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Abstract
Genome-wide association studies (GWAS) have rapidly become a powerful tool in genetic studies
of complex diseases and traits. Traditionally, single marker-based tests have been used prevalently
in GWAS and have uncovered tens of thousands of disease-associated SNPs. Network-assisted
analysis (NAA) of GWAS data is an emerging area in which network-related approaches are
developed and utilized to perform advanced analyses of GWAS data in order to study various
human diseases or traits. Progress has been made in both methodology development and
applications of NAA in GWAS data, and it has already been demonstrated that NAA results may
enhance our interpretation and prioritization of candidate genes and markers. Inspired by the
strong interest in and high demand for advanced GWAS data analysis, in this review article, we
discuss the methodologies and strategies that have been reported for the NAA of GWAS data.
Many NAA approaches search for subnetworks and assess the combined effects of multiple genes
participating in the resultant subnetworks through a gene set analysis. With no restriction to pre-
defined canonical pathways, NAA has the advantage of defining subnetworks with the guidance of
the GWAS data under investigation. In addition, some NAA methods prioritize genes from
GWAS data based on their interconnections in the reference network. Here, we summarize NAA
applications to various diseases and discuss the available options and potential caveats related to
their practical usage. Additionally, we provide perspectives regarding this rapidly growing
research area.

Introduction
Genome-wide association studies (GWAS) have become a powerful tool to study the genetic
architectures of complex diseases and traits in humans. Since the first GWA study was
published (Klein et al. 2005), more than 1650 publications of GWA studies, which have
pinpointed tens of thousands of single nucleotide polymorphisms (SNPs), have been
reported and deposited into the GWAS Catalog (as of August 1, 2013, http://
www.genome.gov/gwastudies/) (Hindorff et al. 2009). Conventional GWAS analysis
requires disease-associated SNPs to reach the genome-wide significance level (e.g., p < 5 ×
10−8) due to multiple test correction. However, this stringent requirement has excluded
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many genuinely associated SNPs that have moderate or weak association signals (Wang et
al. 2010). As a result, the discovered significant SNPs might only explain a small proportion
of genetic risks for most complex diseases or traits, leaving the question of “missing
heritability” open to further investigation (Manolio et al. 2009). A number of contributing
factors have been hypothesized, such as joint effects of multiple SNPs/genes (Cantor et al.
2010; Wang et al. 2010), epistasis effects (e.g., SNP-SNP interactions and gene-gene
interactions) (Hu et al. 2011; McKinney et al. 2009; McKinney and Pajewski 2011),
epigenetic regulations, gene-environment interactions, and joint effects of rare variants and
common/rare variants (Gibson 2011).

Among these expanded approaches to search for missing heritability, gene set analysis
(GSA) of GWAS data, which assesses the combined effects of multiple SNPs/genes, has
been of great interest to researchers due to its improved power and biologically interpretable
results (Lee et al. 2011; Wang et al. 2010). The rationale of GSA recognizes that while many
variants might contribute to complex diseases, with each variant individually creating weak
to moderate effects, their combined effects could be significant (Gibson 2010; Yang et al.
2010; Yang et al. 2011). Throughout this review, GSA is denoted as an analytical approach
that conducts an enrichment test of a set of genes. The gene set can be defined using
canonical pathways (Kanehisa et al. 2010), Gene Ontology (GO) categories (Ashburner et
al. 2000), or subnetworks. Pathway-based analysis (PBA) is one type of GSA that uses
canonical pathways, GO biological process categories, or other pathway annotations as its
gene set unit. So far, PBA approaches have been well-developed for GWAS analyses and
successfully applied to the study of various complex diseases (Askland et al. 2009; Askland
et al. 2012; Chen et al. 2010; Elbers et al. 2009; Fehringer et al. 2012; Holmans et al. 2009;
Jia et al. 2012a; Jia et al. 2010b; Perry et al. 2009; Wang et al. 2007; Wang et al. 2009;
Wang et al. 2011a). PBA utilizes pre-defined gene sets based on functional annotations,
thereby providing well-annotated biological information and regulation. Readers may refer
to several recent review articles (Ramanan et al. 2012; Wang et al. 2010; Wang et al. 2011b)
for more detailed discussions.

In contrast to PBA’s reliance on pre-defined gene sets, network-assisted analysis (NAA) can
define gene sets flexibly and dynamically using subnetwork search algorithms. Enrichment
tests may also be included in NAA. In NAA’s structure, genetic data is overlaid onto a
reference network. Then, a search for subnetworks is conducted with the guidance of the
GWAS data. The first network-assisted study was reported in an analysis of multiple
sclerosis (MS) in 2009 (Baranzini et al. 2009) using the plugin package jActiveModule in
the software tool Cytoscape (Shannon et al. 2003). This plugin package was originally
developed for the network analysis of gene expression. The authors superimposed genetic
association data (p-values) onto a human protein-protein interaction (PPI) network and
successfully identified subnetworks that were enriched with MS-associated genes as well as
immune- and neurodevelopment-related pathways. Inspired by this successful application,
several methods and tools have gained rapid publications. These methods vary in their data
management, subnetwork search algorithm, hypothesis testing, and result interpretation.
Considering the broadness of network approaches, NAA of GWAS can reach beyond the
GSA principle of gene set-based enrichment analysis. Disease Association Protein-Protein
Link Evaluator (DAPPLE) is one such expanded approach (Rossin et al. 2011). A set of
association loci is required as DAPPLE’s input. Then, this method prioritizes genes based on
connectivity in the PPI network (see details below). With the growing awareness of NAA’s
advantages, many original GWA or genetic studies have included such analyses to help
interpret their association results (Arning et al. 2012; Neale et al. 2012; Xu et al. 2012).

While promising, current development of NAA approaches for GWAS data is still in an
early stage. In this article, we aim to review the strategies and methodologies in this
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emerging field of NAA of GWAS data, the issues that have arisen from real applications,
and the challenges that accompany the deluge of new data. Notably, we discuss analyses that
are based on networks in which nodes are typically proteins (e.g., PPI networks) rather than
other genetic or statistical interaction systems such as SNP-SNP interactions, gene-gene
interactions, or interactions built on SNP and expression quantitative trait locus (eQTL)
relationships. The methods discussed in this review provide guidelines for future network-
assisted analyses of GWAS data.

Demand and rationale in network-assisted analysis of GWAS data
As high-throughput technologies advance rapidly, many GWAS datasets have been
published, and many more are expected in the near future. The demand on GSA, PBA, and
NAA is strong, as investigators now often search for association signals beyond single
markers. Both pathway and network approaches explore combined genetic association
signals based on the existing biological knowledgebase. One advantage of these approaches
is that the interpretation of the results (enriched pathways or networks) is straightforward.
Both NAA and PBA each have their own strengths and weakness. Table 1 summarizes
several representative features that distinguish NAA from PBA. PBA has been successfully
applied in the study of many diseases. The enriched pathways uncovered by PBA provide
insights that might be missed by single marker analysis. However, PBA has several
limitations. (1) Results gleaned using different methods differ greatly (Fehringer et al. 2012;
Wang et al. 2013). (2) Pathway annotations used in PBA are limited to our current
knowledge. For poorly-studied diseases such as dental caries, there is a lack of appropriate
canonical biological pathways for PBA. (3) Current pathway annotations cover many pre-
defined pathways that may be too general in their delivery of disease-related biological
functions (Ruano et al. 2010; Sun 2012). (4) Connections among many genes are lacking
within major annotation databases used for PBA, such as the GO database (Farber 2013).

NAA provides complementary approaches that may expand the current advanced analysis of
GWAS data. NAA relies on network annotations that present functional interactions among
genes and their products. A variety of networks are available, such as PPI networks, gene
co-expression networks, and regulatory networks. Compared to PBA, NAA is more flexible
when defining gene sets throughout the whole network, allowing for the generation and
testing of various types of hypotheses. Nevertheless, NAA is not flawless. The PPI data used
in NAA tends to contain false positives and is dynamic under specific cellular conditions.
The resultant subnetworks typically do not specify biological function as explicitly as
canonical pathways.

The rationale behind NAA is the principle of “guilt-by-association (GBA)” (Farber 2013;
Lee et al. 2011), which states that genes (or genes’ products) that are interconnected in the
network are more likely to share the same or a similar function (Gillis and Pavlidis 2012).
Accordingly, studying association signals pulled from GWAS data in the context of a
biological network will likely help to uncover disease susceptibility genes and their
interactions. A straightforward design for NAA of GWAS data is to search for subnetworks
that are both enriched with association signals and contain functional relationships. Several
methods have been published based on this concept. In the next section, we discuss the
issues and features of these methods, thereby aiming to provide guidelines for the design and
implementation of NAA of GWAS data.

Design and methodological issues
As illustrated in Figure 1, in general, the NAA of GWAS data has the following steps. First,
GWAS data is preprocessed to compute SNP-based and gene-based statistical values, which
represent their association levels related to the phenotype/disease under investigation.
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Second, the genetic signals (SNP- or gene-based p values or scores) are overlaid onto the
network in a quantitative or qualitative manner. Third, a network-based integrative analysis
is performed to explore the topological characteristics of the network, study the connections
among genes of interest, and search for subnetworks, among other purposes. Finally, the
results are postprocessed and evaluated through the use of significance tests, module
selection, follow-up functional analyses of subnetwork genes, and other approaches.

Preprocess GWAS data: gene-based p-value computation
In GWA studies, association tests are performed for SNP markers, yet PPI network
annotation data is based on genes’ products (proteins). Hence, one challenge in NAA is to
map SNPs to genes and then compute gene-based statistical values. Accordingly, only SNPs
mapped to genic regions are considered when estimating gene-based statistical values, while
intergenic SNPs are typically discarded due to the nature of GSA. A genic region is defined
by the gene (from gene’s start point to end point) plus its boundary regions (the flanking
regions both upstream and downstream of the gene). SNPs that are mapped to their nearest
gene region would belong to that gene. In practice, the length of the boundary regions varies
from 0 to 500 kb. Using a schizophrenia GWAS dataset genotyped on the Affymetrix 6.0
chip, we previously demonstrated that the total number of informative genes (genes with at
least one SNP in the GWAS dataset) increased from ~18,000 to ~20,000 when the gene
boundary increased from 5 to 100 kb (Jia et al. 2011a). The SNPs mapped to genic regions
increased accordingly from ~307,000 to 509,000 out of the 725,000 genotyped SNPs.
Despite this increase, Lee et al. (2011) showed that a change of boundaries from 0 to 250 kb
did not significantly affect the power of the related network analysis.

As shown above, the SNP-gene mapping process will result in a gene having multiple SNPs
with genotype data. Thus, it is necessary to estimate a gene-based p-value to represent the
overall association signal to the gene. So far, there have been many methods to calculate this
estimation. They can be categorized into two classes depending on whether it requires raw
genotyping data. The first class of methods does not require raw genotyping data. Rather,
they use the SNP p-values to compute gene-based p-values (Curtis et al. 2008; Li et al.
2011; Liu et al. 2010; Wang et al. 2007; Zaykin et al. 2007). The most popular method in
this class defines a gene-based p-value by using the smallest p-value from all SNPs mapped
to its genic region (hereafter denoted as the MinP method). The advantages of the MinP
method are its easy implementation and its sensitivity in capturing association signals.
However, one disadvantage is that genes represented by more SNPs on genotyping arrays
(SNP density, which is usually correlated to gene length) are more likely to have small p-
values (Askland et al. 2012; Jia et al. 2012b), thereby introducing biases. Several methods
were recently developed to overcome this major disadvantage of the MinP method, such as
the Fisher’s method (Curtis et al. 2008), the truncated-product p-value method (Zaykin et al.
2007; Zaykin et al. 2002), the extended Simes’ procedure (Li et al. 2011; Wang et al. 2007),
and the versatile gene-based test (VEGAS) (Liu et al. 2010). Among them, VEGAS
performs a gene-based association test by considering either all SNPs that are mapped to the
gene or a subset of SNPs ranked by significance (through function “Top-x% test” in
VEGAS) while accounting for gene length and linkage disequilibrium (LD) structures.
Given that a gene has n SNPs for the computation of the gene-based p-value, VEGAS
simulates an n-element, multivariate, normally distributed vector using both SNPs’ p-values
and pairwise LD values among these n SNPs. VEGAS has been implemented in both online
and stand-alone tools. It is easy to use, and its computational time is moderate. One
disadvantage is that VEGAS only allows for autosomal genes due to inaccurate LD
information from sex chromosomes (Liu et al. 2010).
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The second class of methods requires individual genotype and phenotype data and involves
various regression-related strategies (Chen et al. 2010; Wang and Abbott 2008; Wu et al.
2010b). Many early works used multivariate regression to compute gene-based p-values.
These methods involve a high dimensionality of data (thus, high degree of freedom) and
ignore LD information (Mukhopadhyay et al. 2010; Wessel and Schork 2006). Recently,
several sophisticated approaches have been proposed to deal with these problems, such as
the kernel linear regression (Wu et al. 2010b) and penalized regression (Chen et al. 2010)
methods. Because this review article focuses on NAA approaches, readers who are
interested in gene based p-value methods are referred to several recent reviews for more
details (Dering et al. 2011; Ma et al. 2013; Wu and Cui 2013).

Computing gene-based p-values is critical because it is the first step in both PBA and NAA
of GWAS datasets. As shown in Figure 2, if the MinP method is used, a permutation-based
test is strongly suggested in the downstream pipeline to adjust for potential biases derived
from SNP density and/or gene size. Alternatively, if a method can take into account the
potential biases in the gene-based p-value computing step, the significance test in the
downstream pipeline would not be necessary for the purpose of adjusting for potential biases
(e.g., through permutation test). It is worth noting that intergenic SNPs, with the exception
of those located in the boundary region of genes, are largely discarded. Furthermore, genes
that currently do not have appropriate pathway or network annotations are excluded in PBA
or NAA.

Features of network data
A variety of molecular networks have been actively explored in biological systems, such as
the PPI network, metabolic network, regulatory network, gene co-expression network, and
so on. We refer to a functional protein network to represent any interactions among proteins,
including physical interactions, co-expression, and co-occurrence in literatures. The
functional protein network represents a global view of connectivity among genes in terms of
their protein interactions. It has been widely used in NAA of GWAS data, primarily because
it is straightforward in its examination of the joint genetic effects of multiple related genes.
Among the available functional networks, the PPI network has been the most popular
resource for NAA. The major sources of the protein network data include (1) large-scale
experiments, (2) computational predictions, and (3) literature mining and curation. All of
these sources of network data have been exploited in NAA of GWAS. Table 2 lists four
specific datasets, which either have previously been applied to the NAA of GWAS data or
are suitable for direct applications in disease studies.

One caveat of PPI data is that most currently available PPI data sets are static and ignore the
temporal and spatial dependence of protein interactions in real biological systems. Most of
the currently available PPI data derives from large-scale high-throughput experiments in
vitro and may not represent tissue-specific information (Barshir et al. 2013). In addition, PPI
data is currently far from being complete. It accumulates and changes over time. For
example, the BioGRID database (Chatr-Aryamontri et al. 2013), a comprehensive database
that collects genetic and protein interaction data from human and model organisms, updates
its interaction data monthly. Finally, PPI data is not error-free and may not specifically
reflect real cellular conditions.

In addition to the direct and physical interactions gleaned from PPI data, indirect
interactions relying on functional correlations could be useful for GWAS analysis (Barabasi
et al. 2011; Braun 2012; Lage et al. 2007; Vidal et al. 2011). These indirect interactions
include tissue-specific gene co-expression (Lee et al. 2011), literature co-citation, and
genetic interactions (Hu et al. 2011), among others. Compared to physical interactions, these
functional interactions are more biologically relevant to diseases or traits and, thus,
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instrumental to the discovery of meaningful subnetworks enriched with GWAS signals. For
example, disease-relevant tissue data, such as gene co-expression correlations, may be of
special interest due to its tissue-specific information, as demonstrated in specific studies of
obstructive sleep apnea (Liu et al. 2011) and autism (Ben-David and Shifman 2012). Details
of these data resources can be found in additional reviews elsewhere (Barabasi et al. 2011;
Vidal et al. 2011).

Construction of subnetworks
In general, NAA of GWAS data starts with certain pre-defined “seed” genes from the
original GWAS data. Seed genes can range from a small set of pre-selected interesting genes
(e.g., genes with p < 5×10−8) to all genes mapped onto a reference network (i.e., iteratively
take each gene as a seed). NAA expands from the seed genes to a subnetwork by searching
the whole network and then assessing the statistical significance of the resultant candidate
subnetworks. We summarized the subnetwork construction approaches in the following five
points.

Binary versus quantitative—Each gene extracted from the GWAS data is denoted by a
statistical value (e.g., gene-based p-value) to represent its disease-association level.
Depending on how these quantitative genetic signals are used, NAA methods can be
categorized into two groups (Figure 4a). The first group dichotomizes genes by selecting a
set of interesting genes (e.g., genes with p < 5×10−8) and uses these interesting genes as
input query genes (i.e., seed genes) (Rossin et al. 2011). In this group of methods, GWAS
data is only used to select interesting genes, and the subsequent analyses generally do not
require further information from the GWAS dataset (Rossin et al. 2011). The second group
of methods overlays the quantitative signal of each gene onto the whole network to build a
node-weighted network. The node weights are transformed from the association significance
values (i.e., gene-based p-values) (Akula et al. 2011; Baranzini et al. 2009; Jia et al. 2011b;
Liu et al. 2011). Then, the search process is guided by the node weights.

Topologically oriented versus genetically oriented—One advantage of network
analysis is that the topological structure of a network reflects biological interactions among
nodes (proteins encoded by genes). Previous studies in network medicine have explored a
number of similarly expressed hypotheses based on the principle of guilt-by-association,
such as “proteins involved in the same disease are more likely to interact with each other,”
or, conversely, “proteins closely located in the network tend to lead to similar disease
phenotypes” (Barabasi et al. 2011). Depending on how the topological structure is applied
within the analysis of GWAS data, NAA methods can be categorized as topologically
oriented, genetically oriented, or a combination of both (Figure 4b). Topologically oriented
methods leverage topological features such as degrees and shortest paths to build disease-
subnetworks (Lee et al. 2011). As illustrated in Figure 4b, in every subnetwork-expansion
step, those nodes that have the most important topological signatures (e.g., those nodes with
the largest degree) tend to be selected. Because of this feature, the resultant subnetwork
gleaned using a topologically oriented method greatly depends on the reference network.
Thus, topological features may be included in computation of subnetwork scores in these
methods. Genetically oriented methods use genetic signals to guide the search for disease
subnetworks (Baranzini et al. 2009; Jensen et al. 2011; Jia et al. 2011b). In the expansion
step, genetically oriented methods recruit the nodes that have the most significant
association signals (Figure 4b). Subnetwork scores are typically computed by combining the
genetic signals of all the nodes in the subnetwork in genetically oriented methods. A third
design leverages features from both types of methods. For instance, Akula et al. (2011)
calculated a combined score of a subnetwork using the Liptak-Stouffer method:
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, where zi is converted from a gene-based p-value of the component genes in
the subnetwork, and wi is the gene-based weight obtained from the modified Google
PageRank algorithm. Thus, this approach accounts for both topological and genetic
characteristics of the genes (Akula et al. 2011).

Global versus local search—Given a node-weighted reference PPI network, the search
path of a disease-related subnetwork may either reach all the nodes in the network or be
restricted to reach a certain distance from the seed genes (Figure 4c). Starting with the seed
genes, a global search theoretically allows for access to every node in the network as long as
there are available paths (Baranzini et al. 2009; Jia et al. 2011b; Lee et al. 2011). For local
searches, only the nodes and edges that are located within pre-defined distances, e.g., 2 steps
away from the query seed genes, are explored and evaluated (Akula et al. 2011; Rossin et al.
2011).

Prioritization versus combination—Some of the published methods prioritize
candidate genes, while others assess the combined effect of a set of genes without
accounting for the particular rank of each individual gene in the resultant subnetwork. The
main purpose of gene prioritization is to find disease candidate genes. Many methods for
gene prioritization (Bornigen et al. 2012; Kohler et al. 2008; Sun et al. 2009) can be adapted
to GWAS data analysis. Starting with a list of reference genes (e.g., known disease genes),
these gene prioritization methods uncover the features of the reference genes and rank the
candidate genes to identify new, potentially disease-associated genes. In GWA studies with
a multi-stage design, gene prioritization is particularly useful in the selection of candidate
genes/markers at the initial stage. Then, the prioritized genes are recruited for deep and
dense genotyping in the later stage(s) (e.g., stage 2 or stage 3 for replication). Representative
prioritization methods, such as GRAIL (Raychaudhuri et al. 2009) and DAPPLE (Rossin et
al. 2011), have the functions to facilitate candidate gene prioritization. On the other hand,
methods that focus on combined gene effects evaluate genes in a subnetwork as a whole
(Akula et al. 2011; Jia et al. 2011b) with no particular rank for each gene in the subnetwork.
A permutation test is often implemented in these methods to assess disease associations.

Direct versus indirect interactions—Most network-based methods used for the
analysis of GWAS data are built on direct interactions among proteins (Akula et al. 2011;
Baranzini et al. 2009; Jia et al. 2011b; Liu et al. 2011). Recently, indirect connections have
drawn increasing attention. These connections describe the closeness of nodes in a network
rather than relying on direct interactions. Figure 4d illustrates the scenarios of direct and
indirect interactions. For instance, two disconnected proteins in the network (nodes a and b)
that are highly reachable through the paths between them are more likely to be involved in
the same disease than two proteins that have only sparse paths between them (Figure 4d).
The diffusion kernel-based network model is one of the emerging methods that incorporate
indirect interactions (Barabasi et al. 2011; Kohler et al. 2008; Kondor and Lafferty 2002).
This type of method has been widely used in network medicine but, to date, has been rarely
applied in GWAS data. One pioneering application by Lee et al. (2011) explored six
network methods to assess their capability to boost the statistical power of GWA studies and
detect disease candidate genes. Considering their strength in the measurement of the global
distance in a network (Kohler et al. 2008; Nitsch et al. 2009), kernel-based models warrant
future expansion and applications.

Jia and Zhao Page 7

Hum Genet. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Statistical significance tests
After obtaining candidate subnetworks, an important next step is to evaluate and select
subnetworks by utilizing appropriate significance tests. Two hypotheses have been widely
formulated and followed in most GSA of GWAS data (Wang et al. 2010; Wang et al.
2011b). The competitive null hypothesis (Q1) states that the genes in a gene set have the
same association levels with the investigated disease compared with the genes outside of the
gene set. The self-contained null hypothesis (Q2) states that the genes in a gene-set are not
associated with the given disease (Figure 3). Because of the dynamics in subnetwork
searches and due to different network algorithm features, the traditional multiple testing
correction methods (e.g., Bonferroni correction) are generally not applicable to NAA. In
practice, estimation of the null distribution through randomization or permutation tests is
popular to assess the significance of the results. In general, a randomization test is typically
adopted in Q1-related methods, while permutation analysis is more appropriate for assessing
the results obtained by Q2-related methods (Figure 3).

In randomization tests, random networks are first generated to estimate the null distribution.
Then, the results obtained in the actual reference network are assessed for significance by
comparing them with the null distribution. The approaches to generate random networks are
quite diverse, including various node- and edge-related randomization strategies. A number
of previous investigations have proved that the whole human PPI network behaves in a
scale-free fashion. One feature of scale-free networks is that a small portion of nodes have
numerous interacting partner nodes (i.e., “hub” nodes/genes). Accordingly, they are more
likely to be included in subnetworks by chance in NAA. However, when generating random
network data, many methods ignore the topological features of the nodes and treat all nodes
equally. To control the potential biases, Li et al. (2009) suggested the generation of
topologically-matched random networks according to degree and clustering coefficients. In
another work by Rossin et al. (2011), random networks were built using matching node
degrees.

In permutation tests, randomized phenotype data is generated to estimate the null
distribution, e.g., by swapping case and control labels in the GWAS data. Then, subnetworks
were assessed using both the actual and permuted GWAS datasets. Permutation tests,
although often computationally intensive and requiring raw genotype data, have been found
to be effective to adjust for various biases, such as the long gene bias, as discussed in a
recent survey (Jia et al. 2010a). Permutation tests are especially applicable when the MinP
method is used. Due to its computational intensity, a permutation test cannot be practically
implemented in most online tools. However, it can be conveniently incorporated in stand-
alone computer programs. We expect that the development of future NAA tools for GWAS
data will take into consideration both computational efficiency and practical convenience.

Analysis procedures
GWAS datasets collected from different consortia, ethnic populations, or technical platforms
are now available for many complex diseases or traits. New approaches are needed to take
advantage of the multiple datasets for the same diseases or traits. In a recent publication, Jia
et al. (2012c) proposed an approach using two schizophrenia GWAS datasets, one as
discovery and another as an evaluation dataset, to find subnetworks that are consistently
highly scored in both datasets. This approach may be applied to the same analysis method
for multiple GWAS datasets (cross-dataset validation), different methods for the same
GWAS dataset (cross-method validation), or both.
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NAA Methods
There are a number of publications regarding the network analysis of GWAS data. These
publications are either methodology-oriented or discovery-oriented (Table 3). Below, we
selected several representative approaches for detailed discussion.

Methods based on jActiveModule
jActiveModule is a plugin package in the software tool Cytoscape (Shannon et al. 2003) and
was initially developed for gene expression data analysis (Ideker et al. 2002). The original
model works on a node-weighted PPI network where node weights are represented by z-
scores converted from gene-based p-values, e.g., z = Φ−1(1−p). The underlying algorithm of
jActiveModule relies on a greedy search. The algorithm starts with “seed” genes and recruits
the best nodes in the neighborhood of the seeds in each expansion step. Module expansion
stops when it does not satisfy the pre-defined criteria, e.g., if the module score increase is
too small to reach the cutoff value. Then, modules are evaluated using a randomization test.
In gene expression data and in most applications of jActiveModule to GWAS data, the
module score (zm) is computed by combining node weights using the Liptak-Stouffer z-

score method (Ideker et al. 2002), , where k is the number of nodes in the
subnetwork, and zi is the node weight. Recent studies have started to incorporate genotyping
data features in the computation of network scores based on either the correlations among
genes/SNPs (Pedroso et al. 2012) or the topological features of gene products (Akula et al.
2011).

jActiveModule is a well-developed model in Cytoscape, and it only requires a gene-based z-
score. Thus, it can be easily adapted to GWAS data analysis. For example, node weights can
be computed based on GWAS p-values instead of gene expression p-values. A protocol
called PANOGA describes the details of using jActiveModule for GWAS data (Burcu and
Osman Ugur 2012). So far, jActiveModule has been one of the most widely used network
methods in GWAS data analysis (Table 4), with applications in multiple sclerosis (Baranzini
et al. 2009), obstructive sleep apnea (Liu et al. 2011), and rheumatoid arthritis (Burcu and
Osman Ugur 2011).

While it is easy to run, jActiveModule was developed originally as a tool to analyze gene
expression data rather than GWAS data. This fact creates several potential issues. First, in
gene expression data, the majority of genes are not differentially expressed (DE) and these
gene p-values are evenly distributed between 0 and 1, with an exception of DE genes.
Therefore, the converted z-scores are expected to evenly fall into the intervals that are less
than 0 and greater than 0. In GWAS data, however, the SNP p-values, instead of gene p-
values, are presumably evenly distributed between 0 and 1, with the exception of disease-
associated SNPs. Depending on how the gene-based p-values are computed, the results
could be substantially skewed. For example, in the MinP method, gene-based p-values are
biased towards 0, causing an uneven distribution of the converted z-scores (Jia and Zhao
2012). This outcome, in turn, results in extremely high module scores, making the selection
of modules difficult (Baranzini et al. 2009; Jia et al. 2011b). To solve this problem, multiple
strategies may be considered. For instance, gene-based p-values can be computed using
more sophisticated methods rather than the MinP method (see above). Alternatively,
additional steps can be introduced in the downstream analysis to adjust for biases (Figure 3)
(Jia et al. 2012c). It should also be considered that, since jActiveModule was originally
developed for analyzing gene expression data, the permutation test for GWAS data is not
implemented in jActiveModule. When users perform an association test (Q2), additional
work is needed to implement a permutation test on the resultant modules from
jActiveModule.
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dmGWAS
dmGWAS is the first tool to implement a network-based method specifically for GWAS
data analysis (Jia et al. 2011b). It allows for a quantitative global search using the
association signals for guidance. Although built initially on the design of jActiveModule,
dmGWAS includes functions to facilitate the analysis of genetic data, such as the
computation of gene-based p-values and implementation of permutation tests. dmGWAS
implemented several methods for computing gene-based p-values, including the MinP
method, the Simes’ method (Wang et al. 2007), the Fisher’s method, and the method that
uses the smallest gene-based false discovery data value (Jia et al. 2011b; Peng et al. 2010).
However, for sophisticated methods such as VEGAS (Liu et al. 2010), the user needs to
compute gene-based p-values using independent tools first. Overall, the NAA strategy
implemented in dmGWAS is to search for subnetworks that are significantly associated with
a specific disease or trait.

NIMMI
The software tool Network Interface Miner for Multigenic Interactions (NIMMI) (Akula et
al. 2011) applies a local search to find subnetworks that have high combined scores. NIMMI
is the first NAA tool to integrate topological features with genetic signals. It computes a

combined score using the Liptak-Stouffer method, i.e., , where zi
is the z-score converted from gene-based p-values, and wi represents topological features
computed using a modified Google PageRank method (Akula et al. 2011). NIMMI requires
nodes in the subnetworks to be within a certain distance (d) from the seed nodes. A distance
of 2 was suggested in the original work (Akula et al. 2011) (Figure 4c). One disadvantage of
NIMMI is that the resultant subnetworks contain all the nodes that are d steps away from the
seed without further filtering. Correspondingly, the subnetworks would include many
unrelated nodes and tend to be too large to prioritize genes for follow up investigations.

DAPPLE
DAPPLE performs local searches and evaluates whether genes located in association loci
are significantly connected in the PPI network. In implementation, DAPPLE takes
associated loci, or the genes located within the loci, as input seed genes. Importantly,
DAPPLE’s search steps do not rely on quantitative genetic data. Two sets of interactions are
defined in DAPPLE: (1) direct interactions among any two proteins encoded by the genes
located in association loci and (2) indirect interactions, in which two association proteins are
linked through a third protein. DAPPLE also implements a series of comprehensive
randomization tests, including node-label randomization, to assess the significance of the
interactions. Because DAPPLE only needs a set of interesting genes as its input, it can be
easily extended to many other cases for the study of candidate genes that are not necessarily
derived from GWAS (Neale et al. 2012; Sanders et al. 2012). In addition, DAPPLE provides
a convenient online tool for users to upload the candidate gene list(s) for analysis.

One limitation of DAPPLE is that it heavily relies on how the association loci are defined, as
only genes located in these loci are used. So far, 5×10−8 has been widely accepted as the
genome-wide significance cutoff p-value to select disease-associated SNPs in GWA studies.
However, for studies in which no significant loci were identified by this stringent threshold
(Sullivan et al. 2008), the selection of association loci could be arbitrary. Of note, the
GWAS signals are only used in the first stage to define input genes in DAPPLE. In fact, the
search step for interactions in DAPPLE is independent of GWAS data but depends on the
reference PPI network.
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Perspectives for future work
With the rapid accumulation of GWAS data, investigators are now facing more challenges
related to advanced analyses of multiple GWAS datasets for complex diseases or traits.
These datasets were generated using different platforms, were sourced from different ethnic
populations, or were initially analyzed by different groups or consortia. NAA approaches are
expected to address issues involving multiple datasets, multi-dimensional data types, and
different types of variants. Previous studies have demonstrated the utilization of multiple
GWAS datasets to validate the discovered pathways in PBA (Fehringer et al. 2012; Wang et
al. 2009). Based on these studies, NAA is suggested to incorporate cross-dataset designs as
well. For example, candidate subnetworks identified in one GWAS dataset (discovery stage)
could be further validated in an independent GWAS dataset (evaluation stage) for the same
disease or trait using the same NAA method (Jia et al. 2012c).

Most NAA approaches discussed in this review focus on the integration of GWAS data with
PPI data. In addition to PPIs, other data, such as gene expression data at pathway levels
(Xiong et al. 2012; Zhang et al. 2012) and co-expression networks (Farber 2010), can also
be used in NAA. One recent study constructed regulatory networks consisting of SNPs and
genes as nodes and their correlations as edges (Zhu et al. 2012). Furthermore, a protein-
interaction-network-based pathway analysis (PINBPA) was proposed and successfully
applied to two large genetic studies of multiple sclerosis (International Multiple Sclerosis
Genetics Consortium 2013). Many network-related approaches that have been applied to
other biological data, such as somatic mutation data (Ng et al. 2012; Vaske et al. 2010),
mRNA abundance data (Chuang et al. 2007), and methylation data, may be adapted and
incorporated in the NAA of GWAS data. With the rapid accumulation of genetic and
genomic data, multi-dimensional integration is expected to gain more attention in the near
future than canonical single domain based approaches.

Expanding NAA to incorporate a full spectrum of genetic variants, including common, rare,
and de novo SNPs, is another potential direction. Advances in next-generation sequencing
technologies have revolutionized biological and biomedical research, including related
search methods for association signals in complex diseases and traits. The high volume of
single-nucleotide variants uncovered in each single human genome or exome creates both
challenges and opportunities for genetic studies. The richness and variety of hypothesis
testing methods in network medicine provide multiple directions to facilitate the study of
genetic variants within network data. Rare variants are typically computed for each gene by
collapsing them in gene regions. These gene-based p-values from rare variants can be
integrated into the PPI network using the same approach that is used for common variants.
For instance, one could search for subnetworks that are enriched with rare variants for a
disease. It is also of interest to test whether the genes pulled based on rare variant
associations are connected via PPIs in a non-random manner (Neale et al. 2012; Sanders et
al. 2012). Gilman et al. (2012) designed an approach named NETBAG for NAA of rare de
novo variants (Gilman et al. 2011), and they later successfully extended their approach to
diverse types of genetic variants. These works demonstrate the tendency of genetic variants
to converge on functional gene networks in schizophrenia. With this proof of concept, new
NAA approaches that incorporate various genetic data are expected to be in high demand in
the near future.

Conclusion
In summary, we discussed the main features of network-based analyses of GWAS data and
highlighted key issues in the design, implementation, and application of these network-based
methods. So far, the available methods vary in their hypothesis testing, search algorithm,
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integration strategy, and additional useful features. Specifically, we reviewed four NAA
methods in detail. We expect more GWAS data at both genotyping array and sequencing
levels to be generated in the near future. These new datasets, along with existing GWAS
datasets, will help us to fine-tune network-based methods. Furthermore, these enhanced
methods and computational tools will further help to uncover genes and subnetworks that
might play a role in complex diseases or traits.
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Figure 1.
A general pipeline for network-assisted analysis of data from genome-wide association
studies (GWAS).
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Figure 2.
Overall design of network analysis of GWAS data that addresses potential biases. On the
top, the methods in the blue box (e.g., the MinP method) may introduce biases in the
computation of gene-based statistics. Therefore, adjustments should be made in downstream
steps (blue box in the bottom) by applying a permutation test or other tests. The methods in
the yellow box compute gene-based statistics by considering the effects of gene length, LD
structure, and SNP density. Thus, an adjustment is not required in those downstream
analyses (yellow box in the bottom).
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Figure 3.
Two types of hypothesis testing in GWAS gene set enrichment analysis. Starting with the
original GWAS data, the competitive null hypothesis (Q1) tests whether the genes in a gene
set have the same association pattern compared with the remaining genes in the genome.
The self-contained null hypothesis (Q2) tests whether the genes in a gene set are associated
with the studied disease or not. To test Q1, a randomization of SNP markers or genes is
typically adopted, and to test Q2, a permutation of case/control labels is utilized.
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Figure 4.
Algorithms in network-assisted analysis of GWAS data. Nodes represent genes. Red nodes
denote seed genes. (a) Two representations of gene association signals: binary (left) versus
quantitative (right). Gene-based association signals are indicated by color and darkness: red/
white for seed/non-seed genes (left) and darkness level proportional to the association
strength (right). (b) Search methods guided by topological characteristics (left) or genetic
signals (right). Starting from a seed gene (in red), the former method searches for candidate
genes with significant topological characteristics (e.g., genes with high degree), while the
latter method searches for candidate genes with strong association signals (nodes in dark
color). (c) Search that is restricted by local paths or global paths. Nodes are categorized
according to their distance (d, defined by shortest path) from the seed gene (in red), e.g.,
nodes with d=1 (in green), d=2 (in blue), and d=3 (in purple). In local searches, only nodes
that are located within a pre-defined distance (e.g., d≤2) from the seed genes are considered.
In global searches, the search space is not defined by d but could theoretically access every
node in the network. (d) Search methods in the space of direct and indirect (dash lines)
interactions. Suppose dab represents the closeness between two nodes, a and b, in the
network. When many paths exist between the nodes, these nodes are considered to be close
to each other in network space, and their closeness (dab) is high. On the other hand, if there
are few paths (in the bottom right panel, only one path exists between nodes a and b), the dab
of these nodes is low.
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Table 1

Features of pathway-based and network-assisted analysis approaches

Feature Pathway-based analysis Network-assisted analysis

Gene set annotation Pathways or gene sets from knowledgebase A reference network

Gene set component genes Fixed Dynamic

Search for sub-pathways/subnetworks No Yes

Available for topological characteristics No Yes

Assess combined association signals Yes Available but not required

Function Focus on one specific function No particular function boundaries

Correlation amongst genes (or molecules) Not always available, e.g., GO does not have interactions
amongst genes (or molecules)

Available

Hypothesis testing Q1 vs. Q2*, pre-defined pathways Multiple and dynamic

*
Details of Q1 and Q2 are provided in Figure 3 and the main text.
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Table 4

Network-assisted GWAS studies

Phenotype/disease Method Type Epub. date Reference

Multiple sclerosis jActiveModule Methodology Mar. 2009 (Baranzini et al. 2009)

Multiple sclerosis jActiveModule Application May 2010 (Baranzini et al. 2010)

Breast cancer and pancreatic cancer dmGWAS Methodology Nov. 2010 (Jia et al. 2011b)

Obstructive sleep apnea jActiveModule Application Dec. 2010 (Liu et al. 2011)

Rheumatoid arthritis, Crohn’s
disease, height, lipids, and type 2
diabetes

DAPPLE Methodology Jan. 2011 (Rossin et al. 2011)

Crohn’s disease and type 2 diabetes Label propagation algorithm Methodology May 2011 (Lee et al. 2011)

Seven immune-mediated and
autoimmune diseases

DAPPLE Application Aug. 2011 (Cotsapas et al. 2011)

Mood disorders Michigan Molecular Interactions
(MiMI)

Application 2011 (Detera-Wadleigh and Akula
2011)

Height, Crohn’s disease NIMMI Methodology Sep. 2011 (Akula et al. 2011)

Rheumatoid arthritis PANOGA Application Oct. 2011 (Burcu and Osman Ugur 2011,
2012)

Bipolar disorder Greedy search modified from
jActiveModule

Methodology Apr. 2012 (Pedroso et al. 2012)

Bipolar disorder NetworkMiner Methodology Jun. 2012 (Garcia-Alonso et al. 2012)

Schizophrenia dmGWAS Application Jul. 2012 (Jia et al. 2012c)

Alzheimer disease DAPPLE Application Apr. 2012 (Raj et al. 2012)

Multiple sclerosis DAPPLE Application Oct. 2012 (Ragnedda et al. 2012)

Pediatric stroke dmGWAS Application Dec. 2012 (Arning et al. 2012)
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