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Abstract

Background—Cerebellar hypoplasia is common problem for preterm infants, and infants that 

suffer intraventricular hemorrhage (IVH). To evaluate the effects of IVH on cerebellar growth and 

development, we used a neonatal rabbit model of systemic glycerol to produce IVH.

Methods—New Zealand White rabbit kits were surgically delivered 2 d preterm, and treated 

with i.p. glycerol (3.25 to 6.5 g/kg). Controls were born at term. IVH was documented by 

ultrasound. Brain MRI volumes, cerebellar foliation, proliferation (Ki-67) and Purkinje cell 

density were done at two weeks of life. Tissue glycerol and glutathione concentrations were 

measured.

Results—Glycerol increased IVH, subarachnoid hemorrhages and mortality in a dose-dependent 

manner. Total cerebellar volumes, cerebellar foliation and cerebellar proliferation were decreased 

in a dose-dependent manner. Glycerol accumulated rapidly in blood, brain and liver and was 

associated with increased glutathione concentration. All of these results were independent of IVH 

status.

Conclusions—Cerebellar hypoplasia was induced after glycerol administration in a dose-

dependent manner. Given rapid tissue accumulation of glycerol, dose dependent decreased brain 

growth and lack of IVH effect on measured outcomes we question the validity of this model as 

glycerol toxicity cannot be ruled out. A more physiologic model of IVH is needed.

Introduction

While mortality of preterm infants weighing less than 1000 g is decreasing, up to 50 % of 

preterm survivors have cognitive, learning, social, behavioral and motor deficits (1–2). 

Cerebellar hypoplasia has recently been documented in preterm infants with poor 

neurological outcomes (3–5). The cerebellum increases in size by almost 5-fold between 24 

and 40 weeks post conceptual age, making it vulnerable to both developmental disruption 

and injury (6). Risk factors associated with cerebellar hypoplasia in preterm infants include 
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intraventricular hemorrhage (IVH), hemosiderin deposition, periventricular leukomalacia, 

hypoperfusion from patent ductus arteriosus, low pH in first 5 days of life, low bicarbonate 

levels and chorioamnionitis (6–7). The mechanisms of injury from these insults are not 

known.

IVH increases the risk of poor outcome in the absence of other injuries (8). One hypothesis 

of cerebellar hypoplasia following IVH is that blood mixes with the cerebral spinal fluid and 

coats the cerebellum (9–10). Subsequent breakdown of blood may disturb communication 

between the proliferative external granular layer (EGL) of the cerebellum and the overlying 

meningeal tissues resulting in disruption of normal cerebellar lamination (9, 11). Evidence 

in support of this hypothesis comes from MRI studies showing siderosis of hypoplastic 

cerebellum in infants with history of IVH (12–13).

To examine the effects of IVH on cerebellar development, we employed the previously 

described rabbit model of systemic glycerol-induced IVH (14–15). In this model, the 

proposed mechanism of brain injury begins when systemic glycerol produces a decrease in 

intracranial pressure that is followed by a reperfusion that produces germinal matrix 

hemorrhage with extension into the lateral ventricles (16). Because the effect of IVH on 

cerebellar development has not been characterized, we adopted this model to confirm its 

usefulness for understanding cerebellar hypoplasia following IVH in preterm infants. We 

hypothesized that glycerol-induced IVH would decrease EGL proliferation and produce 

cerebellar hypoplasia.

Results

100 percent of neonatal rabbits injected with i.p. glycerol developed subarachnoid 

hemorrhages (SAH) within 2h of injection. We observed these SAHs through the skin 

overlaying the skull. In Figure 1, Panel A, we have incised and retracted the skin to show the 

extent of a SAH visible through the skull. Figure 1 also shows examples of ultrasound 

images from a glycerol-treated animal with no detectable IVH (Panel B) and a glycerol-

treated animal with IVH (Panel C). Data for prevalence of SAH, IVH and mortality are 

listed in Table 1. Mortality was defined as death before two weeks of age. Mortality and 

IVH rates increased with increasing glycerol dose. Postmortem examination did not reveal 

pneumonia or other signs of infection, but we did observe cases of dilated intestines and 

discolored organs. No seizures or evidence of increased intracranial pressures were noted. 

SAH did not predict subsequent IVH as only a fraction of animals exhibited IVH when 

examined with ultrasound 24 h after glycerol injection. The size of IVHs at 24 h varied from 

small (ventricle only) to large (ventricle and parenchyma). In all 3 glycerol-treated animals 

with IVH that survived two weeks, posthemorrhagic hydrocephalus was present at necropsy.

Brain volume was evaluated by ex vivo MRI (N = 18). Interrater reliability of brain 

segmentation was determined by Dice similarity coefficients. The Dice similarity 

coefficients between the three tracers ranged from 0.931 to 0.998. Glycerol reduced total 

brain and cerebellar volumes in a dose-dependent manner (Figure 2) independent of 

presence of IVH. To evaluate cerebellar growth, we examined the histology shown in Figure 

3 which includes lamination of the cerebellum, proliferation of the EGL and Purkinje cell 
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density in a subset of animals (N = 11). Table 2 quantifies cerebellar indices such as 

foliation (lobes I–III perimeter), primary fissure length (distance to first lobule of lobe V), 

internal granular, molecular and EGL thicknesses, as well as Ki-67-immunopositive 

proliferation and Purkinje cell density. In the EGL, glycerol treatment decreased cerebellar 

foliation complexity, size, EGL thickness and reduced cell proliferation (indicated by 

decreased Ki-67 immunolabeling). Note that the increase in Purkinje cell density in the 6.5 

g/kg glycerol group is likely a secondary to decreased cerebellar growth. All of these effects 

of glycerol were dose related but unrelated to IVH status.

Because glycerol treatment affected cerebellar development and brain growth without 

producing IVH, we investigated post hoc the possibility that glycerol may accumulate in 

tissues to produce direct toxic effects. Figure 4 illustrates that one hour after systemic 

injection (6.5 g/kg), glycerol concentrations increased more than 240 fold in plasma, more 

than 30 fold in hippocampus and cerebellum, and more than 60 fold in liver, and glycerol 

remained elevated in tissues for at least 6 hours. Lastly, the total glutathione concentration in 

cortical brain tissue was elevated by 13% at one hour, and by 27% at six hours post glycerol 

injection.

Discussion

The key findings of our study are that: 1) there is a glycerol dose-dependent increase in IVH 

2) there is a glycerol dose-dependent decrease in total brain and cerebellar volumes which 

were independent of IVH, 3) post-hemorrhagic hydrocephalus is caused by glycerol 

injection though the mechanism has not been elucidated 4) cerebellar proliferation and 

foliation were decreased and 5) glycerol rapidly accumulates in tissues including brain. We 

also found this model to be difficult to work with due to high mortality rates, and 

inconsistent rates and severity of IVH.

Our findings may be contrasted with those from prior reports that used systemic glycerol in 

neonatal rabbits. For example, our neonatal rabbit mortality was double the 30% rate 

reported previously (14) and, in many cases, the cause of death was uncertain as thriving kits 

were simply found dead with no evidence of aspiration or IVH at necropsy. One potential 

cause of death would be acute renal failure because systemic injection of 50% glycerol is 

known to produce a nephrotoxicity similar to rhabdomyolysis (17–18). Although prior 

reports found that glycerol produced similar rates of prevalence for SAH (75%) and IVH 

(70–80%) (14–15), we found that these two effects did not correspond. When present, we 

observed considerable variation in the size of IVH identified by ultrasound. Thus it appears 

that IVH produced by systemic glycerol is infrequent, inconsistent and variable, and 

together these findings confirm the observation that the frailty of newborn rabbits and 

inconsistency of IVH diminish the value of this model (19). One limitation of our study is 

that we did not measure intracranial pressures. Prior studies found that glycerol lowered 

intracranial pressure in a dose-dependent manner (16, 20).

Cerebral growth was decreased after glycerol injection independent of IVH status. MRI 

measures of forebrain and cerebellar volumes, and measurements of cerebellar morphometry 

identified dose-dependent effects of glycerol on brain growth. A number of proliferative 
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processes may be affected by glycerol treatment (21–22). For example, glycerol disrupts 

maturation of oligodendrocyte precursors and this may reduce overall brain growth (14). 

Although we did not measure cerebral perfusion, it is unlikely that the global impairment of 

brain growth was due to glycerol-induced hypoperfusion (16). Given the universal presence 

of SAH, it is possible that SAH, but not IVH, is a contributing factor in the retardation of 

brain growth. In hamsters, SAH interferes with meninges and related proliferation signals 

and reduces proliferation in the EGL (11). Similarly, glycerol acts directly to disrupt 

membrane and cytoskeletal proteins that thereby interfere with cellular interactions that 

mediate normal brain growth (23).

Toxins that disturb cell proliferation during development are particularly detrimental. 

Cerebellar development is a prolonged process during which progenitor cells of the EGL 

proliferate, migrate, and differentiate continuously for up to 2 postnatal months in rabbit, or 

7 postnatal months in humans (24–26). Thus there is a large window of vulnerability during 

which this developmental sequence may be disrupted. In this study, a single injection of 

glycerol decreased cerebellar MRI volume and decreased foliation of the primary fissure. 

Both cell proliferation (Ki-67) and laminar width were decreased in the EGL. The decreased 

proliferation seen 14 days post-injection is likely the principal mechanism underlying 

reduced cerebellar growth and may also indicate that glycerol-mediated toxicity is enduring. 

The coincident increase in Purkinje cell density we observed is likely secondary to 

decreased foliation and reduced cerebellar area with relative preservation of Purkinje 

neurons. Alternatively, increased Purkinje density could occur as an artifact of histological 

processing if brain edema were present in vivo. Recently, it was determined that cerebellar 

neuronal granule cells actually derive from astroglia that generate granule cell precursors 

(27). Given the proximity of the EGL to the meninges and the prolonged period of postnatal 

cerebellar development, it is possible that cerebellum is particularly susceptible to toxic 

effects of glycerol and/or SAH. Our data certainly support this hypothesis.

It is apparent that glycerol may produce brain toxicity directly in the absence of IVH. 

Systemic glycerol (6.5 g/kg) rapidly accumulated in blood, liver and brain tissues. We 

acknowledge that this effect was not detected when the dose of glycerol was 1.15 g/kg (28). 

Notably, the progressive accumulation of total glutathione content in brain is an indication 

that a single injection of systemic glycerol alters cerebral biochemistry independent of IVH. 

This is problematic because it appears that IVH cannot be reliably produced unless a high 

dose of glycerol is administered and, at high doses, direct toxic effects of glycerol cannot be 

disqualified as an alternative explanation for any resulting brain injury.

For infants born prematurely, neurological complications arise when the capillaries of the 

the immature germinal matrix lose their integrity and produce IVH and subsequent 

ventricular dilatation (29). Glycerol is highly lipophilic and can be used in vitro to lyse cells 

(30) and, when used as a cryoprotectant, glycerol is known to disrupt the integrity of the 

membrane and the actin cytoskeleton of spermatozoa (31–32). Since our study indicates that 

glycerol readily penetrates brain tissues, then perhaps glycerol produces cerebral 

hemorrhage by directly lysing susceptible endothelial membranes including those in the 

germinal matrix.
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In conclusion, the validity of the use of systemic glycerol to model neonatal IVH is 

questionable for several reasons. First, the mortality due to this treatment is high, possibly 

due to known renal toxicity. Second, although this treatment reliably produces SAH, IVH is 

inconsistent and variable. Third, the design cannot disqualify the alternative interpretation 

that brain injury resulting from systemic injection of glycerol is mediated by direct toxic 

action. A better model of spontaneous IVH still needs to be found given that organotypical 

brain slices exposed to whole blood exhibited pathophysiological changes in the absence of 

glycerol (33).

Methods

Animals

All experimental protocols were approved by the Animal Care and Use Committees at the 

University of Washington in accordance with U.S. NIH guidelines. Timed-pregnant New 

Zealand White does (Western Oregon Rabbit Co, Philomath, OR) were purchased (N = 13). 

On embryologic day 29, the doe was sedated with isoflurane for a non-survival Caesarean 

section (N = 9). The preterm kits (N = 63) were extracted from the uterus, dried and placed 

in an incubator pre-warmed to a temperature of 35°C. Control kits (N = 34) were born 

vaginally at term.

Brain injury

Preterm kits were injected with 3.25, 4.87, or 6.5 g/kg of glycerol i.p. (Sigma Chemical Co., 

St. Louis, MO) given as a 50% solution (by volume) at 2h of age to induce IVH (15).

Feeding

Kits were hand fed twice daily with a commercial rabbit milk substitute formulated to 

support neonatal rabbit growth (Fox Valley Animal Nutrition, Inc., Sun City, AZ), 

supplemented with 60 gm/L lyophilized colostrum (Naturade, Orange, CA). Commercial 

nipples (Chris's Squirrels and More, LLC, Somers, CT) were used. For the first 2 days, kits 

were fed 100mL/kg/day, and thereafter feeding volumes increased gradually to 280 mL/kg/

day.

Ultrasound

Cranial ultrasound was performed at 24h of age to document presence of IVH using a 

SonaScape S8 with 10-5 MHz L743 linear array probe (SonoScape Co., Ldt., Shenzhen, 

China).

MRI acquisition

At 12 days post-term, surviving kits were euthanized. Rabbit brains were extracted after 

perfusion fixation and placed in Multihance (Bracco Diagnostics Inc., Princeton, NJ) 1:100 

in PBS for 28 days. Brains were then placed in Fomblin (Solvay Solexis, West Deptford, 

NJ) for ex vivo imaging (N=17) on Bruker Avance III 14 Tesla (600) Ultrashield high 

resolution 89mm vertical bore magnet with ParaVision version 5.1 software. The 

TurboRARE T2 sequence with a scan time of 7.5 to 8h was conducted with the following 
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settings: Field of view (FOV) 2.82 cm, slice thickness 0.11 mm, interslice distance 0.11 mm, 

slices 256, axial slice orientation matrix P1 256, repetition time 27807 ms, echoes 1, TE 

effective 1 33 ms, TE effective 2 33 ms, Averages 30, FOV read 2.82 cm, FOV P1 2.82 cm, 

matrix read 256, matrix P1 256, anti-alias read 1, anti-alias P1 1, resolution read 0.011 cm/

pixel, resolution read P1 0.011 cm/pixel, iso distance −1.6 mm, pack extent 28.16 mm, 

scheme interlaced, readout L-R, repetition time 27807 ms, echoes 1, TE effective 1 33 ms, 

TE effective 2 33 ms, averages 30, bandwidth 1 39682.5, flipback on, fat suppression on, 

rare partitions 8.

Volumetric analyses

RView software (34) was used for volume rendering of T2 weighted images. Structures 

were isolated using voxel-based intensity thresholds with manual limits. Tracings were 

performed by C.T. and two students (H.S. and O.J.) blinded to treatment group. Specific 

boundaries for total brain and cerebellum were defined. Total brain volume included the 

cerebral hemispheres, diencephalon, brainstem, and cerebellum. Ventricular cerebrospinal 

fluid was excluded, the brainstem was truncated posterior to the area postrema and the optic 

bulbs were excluded anterior to the fissura rhinalis (35). Final images were rendered in 3D 

and inspected for accuracy before structural volumes were computed.

Morphometric measurements of cerebellum

After MRI, the brains were imbedded in paraffin and sagittal sections 10 µm thick were 

made. Using ImageJ software (NIH), the perimeter of lobes I–III was outlined on H&E-

stained images of sagittal slices through the vermis. The distance from the primary fissure 

sulcus to the first branch point of lobe V was measured along the internal granule layer. The 

thickness of the internal/external granule and molecular layers was measured at the primary 

fissure sulcus.

Immunohistochemistry

All staining procedures were run on the Leica Bond Automated Immunostainer with Leica 

bond kits (Leica Microsystems Inc., Buffalo Grove, IL). Slides were baked for 30 min at 

60°C and deparaffinized. Antigen retrieval comprised of citrate or EDTA for 20m at 100°C. 

Slides were blocked in normal donkey serum (10% in TBS) for 10 min at room temperature. 

Primary antibodies mouse anti-human Ki-67 clone MIB-1 (1:1000, Dako North America, 

Inc., CA) or mouse anti-chicken Calbindin (1:10,000, Swant, Marly, Switzerland) were 

applied at room temperature for 30 min. Leica goat anti mouse HRP polymer was applied 

for 30 min at room temperature and blocked with peroxide for 10 min. Leica bond mixed 

refine (DAB) detection applied twice for 10 min at room temperature. Slides were 

counterstained with hematoxylin.

Slides were scanned using a Nanozoomer Digital Pathology slide scanner (Olympus 

America; Center Valley, Pennsylvania). The digital images were then imported into 

Visiopharm software (Hoersholm, Denmark) for analysis. Using the Visiomorph Digital 

Pathology module, regions of interest were applied around relevant areas using a tissue 

detect protocol and manual cleanup. The software was then programmed to label positively 

stained areas versus normal tissue areas, using project-specific configurations created for 
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each staining set in a blinded manner. Images were processed in batch using these 

configurations to generate the desired output calculations.

Glycerol accumulation in the brain

Tissue glycerol concentrations were measured in a subset of kits killed at 0, 1 or 6h after 

injection of 6.5 mg/kg of glycerol. The kits were euthanized and plasma was obtained by 

heart puncture prior to exsanguination by heparinized saline. The brain was maintained on 

ice while the hippocampus and cerebellum were excised. The hippocampus, cerebellum and 

liver samples were then frozen in liquid nitrogen. The tissues were homogenized in a 50/50 

mixture of chloroform and methanol. Tissue supernatant and plasma were extracted and 

processed for glycerol concentration using a glycerol assay (BioAssay Systems, Hayward, 

CA) per assay instructions.

Antioxidant status

The total glutathione content was measured using a commercial competitive assay 

(OxiSelect Total Glutathione Assay Kit, Cell Biolabs, Inc) on cortex tissue samples at 0, 1 

and 6h after glycerol injection. Samples were homogenized per assay instructions. After 

centrifugation, the supernatant was diluted 1:100 and the assay performed. Results were 

normalized to the 0h time point and expressed as a percentage change.

Statistics

Results are given as mean ± SEM. Mortality was defined as death prior to 12 days post-

term. Kruskal-Wallis testing with Dunn’s multiple comparison test and ANOVA with 

Dunnett's post hoc comparisons were performed using SPSS. All glycerol animals were 

randomized in a blinded fashion. All data were analyzed in a blinded fashion.
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Figure 1. 
In Panel A, a euthanized neonatal rabbit kit is held with skin retracted to expose the skull 

and show subarachnoid hemorrhage which is always present after glycerol injection. At 24 

hours after glycerol injection, coronal ultrasound scans were collected to document the 

presence of intraventricular hemorrhage (IVH). Panel B shows an ultrasound image from an 

animal with no indication of IVH, and Panel C shows an ultrasound image from an animal 

with large IVH present 24 h after glycerol injection.
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Figure 2. 
Line plots showing dose-dependent decreases in rabbit MRI volumes (means ± SEM) for 

total brain (unfilled circle) and cerebellum (filled triangle). Premature rabbit kits were 

delivered by C-section and treated with glycerol at the doses indicated then, two weeks after 

treatment, kits were killed and brains were perfusion fixed and removed for subsequent MRI 

measurements (N = 3–5 per dose). ANOVA differences compared to 0-dose control are 

indicated as ‡ = P ≤ 0.001 and † = P ≤ 0.05 (Dunnett’s post-hoc tests). MRI volumes did not 

correlate with the presence of IVH.

Traudt et al. Page 11

Pediatr Res. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Photomicrographs showing the dose-dependent effects of systemic glycerol treatment on 

cerebellar development. Brain sections from control (left column) and glycerol-treated (right 

columns) rabbit kits were stained for H&E (top row, scale bar 1 mm), calbindin-D28K 

(middle row, scale bar 800 µm) and Ki-67 (bottom row, scale bar 90 µm). Measurements 

were made along the primary fissure of the vermis, as denoted in the upper left panel by the 

thin black arrow marking the start, and the black box marking the end of the region of 

interest. Cerebellar growth was compromised because the density of calbindin-
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immunopositive Purkinje cells was increased, and the proportion of Ki-67-immunopositive 

proliferating external granular layer cells (thick black arrows) was decreased in glycerol-

treated kits. Morphological measurements using H&E-stained images indicated that the 

foliation is less complex, and the thickness of the external granular layer is decreased at the 

base of the primary fissure in glycerol-treated kits.
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Figure 4. 
Line plots showing that glycerol is elevated more than 240 fold in blood plasma, and more 

than 30 to 60 fold in tissues at one and six hours after glycerol administration (data ± SEM). 

Glycerol concentrations are plotted on a logarithmic scale for plasma (filled triangle), 

hippocampus (light gray square), cerebellum (dark gray circle) and liver (unfilled triangle). 

Newborn rabbits, untreated (time 0) or glycerol treated (6.5 g/kg i.p.), were killed at one or 

six hours post treatment and samples of brain and liver tissue were collected and snap 

frozen, then homogenized and assayed for glycerol content by ELISA (N = 3 per time 

point). Subarachnoid hemorrhages were evident shortly after injection, but no 

intraventricular hemorrhages were detected after brain removal.
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Table 1

Prevalence of subarachnoid hemorrhage (SAH), intraventricular hemorrhage (IVH) and mortality for neonatal 

rabbits treated with different doses of systemic glycerol.

Glycerol dose (g/kg) 0 3.25 4.87 6.5

Number 34 18 4 28

SAH at 2 h % (N) 0% 100% (18)† 100% (4)† 100% (28)†

IVH at 24 h % (N) 0% 22% (4) 50% (2) 46% (13)

Mortality % (N) 18% (6) 61% (11)* 25% (1) 82% (23)†

Kruskal-Wallis test with Dunn's multiple comparison test

*,†
P ≤ 0.01 or 0.001 respectively compared to control animals (0 g/kg dose).
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Table 2

Histological indices describing cerebellar development in neonatal rabbits treated with/without systemic 

glycerol.

Dose of glycerol (g/kg)

0 3.25 6.5

Number 4 4 3

Lobes I–III perimeter (mm) 29.1 ± 2.7 24.2 ± 1.6 19.8 ± 1.1*

Primary fissure length (µm) 1345 ± 71 1031 ± 46† 810 ± 35‡

Internal granular layer thickness (µm) 69.5 ± 2.0 64 ± 5.6 74.1 ± 2.6

Molecular layer thickness (µm) 171 ± 4 143 ± 9 166 ± 8

External granular layer thickness (µm) 35.5 ± 4.4 18.9 ± 2.8‡ 26.2 ± 3.1*

Purkinje cell density (% total area) 0.287 ± 0.003 0.285 ± 0.013 0.319 ± 0.008*

Ki-67 immunolabeling (% total area) 0.627 ± 0.122 0.452 ± 0.121 0.125 ± 0.060*

Data are presented as means ± SEM. Kruskal-Wallis test with Dunn's multiple comparison test were performed on the Purkinje density and Ki-67 
positivity. ANOVA with Dunnett's post hoc comparisons to control (0) was used for the rest:

*, †, ‡
P ≤ 0.05, 0.01, or 0.001 respectively.
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