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Abstract
The skin conductance response (SCR) is increasingly being used as a measure of sympathetic
activation concurrent with neuroscience measurements. We present a method of automated
analysis of SCR data in the contexts of event-related cognitive tasks and nonspecific responding to
complex stimuli. The primary goal of the method is to accurately measure the classical trough-to-
peak amplitude of SCR in a fashion closely matching manual scoring. To validate the
effectiveness of the method in event-related paradigms, three archived datasets were analyzed by
two manual raters, the fully-automated method (Autonomate), and three alternative software
packages. Further, the ability of the method to score non-specific responses to complex stimuli
was validated against manual scoring. Results indicate high concordance between fully-automated
and computer-assisted manual scoring methods. Given that manual scoring is error prone, subject
to bias, and time consuming, the automated method may increase efficiency and accuracy of SCR
data analysis.
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Introduction
Measures of electrodermal response from the human periphery, such as the skin conductance
response (SCR), provide insight into activation levels of the sympathetic branch of the
autonomic nervous system (Boucsein, 1992). SCRs are thought to reflect increases in the
electrical conductivity of the skin caused by the release of sweat from eccrine sweat glands
located on the palmar surface of the hand and foot. Because these glands are innervated by
sympathetic sudomotor nerves, they provide a window into the activity of multiple brain
structures, such as limbic regions, basal ganglia, and frontal cortex, that regulate the
autonomic nervous system (Edelberg, 1972).

© 2013 Elsevier B.V. All rights reserved.

Corresponding author: Kevin S. LaBar, Ph.D., Duke University, Center for Cognitive Neuroscience, B203 LSRC Building, Research
Dr. Box 90999 Durham, NC 27708-0999, Phone: 919-681-0664, Fax: 919-681-0815, klabar@duke.edu.
*These authors contributed equally to the manuscript

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Int J Psychophysiol. Author manuscript; available in PMC 2015 March 01.

Published in final edited form as:
Int J Psychophysiol. 2014 March ; 91(3): 186–193. doi:10.1016/j.ijpsycho.2013.10.015.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Due to the specificity of the measure, ease of setup, participant tolerance, and relatively low
cost, SCRs have gained increasing popularity in clinical, neuroscientific, and psychological
studies of emotion and decision-making, learning and conditioning, orienting and attention,
and deception. While there are multiple parameters associated with a SCR, such as response
latency, rise time, and half-recovery time, the most commonly used parameter is the
amplitude of the SCR relative to a post-stimulus baseline. Traditional scoring of SCR
amplitude consisted of manually measuring the distance from trough to peak of responses
that fit a well-defined set of criteria pertaining to the amplitude, latency, and duration of the
response (Barry, 1990; Levinson and Edelberg, 1985).

Manual scoring of skin conductance data has multiple benefits, making it a historically
popular choice of data analysis. Primarily, close inspection of trial-by-trial data traces
ensures that individual responses are physiological signals related to an event of interest.
Manual scorers need only examine data close in time to an event in order to score an SCR.
Unfortunately, manual scoring has several drawbacks, even with computer-assisted
graphical interfaces. Chief among them is the amount of time needed to perform the
analysis. Since traditional scoring requires a trained rater to inspect each event for a
response, studies with many events are highly time-consuming. Another drawback is human
bias wherein a rater may inadvertently vary the stringency of the criteria for including a
response. Finally, manual analysis has been known to suffer from the scale invariance
problem in which the detection of an inflection point depends on what scale the rater uses to
inspect the data. For instance, viewing the electrodermal trace at low magnifications or poor
viewing angles may lead to misidentification of subtle changes in electrodermal data.

In an attempt to overcome some of the problems associated with manual scoring, computer-
based algorithms have been previously implemented to detect SCRs (Trosiener and Kayser,
1993), although not in an event-related fashion, as response latency and duration are not
utilized in detection analyses. Generally, these methods identify points in the skin
conductance time-series with a slope of zeros. If the change in skin conductance within this
range is large enough, it is identified as a SCR. While these methods can accurately extract
increasing portions of a time series of skin conductance data, they do not filter out responses
that are not plausibly event-related from a physiological perspective (that is, time-locked to
the onset of a particular stimulus of interest). Other computer-based algorithms for peak
detection have been implemented and compared to manual scoring, with favorable results
for experimental designs with long inter-stimulus intervals (ISIs) that can accommodate
temporal separation of individual SCR profiles from successive stimuli (Storm et al.,
2000).While suitable when SCRs are distant in time and do not overlap, peak detection
approaches based solely on the slope of the electrodermal trace are limited in their ability to
isolate overlapping responses. If two SCRs occur within a short period of time, the skin
conductance trace may not peak (have a slope of 0) before rising again.

Due to the increase in popularity of rapid, event-related experimental designs with shorter
ISIs, additional methods have been developed to deal with the issue of overlapping SCRs.
One graphical manual approach involves extending the baseline drift at stimulus onset to the
time of a skin conductance peak, essentially linearly detrending the baseline drift (Barry et
al., 1993). Approaches utilizing deconvolution (Alexander et al., 2005; Benedek and
Kaernbach, 2010b; Lim et al., 1997) can be used to decompose skin conductance data into
tonic and phasic activity, reducing the impact of overlapping responses. The goal of these
methods is to more accurately measure SCRs by generating an estimate of phasic activity
with a constant level of baseline activity. Alternatively, a general linear convolution model
can be used to isolate event-related skin conductance activity (Bach et al., 2009). In solving
a general linear model, this method generates parameter estimates that reflect the amplitude
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of task-related skin conductance activity. For researchers interested in experimental designs
with short ISIs, these methods may be preferential for analyzing SCR data.

While methods estimating the SCR using mathematical models are attractive from a
theoretical and procedural standpoint, one main issue complicates their use when compared
to manual scoring: non-specific or spontaneous fluctuations. Changes in skin conductance
that occur in the absence of stimuli can introduce error into models of electrodermal time-
series. Spontaneous fluctuations have been successfully incorporated into generative models
of skin conductance activity (Bach et al., 2010), although it remains unclear under what
conditions assumptions about the occurrence and duration of these activations are valid. If
assumptions concerning when spontaneous fluctuations are likely to occur are incorrect, the
estimation of event related responses could be negatively impacted. We posit that, in the
context of event-related analysis, focusing on data that is close in time to an event (i.e. the
rise of the SCR) and is not dependent on characterizing spontaneous fluctuations will
perform more consistently across a variety of experimental settings.

Here we present a traditional method of SCR data analysis in the context of event-related
cognitive tasks that is fully-automated and does not depend on fitting data to a modeled
response profile. The goal of our method is to automate manual scoring of stimulus-locked
SCR amplitudes, while systematically dealing with overlapping SCRs and other common
problems that introduce biases in manual scoring, such as consistency in applying response
criteria. By design the software (called ‘Autonomate’) will apply the same criteria to each
event to determine if a response occurred, thus avoiding the problem of manual raters
inadvertently shifting their stringency of criteria as the data are analyzed. Furthermore,
variation in the scale used to inspect the data by a manual rater (e.g. scoring under different
magnifications) is not an issue for the software, as it is scale-invariant. To validate the new
method in event-related paradigms, three archived datasets previously scored by two manual
raters are analyzed using four software packages (Autonomate, and three methods which
aim to address the issue of overlapping responses – AcqKnowledge, Ledalab, and
SCRalyze), and the results are compared using standard metrics. To generalize the use of
our method beyond event-related designs, we additionally validated Autonomate against
manual scoring of non-specific SCRs in a fourth dataset of electrodermal responses to
cinematic films. Complex datasets of this nature provide a challenging test of the software’s
utility as they contain more frequent and highly variable SCRs compared to event-related
designs. By validating the software in a variety of experimental paradigms, we can more
precisely determine under what conditions it is a suitable alternative to manual scoring.

Materials and Methods
Automated Method

Prior to analysis, data recorded at a sampling rate of 200 Hz were preprocessed using a 25
Hz finite impulse response low-pass filter and smoothed using a 3-sample moving average
function. SCRs -- one dimensional vectors of digitized data here denoted as S -- were
segmented into windows of L sec following each stimulus. These data were down-sampled
to 8 Hz using a Chebyshev Type I filter in order to reduce the effect of high frequency noise
on subsequent analysis. The rises of candidate SCRs were found by searching for sections of
the first order temporal derivative of the skin conductance data, S′, that are above the
threshold of U µS per second for a minimum duration of w sec (Figure 1A)1. The start and

1The term ‘rise’ is used here and throughout as a period of increase over baseline; not to be confused with the more specific term ‘rise
time,’ which refers to the length of time from onset to peak for a SCR.

Green et al. Page 3

Int J Psychophysiol. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



end of candidate SCRs were determined by the zero crossings of S′, and the amplitude was
recorded as the difference in S between the second and first crossing.

Candidate SCRs were classified as being isolated or affected by neighboring responses by
searching for patterns of inflection points (zero crossings in the second order temporal
derivative). Inflection points were categorized based on whether the slope goes from
increasing to decreasing (type A) or decreasing to increasing (type B) around the point. If
there were three sequential inflection points within a SCR with a pattern A-B-A, then the
center point B was used to split the SCR into multiple candidate responses (Figure 1B).

Each candidate SCR must meet a specific set of criteria used in hand scoring in order for the
SCR amplitude to be regarded as time-locked to the stimuli and recorded. Consistent with
our prior reports (e.g., Dunsmoor et al., 2009; Huff et al., 2009; Thomas and LaBar, 2008),
the following response criteria were established as default: the latency between the eliciting
stimulus onset and the rise of the response, or SCR latency, must be between 1 and 4 sec;
the time between response start and peak, or SCR duration, must occur between 0.5 and 5
sec; and the response amplitude must be greater than 0.02 µS. While these default values are
recommended, these criteria are free parameters in the Autonomate software (as are the
variables U, L, and w) and can be adapted by the user if further optimization is required. In
the case that multiple SCRs meet all criteria, the largest response within the window was
recorded. For the analysis of spontaneous responses, the criterion of response latency was
relaxed and all responses within a specified window were recorded. Once the final response
was selected, the response amplitude was computed by finding the difference between local
maxima and minima in the preprocessed (not down-sampled) data.

Validation of Autonomate software
To ensure the performance of our automated method closely matched that of the manual
scoring on which it is based, subsamples of randomly selected subjects from three archived
event-related studies were analyzed both manually (by two expert raters) and with the
automated method. Studies using a range of stimuli and tasks were chosen to generate SCRs
with variable amplitude, latency, and degree of overlap. For the event-related studies,
electrodermal activity was recorded from the nondominant hand, using Ag–AgCl electrodes
attached to the middle phalanges of the second and third digits. In addition to the event-
related studies, a study eliciting physiological responses with film clips was selected in order
to validate the reliability of the method at estimating the amplitude of spontaneous
responses. In this study electrodes were placed on the hypothenar eminence of the non-
dominant hand. In all studies, participants were healthy adult volunteers (with no self-
reported alcoholism, substance abuse, or current use of psychotropic medication) who were
either students at Duke University or from the local community.

Study 1: Context- and time-dependent fear renewal—This fear conditioning study
(Huff et al., 2009) explored how the renewal of fear after extinction training is impacted by
context shifts and the acquisition-to-extinction retention interval. Conditioned stimuli
consisted of visual images of a snake and a spider, one of which was partially reinforced by
electrical stimulation to the wrist during acquisition training. SCRs were measured in
response to the 4-sec presentation of the visual images during fear conditioning, extinction,
and renewal testing. The mean ITI was 11 sec. For validation purposes, SCRs to the visual
stimuli were averaged across 40 trials during conditioning (Condition 1) and 32 trials for
both the extinction (Condition 2) and test phases (Condition 3) for each subject.

Study 2: Probabilistic classification learning with emotional and neutral
outcomes—This event-related study (Thomas and LaBar, 2008) investigated how
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emotional outcomes in a probabilistic learning task impacted learning strategy and accuracy.
Stimuli consisted of visual images of differently patterned cue cards that were
probabilistically followed by associated visual outcomes. The outcomes were either
relatively neutral (pictures of flowers and mushrooms) or negative (pictures of snakes and
spiders). Prior to visual feedback, performance accuracy was indicated by auditory feedback
lasting a half second on each trial, with presentation of a tone indicating correct responses or
four 80-dB bursts of white noise indicating incorrect responses. The mean ITI was 5.5 sec.
For validation purposes, SCRs to the 4-sec cue card onsets were averaged across 50 trials for
each of two phases of the study for each subject in two separate days, yielding four cells for
analysis (Conditions 1–4 ordered chronologically).

Study 3: Generalization of fear along a gradient of facial expression intensity
—This study (Dunsmoor et al., 2009) examined how fear conditioning to a moderately
fearful face generalized to other faces along an emotional intensity gradient. Stimuli
included five faces expressing fear that were morphed between neutral and fearful
endpoints. During conditioning, the intermediate morph was paired with an electrical
stimulation to the wrist whereas the most neutral face was explicitly unreinforced. The
generalized stimuli consisted of the three other face values and were presented before
conditioning (preconditioning) and during a post-conditioning generalization test. SCRs
were measured in response to the 4-sec duration presentation of the face stimuli. These three
phases had mean inter-trial intervals (ITIs) of 6 sec, 9 sec, and 7 sec, respectively. For
validation purposes, SCRs to the generalized faces were pooled across all trials for each
phase of the study for each subject. For each subject, 30 trials were averaged for the
preconditioning phase (Condition 1), 20 for the fear conditioning phase (Condition 2), and
15 for each of three generalization tests (Conditions 3–5).

Study 4: Psychophysiological responding during distinct emotional states—
This study (Kragel and LaBar, 2013) examined how patterns of autonomic nervous system
activity can be mapped to the experience of distinct emotions. Instrumental music and film
clips were used to induce the experience of discrete emotions while autonomic nervous
system activity was concurrently recorded. These stimuli are relatively complex and
temporally-extended compared to those in the event-related studies, producing a large
number of SCRs over a period of approximately 2 min. This aspect of the stimuli is critical
to the validation of the software, because it provides the opportunity to score a large number
of non-specific responses without a clear structure of events. For the purposes of the present
work, we examined the amplitude of SCRs during the presentation of film clips intended to
induce amusement and neutral states. For validation, the amplitude of SCRs was averaged
across two trials for each of the two conditions for each subject.

Manual Scoring
Researchers (M.E.F. and two student research assistants) were trained by a senior researcher
to manually score SCRs using AcqKnowledge software (BIOPAC Systems, Goleta, CA).
The training involved identification of various types of waveform artifacts, an explanation of
candidate SCR criterion, and a data set to apply what has been learned. Following
completion of the practice data set, the individual's scoring was compared to previous
scoring completed in the lab to ensure consistency. AcqKnowledge software permits the
rater to graphically view a segment of the SCR time series constituting a portion of a single
trial to manually determine whether a candidate SCR meets the response criteria (see
Section 2.1). If there are no responses that meet the criteria for a given trial, the data are
scored as having 0 µS amplitude. The same set of preprocessing steps was used across the
manual and automated scoring methods (see Section 2.1).
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Concordance with Manual Scoring
For each of the four experiments, a series of analyses characterizing the agreement between
manual and Autonomate amplitude estimation were performed. One-way random-effects
average score intraclass correlation coefficients (ICCs, McGraw and Wong, 1996) were
computed to assess the concordance of scoring across subjects within conditions specific to
each study. For this computation, the scores from both manual raters were averaged and
compared against those produced by the Autonomate software (the average ICC between
manual raters was 0.982). In addition to examining concordance at the subject level, ICCs
were additionally computed on a trial-by-trial basis for each subject to confirm that
agreement at the subject level was driven by concurrence on individual trials. The trial-wise
analysis was only performed for the event-related studies, because in the non-event related
study there are multiple responses per trial and the number of responses can vary by rater.

Bland-Altman plots (Bland and Altman, 1986) were created using subject averages
concatenated across conditions. This approach provides a graphical means of investigating
the agreement between two measures by plotting the mean of two measures against their
difference. Data with high agreement should fall along a horizontal line with little absolute
difference. To produce these figures, data for the two computer assisted scorers were
averaged, and the mean of manual and automated scoring were plotted against the difference
of the two methods for each study. These plots yielded both the bias (the average difference
of mean scores) between the two scoring systems and statistical outliers (points that fall
outside a 95% confidence interval of the bias) that reveal significant differences in scoring
between the two methods. In addition, correlations between the mean SCR amplitude and
difference of SCR amplitudes were conducted to determine if discrepancies between manual
and automated scoring are a produced by a proportional bias (Ludbrook, 2010). For a similar
approach to methodological validation in brain volumetry, see (Morey et al., 2009).

Finally, a Pareto analysis (Gougeon, 2008) was performed to identify the factors that were
most relevant to causing discrepancies between the two methods. For this analysis, data that
had been identified as an outlier from the Bland-Altman plots (falling outside 2 S.D.’s from
the mean difference) were subject to further investigation. This was accomplished by
visually inspecting plots for discrepant data points that differed in amplitude by more than .1
µS between automated and computer assisted scoring. Raw traces for these trials were
shown to the raters and they were asked to identify the cause of the deviation (such as issues
resolving individual responses, presence of recording artifacts, etc.). This analysis highlights
systematic sources of error which maximally contributed to discrepancies between
Autonomate and manual scoring.

Comparing Methods
In order to compare the overall effectiveness of Autonomate with other publicly available
methods, the three event-related datasets were additionally analyzed with the software
packages AcqKnowledge, Ledalab, and SCRalyze. The event-related EDA analysis routine
from AcqKnowledge software version 4.1 (BIOPAC Systems Inc., Goleta, CA) was used to
quantify SCR amplitudes. Continuous decomposition analysis (Benedek and Kaernbach,
2010a) as implemented in Ledalab version 3.28 was run and SCRs reconstructed from an
estimated driver of phasic activity were generated for each trial. General linear models
utilizing a canonical impulse response function as implemented in SCRalyze version b2.1.3
were solved using the pseudoinverse, yielding parameter estimates for each condition in all
subjects. The results for all methods were compared for each study using Bayes factors
computed using the estimated error variance from a one-way analysis of variance (ANOVA)
model that was created to test for the main effect of condition. For each of the three
experiments, ANOVAs were performed using SPSS for Windows. In these models, F-tests

Green et al. Page 6

Int J Psychophysiol. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



examining the main effect of condition for each study were conducted in order to
qualitatively compare effect sizes.

Using the error variance from these models, Bayes factors were computed for each pairwise
combination of methods using the Bayesian information criterion (BIC) approximation
(Schwarz, 1978). This method approximates the log of a Bayes factor as the difference of
BIC between the two models (i.e. log (BF) = BIC1 − BIC2) Bayes factors indicate how much
evidence there is for one model relative to another, with values less than one favoring the
reference model. A general guideline for interpreting Bayes factors suggests values between
one and three indicates weak evidence, whereas increasing values indicate more definitive
favor of one model over another (Jeffreys, 1961). This method of Bayesian analysis favors
parsimonious models (Jefferys and Berger, 1992) and provides an alternative means of
comparing methods beyond simple effect sizes.

Results
Reliability analyses indicated high levels of agreement between manual scoring and
Autonomate. Table 1 shows ICCs for all four studies, corresponding F statistics, and within
condition bias estimates comparing automated to manual scoring. Overall, there is a high
degree of concordance in estimating response amplitude between manual and the automated
scoring method. Agreement of subject averages for each condition revealed excellent
agreement between the two methods. Reliability analysis of individual responses similarly
revealed excellent reproducibility, although at lower levels than subject averages.
Examining trial by trial concordance, Study 1(N = 20) had an average ICC of .872, Study 2
(N = 20) had an average ICC of .794, and Study 3 (N = 20) had an average ICC of .905.

Bland-Altman plots (Figure 2A) show general agreement between Autonomate and manual
scoring for all studies. In the event-related experiments (Studies 1–3), points in the plot fall
evenly around the mean bias line, suggesting that Autonomate is not biased to over- or
under-estimate SCR amplitude. Consistent with the event-related studies, Bland-Altman
plots of Study 4 showed little difference between Autonomate and manual rating at typical
SCR amplitudes (0 to 1 µS) although proportional bias was evident when the average SCR
amplitude exceeded this range. Pareto analysis (Figure 2B) revealed that these differences
were caused primarily by differences in scoring noisy data, with discrepancies in resolving
individual responses and variability in window selection (i.e. human error in selecting the
start of an event-related window) accounting for most of the remainder of the outliers.

Descriptive statistics of SCR amplitude for the event-related studies show generally
consistent results for the methods compared (Figure 3). It is important to note that parameter
estimates from SCRalyze are in arbitrary units and cannot be directly compared to the other
measures. For all three studies, all SCR analysis methods showed the same trends across
conditions, with the exception of SCRalyze in Study 2. Despite generally exhibiting similar
changes in SCR amplitude across conditions, the Acqknowledge software generally over
estimated responses in Study 3. The reconstructed SCR amplitudes from Ledalab were
similar to those of computer assisted and automated scoring, but with overall larger
estimates of SCR amplitude. These results are consistent with reports that scoring methods
accounting for fluctuations in baseline activity yield larger amplitude estimates than
classical SCR scoring methods (Benedek and Kaernbach, 2010a).

Statistical measures of predictive validity showed equivocal results regarding the
effectiveness of computer based methods and manual scoring. F-tests for the main effect of
condition (Table 2) showed the methods had differing sensitivities to experimental
conditions depending on the study. In Study 1, all methods yielded a significant effect, with
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SCRalyze and Ledalab having larger effect sizes. Results for Study 2 indicated that only
SCRalyze could detect a significant difference between conditions. Study 3 showed that all
methods were sensitive to the main effect of condition, with Ledalab producing a weaker
effect size. Generally, no method produced consistently larger effect sizes than the
alternative methods. Comparing Bayes factors across studies for the automated method
yielded largely similar results. Bayes factors close to one indicate nearly equal evidence for
Autonomate and manual scoring. Bayes factors ranging from 1.1 to 1.6 show weak evidence
favoring manual scoring over other software packages, with the exception of
AcqKnowledge in Study 1.

Discussion
We developed an unsupervised, fully-automated method of analyzing SCR amplitude while
accounting for overlap from neighboring responses, based on classical metrics of manually
scoring electrodermal activity. The goal of this method is to provide a fully automated
alternative to computer-assisted manual scoring that is consistent with the classical analysis
of scoring SCRs. Manual scoring of SCRs is a demanding procedure that requires training
and experience in order to be reliable and accurate. Additionally, the scoring of large
datasets, especially event-related designs with high number of trials, requires a considerable
amount of time and resources to complete. Given that manual scoring is subject to scorer
bias, error prone, and time consuming, fully automated methods for analyzing SCRs have
many advantages from a methodological and practical standpoint.

The proposed method of analyzing SCRs shows excellent absolute agreement with manual
scoring methods and has little bias in measures of SCR amplitude. Across three event-
related studies that had different stimuli, ISIs, number of trials, and ranges of SCR
amplitudes, intraclass correlations indicate high concordance between the two trained
computer assisted scorers and the automated method. In addition, similar high levels of
concordance were observed when the approach was modified to score non-specific
responses during the viewing of complex films. Bland-Altman plots revealed, however, a
proportional bias in validation of non-specific responses, whereby subjects with larger SCRs
produced lower averages when scored by manual raters. Despite this bias, the differences in
estimated SCR amplitude were acceptable when SCRs were within the typical response
range (0–1 µS). Given the proportional bias for larger SCRs, we recommend manual
inspection of electrodermal data if Autonomate identifies SCRs in excess of 1 µS. We have
included a graphical user interface which permits inspection and manual adjustment of
Autonomate’s scores. This interface allows researchers flexibility in checking the results of
the software, either for validation purposes or to identify recording artifacts. These results
suggest that our method is generalizable to different study designs and can produce SCR
estimates equivalent to manual scoring, particularly in the case of event-related designs.

While ICC coefficients and Bland-Altman plots suggest excellent agreement between
automated and manual scoring, identifying the sources of discrepancy between the two
scoring methods is important to determine that systematic bias is not being introduced to
SCR scoring. Root cause analysis showed that the majority of differences in the proposed
method and manual scoring stem from variability in human scoring rather than limitations of
the automated analysis. Determining when a response starts rising and when it stops is
critical in assessing if a SCR meets the latency and duration criterion. Further, the sensitivity
with which inflection points are identified is crucial to separating the effect of overlapping
responses. Unlike human raters, the automated method is able to consistently use the same
algorithm for determining these characteristics of an SCR. While having discrepancies in the
scoring of noisy data is a concern for automating manual scoring, they contributed to
approximately three outliers in a sample of 140 data points. The noisy data that is similar to
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skin conductance signals of interest is a problematic issue for any analysis schema, making
it imperative to ensure good recording to generate accurate data, including maintaining good
contact between the electrode and skin and minimizing motion artifacts. Considering the
ICC, Bland-Altman, and root cause results in conjunction, we conclude that the proposed
method is a suitable alternative to computer assisted scoring as far as validity is concerned.

Beyond our primary goal of automating manual scoring of SCRs in a computer-based
implementation, we were additionally interested in examining how the automated method
performs relative to other SCR analysis methods under different experimental conditions.
While all of the tested methods hold very similar assumptions about the timing and shape of
the skin conductance response, they are implemented using different algorithms, which may
impact their performance in different contexts. All methods showed the same trends in all
three studies, with the exception of SCRalyze in Study 2 and AcqKnowledge in Study 3.
The parameter estimates from SCRalyze were negative for all conditions, indicating that the
baseline level of skin conductance activity was greater than that during the event. Modeling
events relative to constant baseline is not a feature of any of the other methods. Despite
responses being below the implicitly modeled baseline, SCRalyze was the only method that
differentiated the four conditions in Study 2. In Study 3, AcqKnowledge generally yielded
larger responses than other methods, potentially due to overlapping responses in the event-
related design. Together, these results show promise for the method in experimental settings
with short stimulus durations and ITIs.

Using F statistics as a measure of predictive validity, there was little evidence for a method
that was consistently superior across all three studies. In Study 1, which had the longest
average ITI, Bayes factors weakly favored the AcqKnowledge software relative to other
methods. In studies 2 and 3, which had shorter ITIs, Bayes factors weakly favored the
simpler of the methods tested: manual scoring and Autonomate. These two approaches
involve fewer parameters in their analysis of the data and are more attractive than more
complicated methods in this light. Considering consistency across studies and Bayes factors,
these results favor Autonomate for researchers interested in directly comparing results from
studies using both rapid and sparse event-related experimental designs. More broadly, these
findings suggest that while there are a number of suitable methods and software packages
for the analysis of SCRs, there is a need to determine under what experimental contexts (e.g.
electrode placement, participant population, or medication status) different methods are
advantageous on a larger scale.

One advantage with the present approach relative to modeling methods is its parsimony.
However, modeling approaches may be warranted when the stimulus durations and ITIs are
smaller than those used for the present analysis. In particular, we focused on minimum
stimulus durations of 4 sec and ITIs of 5 sec. In experimental contexts where model-based
approaches may prove more effective, the presented method is well-suited to serve as a
reference to test model assumptions. Additionally, the current automated method facilitates
the development and validation of new methods by easing the time and resource burden
associated with manually scoring skin conductance data. With these experimental design
parameters in mind, the outcome of the present study provides initial validation of the
accuracy and precision of the proposed method, which makes it an attractive alternative to
manual scoring methods and a useful tool for future developments in analyzing skin
conductance data.
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Highlights

• We developed an automated method for scoring electrodermal activity.

• The approach reliably scores event-related and non-specific skin conductance
responses.

• Model comparisons suggest the method is equivocal to more complex methods.
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Figure 1. Example of Autonomate’s SCR amplitude estimation with overlapping responses
(A) Candidate SCR is detected by examining the first order temporal derivative S′ up to time
L for contiguous sections above threshold U µS/s for at least w s. (B) Candidate SCR is split
by finding a sequence of zero crossings in second order temporal derivative S″Crossings
where S′ is increasing are labeled A and crossings where S′ is decreasing are labeled B. A
pattern of A-B-A crossings indicates an inflection point where a candidate SCR should be
split at point B. Candidate SCRs are indicated with thick black line superimposed on raw
skin conductance signal S. Zero crossings are indicated with dashed lines.
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Figure 2. Sources of variance between Autonomate and manual scoring methods
(A) Bland-Altman plots indicating excellent general agreement between methods, with a
few outliers. (B) Pareto chart showing root causes of outliers. Bar plots indicate relative
frequency (out of all outliers) while the scatterplot indicates cumulative frequency. (C)
Exemplar trials in which (1) noise in data, (2) resolving individual responses, and (3)
variability in window selection lead to discrepancies in SCR amplitude measures between
the two methods.
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Figure 3. Mean of SCR amplitude for each experimental condition in event-related studies
All measures reflect SCR amplitude in µS with the exception of SCRalyze, which indicate
parameter estimates of the SCR in arbitrary units.
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Table 1

Validation measures comparing Autonomate and manual scoring.

Trial Type ICC(1,1) F Bias (µS)

Study 1 Condition 1 0.998 402.3* 0.003 (0.025)

Condition 2 0.998 507.6* −0.0001 (0.014)

Condition 3 0.995 222.1* 0.003 (0.020)

Study 2 Condition 1 0.996 272.6* 0.028 (0.047)

Condition 2 0.977 43.7* 0.025 (0.085)

Condition 3 0.982 56.6* 0.022 (0.042)

Condition 4 0.988 81.0* 0.015 (0.054)

Study 3 Condition 1 0.996 227.3* 0.002 (0.027)

Condition 2 0.987 76.9* 0.008 (0.017)

Condition 3 0.969 31.9* 0.010 (0.033)

Condition 4 0.984 64.1* 0.008 (0.030)

Condition 5 0.976 41.3* 0.004 (0.021)

Study 4 Condition 1 0.996 247.8* −0.040 (0.056)

Condition 2 0.983 58.1* −0.117 (0.148)

*
p < 0.001

Note. Bias indicates the mean and standard deviation in parenthesis of the difference between methods.
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