinant of endogenous glucose production that is not turned off by
hormonal regulation. Such “unresponsiveness” may ensure a continuous level of PEP
synthesis. In the background of “basal” PEPCK-M activity the hormonally regulated
PEPCK-C pathway can be turned on and off as needed without a risk of hypoglycemia. This
is supported by the observation that even a 90 % reduction of whole-body or 100% hepatic
PEPCK-C activity did not result in changes in glycemia until the mice were stressed [146].
A continuous supply of PEP by PEPCK-M, even in the presence of high insulin, may also be
important for other biosynthetic pathways, such as glycogen or triglycerides. Noteworthy,
half of the postprandial glycogen synthesis still comes from gluconeogenesis when insulin
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levels are increased (and PEPCK-C suppressed) [18, 182, 183]. Further, healthy humans
derive 50% of endogenous glucose production from gluconeogenesis even in the immediate
post-absorptive phase when glycogen stores are not depleted [184]. Theoretically, having a
background pathway for continuous PEP production by PEPCK-M protects against
hypoglycemia, which could be caused by complete cessation of gluconeogenesis. The
PEPCK-C pathways expand the overall capacity for gluconeogenesis as needed in response
to hormonal and metabolic cues. However, PEPCK-C expression may only have minimal
control over basal rates of gluconeogenesis. Given that humans have a much higher relative
PEPCK-M activity [185], the specter is raised that the mitochondrial isoform could play an
even more significant role in normal or pathologic, insulin-independent, fasting and fed
glucose production.

In summary, both PEPCK isoforms convert TCA cycle OAA into PEP as they consume
GTP. PEP can re-enter the TCA cycle (anaplerosis, “PEP cycle”) [7], or exit the TCA cycle
(cataplerosis) to ultimately feed carbons for a number of downstream process, such as
gluconeogenesis and glyceroneogenesis [158]. Overall metabolic milieu and type of carbons
entering the TCA cycle may ultimately determine the relative activities of each isoform.
While PEPCK-M ensures continuous cataplerotic PEP production, PEPCK-C may augment
gluconeogenic capacity when needed. As this mitochondrial mtGTP/PEPCK-M pathway
may regulate the two faces of glucose homeostastis – glucose clearance and glucose
production - we envision PEPCK-M and SCS-GTP as a “metabolic tachometer” that uses
mtGTP to “sense” TCA cycle flux. The role of PEPCK-M in gluconeogenesis needs to be
confirmed.
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Abbreviations

AAT aspartate aminotransferase

ANT adenine nucleotide transporter

Asp aspartate

Asp/Glu aspartate glutamate transporter

αKG alpha-ketoglutarate

αKGT alpha-ketoglutarate transporter

CIC citrate isocitrate transporter

cytAAT cytosolic aspartate aminotransferase

cytGlyc-3-PDH cytosolic glycerol-3- phosphate dehydrogenase

cytMDH cytosolic malate dehydrogenase

DIC dicarboxylate transporter

GAPDH glyceraldehyde 3-phosphate dehydrogenase

GDH glutamate dehydrogenase

GSIS glucose-stimulated insulin secretion

GTP Guanosine-5'-triphosphate
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Glu Glutamate

Glyc-3-PDH glycerol-3-phosphate dehydrogenase

IDP inositol-1, 4-diphosphate

ITP inositol 1,4,5,-tris-phosphate

LDH lactate dehydrogenase

Mal malate

MDH malate dehydrogenase

mtAAT mitochondrial aspartate aminotransferase

mtGlyc-3-PDH mitochondrial glycerol-3-phosphate dehydrogenase

mtGTP mitochondrial GTP

mtMDH mitochondrial malate dehydrogenase

mtPEP mitochondrial PEP

NDPK nucleotide diphosphokinase

OAA oxaloacetate

PC pyruvate carboxylase

PDH pyruvate dehydrogenase

PEP phosphoenolpyruvate

PEPCK phosphoenolpyruvate carboxikinase

PEPCK-C cytosolic PEPCK

PEPCK-M mitochondrial PEPCK

PK pyruvate kinase

SCS succinyl coenzyme A synthetase

SCS-ATP ATP-forming SCS SCS-GTP

SCS GTP-forming
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Highlights

► Mitochondrial GTP (mtGTP) is produced at a rate proportional to TCA cycle flux.

► PEPCK-M activity is dependent on mtGTP and thus linked to TCA cycle flux.

► A mtGTP cycle between the enzymes SCS-GTP and PEPCK-M generates
mitochondrial PEP.

► The mtGTP cycle couples glucose metabolism to insulin secretion.

► Mitochondrial PEP (mtPEP) generated by PEPCK-M may be a significant source
of gluconeogenic flux.
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Figure 1. Glucose homeostasis
Plasma glucose levels are normally maintained within a relatively narrow range and are
derived from three main sources: intestinal absorption, gluconeogenesis and glycogenolysis.
Hormonal control is the most important mediator of plasma glucose. Acute glucoregulatory
mechanisms that can affect plasma glucose levels within minutes involve insulin and
glucagon. An increase in blood glucose levels provides the stimulus for insulin secretion.
Insulin decreases blood glucose acutely by promoting tissue glucose uptake, followed by
suppression of gluconeogenesis in both the liver and kidney as well as glycogenolysis in
liver. A decrease in blood glucose levels results in the secretion of glucagon. Glucagon only
acts on liver and stimulates glucose release, by initiating glycogenolysis. It does not act on
the kidney.
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Figure 2. Pyruvate and PEP cycling pathways
Pyruvate enters the mitochondrion via the pyruvate transporter (PT) and then enters the TCA
cycle via the PDH-catalysed reaction that forms acetyl-CoA or via an anaplerotic reaction
catalysed by PC. Several cycles have been proposed to account for the observed cycling of
carbons to pyruvate which are following:
Pyruvate-malate cycle (dark green): OAA is converted to malate and converted back to
pyruvate via mitochondrial NAD-dependent or cytosolic NADP-dependent malic enzyme
(ME). Malate exits the mitochondrion via the dicarboxylate carrier (DIC).
Pyruvate-citrate cycle (orange): OAA is converted to citrate, which exits the mitochondrion
via citrate/isocitrate carrier (CIC) and is converted to OAA and acetyl-CoA through citrate
lyase (CL) reaction. Acetyl-CoA is converted to malonyl-CoA and long-chain acyl-CoA,
while malate dehydrogenase (MDH) converts OAA into malate and further to pyruvate by
cytosolic ME.
Pyruvate-isocitrate cycle (light green): Citrate can be converted to isocitrate and exits the
mitochondrion via CIC. In the cytosol isocitrate is converted to α-ketoglutarate by NADP-
dependent isocitrate dehydrogenase (ICDc) which can then re-enter mitochondrial
metabolism by α-ketoglutarate transporter (α-KGT).
PEP cycle (red): OAA is converted to PEP by PEPCK-M and exits the mitochondrion via
CIC or the adenine nucleotide transporter (ANT) (in exchange for ADP) in the inner
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mitochondrial membrane. PEP in the cytosol is converted to pyruvate by pyruvate kinase
(PK).
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Figure 3. Gluconeogenic substrates entering the gluconeogenic pathway
Graph shows entry point of gluconeogenic substrates, such as lactate, glycerol or amino
acids. Both PEPCKs synthesize PEP from OAA that can feed the TCA cycle (anaplerosis) or
serve for various biosynthetic processes (cataplerosis), such as gluconoegenesis. Alanine
and glutamine are the main amino acids in the blood and arise during starvation from
muscular protein breakdown (proteolysis). Likewise, fatty acids and glycerol are released
from triglyceride breakdown (lipolysis) during fasting. Unlike glycerol, acetyl-CoA (fatty
acid breakdown) does not contribute to cataplerotic OAA or PEP production or other
gluconeogenic intermediates. Glycerol and glucose enter via glyceraldehyde 3-phosphate.
Lactate forms in the muscle during anaerobic glycolysis and enters the gluconeogenic
pathway via pyruvate and is the main gluconeogenic precursor in the kidney and liver.
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Figure 4. Gluconeogenesis from Lactate
Lactate as substrate generates NADH via lactate dehydrogenase (LDH) in the cytosol
necessary for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction of
gluconeognesis (orange). Mitochondrial oxaloacetate (OAA) has four pathways to cytosolic
phosphoenolpyruvate (PEP), whereas three are energetically preferable for gluconeogenesis:
The PEPCK-M pathway (red) is the most direct pathway and uses mtGTP produced by
succinyl-CoA synthetase (SCS-GTP) in the TCA cycle. The PEPCK-C/aspartate pathway
(blue) uses mitochondrial (mtAAT) and cytosolic (cytAAT) transamination reactions via
aspartate aminotransferase (AAT) and needs shuttling of glutamate and α-ketoglutarate to
generate OAA in the cytosol. OAA is converted by PEPCK-C that hydrolyses cytosolic GTP
for the production of cytosolic PEP. The PEPCK-C/malate pathway (green) uses
mitochondrial (mtMDH) and cytosolic (cytMDH) malate dehydrogenase (MDH).
Mitochondrial MDH converts OAA in malate and malate is transferred to the cytosol, where
cytosolic MDH forms OAA. This creates an excess NADH oxidized by the glycerol-3-
phosphate shuttle.
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Figure 5. (a) direct PEPCK-M pathway, (b) aspartate/PEPCK-C pathway, (c) malate/PEPCK-C
pathway and (d) citrate/PEPCK-C pathway
Enzymes, transporters and metabolites involved in the 4 metabolic pathways from
mitochondrial oxalacetate to cytosolic PEP. The charge valences of the metabolites that are
used by the different transporters are listed as superscripts. The accounting is based on the
number of protons equivalents generated (in green) or consumed (in red) by each of the
metabolic steps. Synthesis of both ATP and GTP within the mitochondria was assumed to be
equivalent to 3 protons, the transport of one ATP out of the mitochondria and glutamate into
the mitochondria each consume one proton. Oxidation of mitochondrial NADH pumps 10
protons, while cytosolic translocates 6 via the glycerol-3-phosphate step since the malate
aspartate shuttle is not available. Abbreviations: OAA, oxaloacetate; PEP,
Phosphoenolpyruvate; CIC, citrate isocitrate transporter; DIC, dicarboxylate transporter;
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Asp, aspartate; αKG, α-ketoglutarate; Asp/Glu, aspartate glutamate transporter; αKGT, α-
ketoglutarate transporter; ANT, adenine nucleotide transporter; Mal, malate; Glu,
Glutamate; mtAAT, mitochondrial aspartate aminotransferase, cytAAT, cytosolic aspartate
aminotransferase; mtMDH, mitochondrial malate dehydrogenase; cytMDH, cytosolic malate
dehydrogenase, mtGlyc-3-PDH, mitochondrial glycerol 3 phosphate dehydrogenase;
cytGlyc-3-PDH, cytosolic glycerol-3-phosphate dehydrogenase; NDPK, nucleotide
diphosphokinase.
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