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Abstract There are multiple roles for purinergic signalling in
both male and female reproductive organs. ATP, released as a
cotransmitter with noradrenaline from sympathetic nerves,
contracts smooth muscle via P2X1 receptors in vas deferens,
seminal vesicles, prostate and uterus, as well as in blood
vessels. Male infertility occurs in P2X1 receptor knockout
mice. Both short- and long-term trophic purinergic signalling
occurs in reproductive organs. Purinergic signalling is in-
volved in hormone secretion, penile erection, sperm motility
and capacitation, and mucous production. Changes in
purinoceptor expression occur in pathophysiological condi-
tions, including pre-eclampsia, cancer and pain.
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Conclusions

There is increasing recognition for purinergic signalling in
both male and female reproductive organs, which have not
been reviewed recently. For full accounts of cancer of various
reproductive organs see [62].

Male reproductive organs

Smooth muscle function and secretion in the organs of the male
reproductive system are under autonomic nervous control. The
seminal vesicles, prostate and related glands as well as the vas
deferens and penile vessels are innervated by short sympathetic
neurons in the pelvic plexus. There are earlier reviews that
include discussion of the involvement of nucleotides and nu-
cleosides in the complex innervation of the male reproductive
system ([14,157]; see also [66]). There are also studies of P2X
receptor immunoreactivity in male reproductive organs [227]
and of the localisation of plasma membrane-bound NTPDases
[260]. A high expression and activity of ecto-5′ nucleotidase
(CD73) in the male murine reproductive tract has also been
reported that may impact male fertility [261].
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Penis and penile erection

The actions of adenosine 5′-triphosphate (ATP) on the corpus
cavernosum of a wide spectrum of different mammalian spe-
cies were first described in 1997 [209]. ATP can induce
significant relaxations of rabbit cavernosal tissue which was
unaffected by removal of the endothelium [402]. ATP has a
powerful relaxant effect on corporal smooth muscle at high
tone or pre-stimulated tissue, but causes contractions at low
tone [443]. Both human and rabbit corpus cavernosal pre-
contracted strips relaxed to ATP [232]. The powerful relaxant
effect of ATP on the smooth muscle of the dog, rabbit and
human corpus cavernosum is about the same as that produced
by nitric oxide (NO), and it was suggested that a combination
of ATP with an NO donor might be an effective therapeutic
approach for erectile disorders [172]. The relaxant effect of
ATP and adenosine was greater in mature (24 months old)
rabbits than at 3 and 7 months [332].

Intracavernosal injection of adenosine induced a full erec-
tion in cats [394,395]. Adenosine also had prejunctional in-
hibitory actions on excitatory sympathetic cotransmission to
the rabbit corpus cavernosum, probably acting via A2B recep-
tors [79]. The effect of long-term testosterone propionate
therapy on endothelium-dependent and -independent relaxa-
tions of corpus cavernosum strips to purines was examined
[192]. It was shown that the NO synthase (NOS) inhibitor,
nitro-L-arginine methylester (L-NAME), inhibited the relaxa-
tions to adenosine 5′-diphosphate (ADP), but not to ATP or
adenosine (suggesting that P2Y1 receptors on endothelial cells
might be involved). Relaxations in response to ADP (but not
ATP or adenosine) were significantly enhanced by testoster-
one therapy. In fact, P2Y1 receptor transcripts were later
identified on the endothelial cells which line the lacunar space
and blood vessels in the penis, but not on corpus cavernosum
smooth muscle cells [308]. Functional studies showed that the
P2Y1 selective agonist, adenosine-5′-(β-thio)-diphosphate, re-
laxed the human corpus cavernosum via endothelial release of
NO [364]. Nerve-mediated relaxation of human corpus
cavernosal smooth muscle strips pre-contracted with phenyl-
ephrine is amplified by stimulating P2Y1 and P2Y2 receptors,
suggesting a purinergic relaxing mechanism separate from the
endothelium NO-mediated relaxing pathway [158]. ATP (in
contrast to ADP) acts as a potent and NO-independent relax-
ant agent of human and rabbit corpus cavernosum, although
part of its relaxant effect is attributable to adenosine, after
breakdown of ATP, acting via A2A receptors [122].

Two distinct layers of smooth muscle were identified in the
penile bulb of rats, an inner layer (parenchyma) and an outer
sheet (sac). Transmural stimulation initiated non-adrenergic,
non-cholinergic (NANC) inhibitory junction potentials in pa-
renchymal muscle, but excitatory junction potentials (EJPs) in
the sac smooth muscle [161]. It was claimed that ATP released
from nerves produces relaxation of cavernosum smooth

muscle via P2Y4 receptors on smooth muscle, while ADP
acting via P2Y1 receptors on endothelial cells produces relax-
ation via NO [72]. Modulation of cavernosum smooth muscle
relaxation occurs by activation of P2Y6 receptors via non-
neuronal and non-NO-dependent mechanisms [224]. It was
suggested that ADP-sensitive P2Y12 and/or P2Y13 receptors
might mediate relaxation of corpus cavernosum through the
release of prostanoids [112].

Both ATP and adenosine produced penile tumescence in
anaesthetised dogs, probably via adenosine A2A receptors;
pelvic nerve stimulation also produced tumescence, but this
did not appear to be via A2A receptors [307]. Experiments on
isolated rabbit corpus cavernosum suggested that A2B recep-
tors were also involved in relaxation [189]. In another paper, it
was claimed that adenosine directly relaxes cavernosal
smoothmuscle via both A2A and A2B receptor subtypes, while
it modulates sympathetic neurotransmission via A1 receptors
[404]. Activation of A1 receptors during penile erection results
in reduced noradrenaline (NA) release and reduced cavernosal
smoothmuscle contraction, thereby facilitating penile erection
[303]. Impaired adenosine signalling via A1 receptors has
been claimed to contribute to erectile dysfunction [304]. The
possibility has been raised that elevated adenosine signalling
contributes to priapism, a condition of persistent penile erec-
tion lasting at least 4 h in the absence of sexual excitation
[86,305]. Excess adenosine in penile erectile tissue in mice
lacking adenosine deaminase contributes to priapism via A2B

receptor signalling [272]. A recent review highlights adeno-
sine signalling pathways operating in penile tissue as signifi-
cant therapeutic targets for the treatment of erectile disorders
[430].

ATP was shown to dilate isolated bovine and canine penile
arteries [50]. However, EJPs were recorded in smooth muscle
cells of both penile artery and vein in response to nerve
stimulation [206], resembling the ATP-mediated EJPs record-
ed in the vas deferens.

The incidence of erectile dysfunction among patients with
renal failure is significantly higher than in the general popu-
lation. Clinical complaints include an inability to initiate and
maintain an erection. The purinergic relaxation responses in
an experimental rabbit model of chronic renal failure were
examined and the adenosine- and ATP-induced relaxations
were not impaired [203]. Corpus cavernosum from men with
vasculogenic impotence is partially resistant to adenosine
relaxation due to endothelial A2B receptor dysfunction [110].
Activation of A2B receptors on endothelial cells contributes to
penile erection via PI3K/AKT signalling cascade-mediated
endothelial NOS activation [432]. It was shown in a study of
alloxan-induced diabetic rabbits that there was impairment of
both direct P2Y4 receptor-induced muscle relaxation and
endothelium-dependent ADP P2Y1 receptor-mediated relaxa-
tions [72]. The possibility that the responses of the vas
deferens to ATP via P2X1 receptors are heightened in
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overactive ejaculatory reflex associated with premature ejac-
ulation has been considered [1].

Hypothyroidism, where testosterone levels are low, has
been shown to lead to impotence in some men. In an exper-
imental rabbit model of hypothyroidism, it was shown that
relaxation responses to ATP, α,β-methylene ATP (α,β-
meATP) and electrical field stimulation of corpus cavernosum
strips pre-treated with phenylephrine were reduced signifi-
cantly, while relaxations to adenosine were unchanged
[448]. Impaired erectile function has been reported in CD73-
deficient mice that resulted in reduced endogenous penile
adenosine production [431]. Human corpus cavernosum from
men with vasculogenic erectile dysfunction exhibit decreased
ectonucleotidase NTPDase/CD39 activity leading to persis-
tent extracellular ATP accumulation [111]. As a consequence,
alteration of vascular responses of strips of corpus
cavernosum from impotent patients to stable ATP analogues
may be due to P2 purinoceptor desensitisation. In an earlier
paper, this group showed that endothelial dysfunction in men
with vasculogenic erectile dysfunction is associated with the
loss of adenosine A2B receptor activity in penile vessels [110].
In a later study by Faria and colleagues, it was shown that
relaxation of human corpus cavernosum by P2 receptor ago-
nists was severely attenuated in erectile dysfunction patients
[113]. They suggest further that relaxation in control subjects
may be mediated by ADP-sensitive P2Y12 receptors, with a
shift towards activation of P2Y1 and perhaps P2Y13 receptors
in erectile dysfunction patients. ATP release from cavernosal
tissue is greater in patients following prostatectomy as com-
pared to patients with organic erectile dysfunction [202].
Severe bladder dysfunction secondary to chronic partial blad-
der outlet obstruction induced morphological, physiological
and molecular dysfunction of corpus cavernosum smooth
muscle, including significantly decreased relaxation responses
to nerve stimulation and to ATP [240].

ATP can contract corpus cavernosum smooth muscle by
activating P2X receptors, while it evokes relaxation via P2Y1

and P2Y2 receptors in the diabetic rat [158]. It was suggested
that activating ATP based pathways can restore erectile func-
tion when NO bioavailability is impaired by diabetes.

Testis

Sperm cells are generated in the testis. Adenosine A1 receptors
were identified in rat testis using labelling with 3H-
cyclohexyladenosine (CHA) [296]. Steroid production in iso-
lated Leydig cells was induced by adenosine [347]. The rat
testes contain a dense population of A1 receptors mediating
inhibition of adenylate cyclase activity [387]. Binding studies
with CHA in rat testes showed that A1 receptors were local-
ised in Sertoli cells of the seminiferous tubules [284]. A later
study by this group showed that treatment of cultured Sertoli
cells with pertussis toxin reversed the adenosine-mediated

inhibition of cyclic AMP (cAMP) accumulation and potenti-
ated the cAMP response to follicle stimulating hormone
(FSH) [185,285]. A low affinity binding site for N6-substitut-
ed adenosine derivatives in a rat testis membrane preparation
showed the typical pharmacological profile of the cloned rat
A3 receptor [265]. The TM4 cell line is derived from a primary
culture of Sertoli cells isolated from mouse testis. Selective
agonists to both A1 and A2 receptors inhibited proliferation of
the TM4 cells [362].

The distribution of P2X receptor subtypes in the rat testis
was examined immunohistochemically [145]. P2X1, P2X2,
P2X3 and P2X5 and P2X7, but not P2X4 and P2X6, receptors
were localised in the testes. Blood vessels displayed P2X1 and
P2X2 receptor immunoreactivity. P2X2, P2X3 and P2X5
receptors were expressed in the various germ cell types
throughout the different stages of the cycle of the seminiferous
epithelium. P2X4 receptor mRNA was expressed in the rat
testis [44]. Sertoli cells also showed differential staining for
P2X2 and P2X3 receptors during the cycle of the seminiferous
epithelium, while P2X7 receptor expression was present
throughout all stages. It was suggested that purinergic signal-
ling may play a role in controlling the maturation of germ cell
subsets of different developmental ages that exist alongside
each other in the adult testis.

The Sertoli cells from the mammalian testis release several
proteins and fluid into the lumen of the seminiferous tubules
to play a key role in germ cell development. The main mes-
senger of the response of immature Sertoli cells is FSH. A fast
and biphasic increase in [Ca2+]i was evoked when Sertoli cells
were exposed to ATP [221]. P2 receptors on Sertoli cells are
associated with phosphoinositide turnover and are activated
by ATP and uridine 5′-triphosphate (UTP) suggesting that
P2Y2 or P2Y4 receptors are involved. ATP and UTP had
profound effects on FSH responsiveness [123]. Rapid and
large accumulation of inositol 1,4,5-trisphosphate (InsP3) in
primary cultures of rat and mouse Sertoli calls were evoked by
ATP, in keeping with P2Y2 or P2Y4 receptor activation [355].
ATP depolarises and produces an increase in [Ca2+]i from
intracellular stores in rat Sertoli cells, consistent with P2Y
receptor activation, but it also induces a selective Na+ influx
from the extracellular medium consistent with activation of
P2X receptors [126]. Prolonged treatment of cultured Sertoli
cells with purinergic agonists for A1 and P2 receptors led to an
increase in aromatase, γ-glutamyl transpeptidase activities
and transferrin secretion [271]. Oestradiol secretion in rat
Sertoli cells was produced by extracellular ATP via both
P2X and P2Y receptors, which led to increases in both
[Ca2+]i and [Na+]i and membrane depolarisation [351].
mRNA for P2Y1, P2Y2 and P2X4 and P2X7 receptors was
expressed in cultured rat Sertoli cells [214]. It has been
claimed that mitochondria are essential components of
Sertoli cell signalling that control purinergic Ca2+ responses,
mediated by P2X2 and P2Y2 receptors [414].
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During spermatogenesis, germinative cells are supported
by Sertoli cells which have their secretory activity precisely
regulated by germinative and myoid peritubular cells of the
seminiferous tubules that make up the bulk of the testis.
Extracellular ATP and its breakdown product adenosine are
both involved in this process after ATP and adenosine are
released from Sertoli cells during paracrine regulation of the
maturation process [141]. Extracellular inosine increases
ERK1/2 and p38 phosphorylation in Sertoli cells, possibly
through A1 receptor activation [383]. Sertoli cells are key cells
in the development and maintenance of stem cell spermato-
genesis as well as in the secretion of ATP activated Cl−- and
K+-rich fluid into the lumen of seminiferous tubules [20].
Extracellular inosine participates in tumour necrosis factor-α
(TNF-α)-induced NO production in cultured Sertoli cells [89].
EctoATPases and adenosine deaminase have been identified
and characterised in rat Sertoli cells [26,73].

Leydig cells, lying between the seminiferous tubules in the
testis, secrete androgens in response to luteinising hormone
(LH) from the anterior pituitary gland. Activation by ATP of
rat Leydig cells stimulates testosterone secretion via a mech-
anism dependent on the influx of Ca2+ from the external
medium [128], implying mediation via a P2X receptor sub-
type. The pharmacological features of the P2X receptor in-
volved were most similar to the P2X2 subtype [324]. Leydig
cells produce androgen, which is dependent on androstenedi-
one, the precursor of testosterone synthesis and on activation
of the microsomal enzyme 17β-hydroxysteroid dehydroge-
nase (17βHSD). ATP generation is via the glucose transport
system, which is required for the activation of 17βHSD in the
last step of androgen biosynthesis [200]. Extracellular pyri-
dine dinucleotides and adenosine modulate the activity of
17βHSD [120]. Sympathetic innervation of human Leydig
cells and its influence on the secretion of testosterone probably
involves ATP release as a cotransmitter with NA [126].

In patients with cystic fibrosis transmembrane regulator
(CFTR)-mediated infertility with azoospermia or severe oli-
gozoospermia, change in the gene expression of the ATP-
binding cassette superfamily transporter is involved [223].

Important regulators of the male reproductive system are
thyroid hormones, which modulate the extracellular ATP
levels in hypothyroid cultured Sertoli cells. The effect of
congenital hypothyroidism and thyroid hormone supplemen-
tation on NTPDase activities in Sertoli cells influences the
actions of adenosine and ATP on reproductive functions
throughout development [455].

Germ cell death is part of the regulation of normal testicular
function and disruption of this orderly process is associated
with several male reproductive disorders. It was considered
that the mitochondrial ATP production machinery plays an
important role in regulating primary pathways of human male
germ apoptosis, although there seems to be a secondary path-
way of testicular apoptosis that does not require mitochondrial

ATP production [106] and perhaps involves P2X7 receptors.
The antiviral drug, acyclovir, a synthetic purine nucleoside
analogue, induces testicular toxicity by adverse effects on the
sperm parameters and serum level of testosterone in male rats
[293].

Sympathetic and sensory nerves supply the rodent testicu-
lar artery and the pampiniform plexus, a venous network that
surrounds it. Innervation is largely confined to the capsule of
the testes and superficial blood vessels, suggesting a role in
the control of temperature. Smooth muscle is present in the
testicular capsule of the rat, mouse, rabbit and man. ATP,
released as a cotransmitter from sympathetic nerves, stimu-
lates contraction of testicular smooth muscle, probably via
P2X1 and/or P2X2 receptors [23]. Using Western blots it
has been shown that mouse Leydig cells express P2X2,
P2X4, P2X6 and P2X7 receptor subunits and heteromeric
P2X2/4/6 receptors may also be present [17].

Vas deferens

The vas deferens is an important organ of the male reproduc-
tive system mainly concerned with transporting sperm from
the testes to the penis during ejaculation. The vas deferens
store mature spermatozoa and is responsible for dispersing
sperm into the urethra to be combined with other components
of sperm prior to ejaculation. The sympathetic nerve-vas
deferens preparation, introduced by Huković in [171] has
been used as a model to study autonomic neuromuscular
transmission ([64,65]; see [60,67,331,435]).

Burnstock and Holman [63–65] studied the electrophysi-
ology of sympathetic neurotransmission in the guinea-pig vas
deferens. They showed that EJPs in smooth muscle in re-
sponse to single nerve pulses summed and facilitated, until
at a critical depolarisation threshold spikes were initiated
associated with contraction. However, they were puzzled that
adrenoceptor antagonists did not abolish the EJPs, NA being
established as the sympathetic neurotransmitter at that time.
Over 20 years later, it was recognised that ATP, acting as a
cotransmitter with NA, was responsible for the EJPs, which
were blocked by the ATP receptor desensitiser α,β-meATP
[375]. David Westfall and colleagues were the first to demon-
strate that ATP produced contraction of the vas deferens when
released as a cotransmitter with NA from sympathetic nerves
[114,377,434]. The non-adrenergic contractile component
of the responses to sympathetic stimulation was antagonised
by arylazido aminopropionyl ATP [115], suramin
[102,258,374,422], pyridoxal-phosphate-6-azophenyl-2′,4′-
disulphonic acid (PPADS; [266]), NF023 [378] and
desensitised by α,β-meATP both in vitro and in vivo
[12,57,268,375]. 6-Hydroxydopamine (6-OHDA) abolished
both adrenergic and purinergic components, supporting the
view that they were cotransmitters in sympathetic nerves
(Fig. 1; [9]). ATP and its breakdown products ADP, adenosine
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monophosphate (AMP) and adenosine were detected in the
surfusate during transmural stimulation of nerves in the vas
deferens [234,235]. As an alternative explanation Neild and
Hirst proposed in the mid 1980s that EJPs were due to NA
acting on hypothetical γ-adrenoceptors [301]. This was much
debated at the time [35,166,376]. However, it was shown that
NA, unlike ATP, did not mimic the EJP [377] and that reser-
pine, which depleted NA but not ATP, failed to affect the rapid
component of sympathetic nerve-modulated responses
(Fig. 2; [208]), and the γ-hypothesis was abandoned. Direct
evidence was presented for concomitant release of NA, ATP
and neuropeptide Y (NPY) from sympathetic nerves supply-
ing the guinea-pig vas deferens [187]. A more recent paper
described a purinergic component of sympathetic nervous
control of the human vas deferens [22]. Rapid emission of
sperm into the urethra prior to ejaculation is mediated by the
fast purinergic component of the contraction, while the
sustained noradrenergic contraction prevents any reflux into
the vas deferens during ejaculation. Electrophysiological stud-
ies of the vas deferens to study packaged release of ATP from

sympathetic nerve varicosities have been carried out (see
[34,41,51,53,388,452]). Secretion of transmitters from a sin-
gle varicosity was shown to be intermittent, with only a small
percentage of varicosities releasing transmitters during sym-
pathetic nerve stimulation. All varicosities secrete ATP [186],
release is quantal [226] and Ca2+-dependent [251]. There is
regional variation, with dominance of purinergic signalling at
the prostatic segment of the vas deferens, while noradrenergic
signalling was more prominent in the epididymal segment
(Fig. 3a and b) [97,211,345].

Neuromodulation of transmitter release is via prejunctional
A1 adenosine receptors [255,398] as well as receptors to NA
(see [400]), nicotine, γ-aminobutyric acid, NPY, histamine,
prostaglandins, angiotensin, opioids, calcitonin gene-related
peptide and cannabinoids (see [67,99]). There is
postjunctional synergism by the sympathetic cotransmitters
NA and ATP [165,201]. NA potentiates the contractile re-
sponses of the vas deferens to ATP via a protein kinase C
(PKC) mechanism that involves the inhibition of myosin light
chain phosphatase and subsequent calcium sensitisation

Fig. 1 Release of endogenous ATP from control (n =32), 6-OHDA-
pretreated (n =7), TTX- (16 μM, n =7) and guanethidine (GUAN)-ex-
posed (5 μg/ml, n =7) guinea-pig vasa deferentia during field stimulation
at 8 Hz (0.5 ms, 20 V).Upper panel : mean ± SEM nmol of ATP released/
min per g of vas deferens. Lower panel : contractile responses to field
stimulation. The vasa deferentia were stimulated for 1 min as denoted by
the upward bracket. ***P <0.001. (Reproduced from [208], with permis-
sion from Elsevier)

Fig. 2 Release of endogenous ATP from control (n =32) and reserpine-
pretreated (n =12) guinea-pig vasa deferentia during field stimulation at
8 Hz (pulse width 0.5 ms, 20V).Upper panel : mean ± SEM nmol of ATP
released/min per g of vas deferens. Lower panel : contractile responses to
field stimulation. The vasa deferentia were stimulated for 1 min as
denoted by the upward bracket. Note that the second slow phase of the
mechanical response has gone in the reserpine-pretreated tissue.
(Reproduced from [208], with permission from Elsevier)
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[373]. Prejunctional P2Y receptors have also been shown to
inhibit, while P2X receptors facilitate transmitter release
[330]. ATP and NA appear to be released from different
populations of vesicles (see [104]). Postjunctional
neuromodulation also occurs [96,290].

Ectonucleotidase activity has been described on smooth
muscle membranes of the vas deferens, including 5′-nucleo-
tidase [219,274]. Sympathetic purinergic neurotransmission
was enhanced by the ecto-ATPase inhibitor, ARL67156, in
the guinea-pig vas deferens (Fig. 3c; [143,436]). Soluble
nucleotidases were shown to be released together with trans-
mitters from sympathetic nerves supplying the vas deferens as
a novel mechanism for neurotransmitter inactivation
[399,437].

The main smooth muscle receptor to ATP is the P2X1 ion
channel receptor, leading to increase in intracellular calcium
and the fast component of contraction. P2Y2 receptors medi-
ating contraction of the rat vas deferens have also been
claimed [58], while P2Y1 receptors mediate relaxation to
ATP [47]. Nifedipine blocked P2X-mediated responses to
ATP, but not to NA [250,389]. Clusters of P2X1 receptors

on smooth muscle opposite close sympathetic terminal vari-
cosities were described in the mouse vas deferens [27]. P2X1
receptor internalisation has been reported after exposure to the
agonist α,β-meATP [105], perhaps underlying the mecha-
nism of desensitisation. Perinuclear immunoreactivity for
P2X7-like receptors has been reported in smooth cells of the
guinea-pig vas deferens [270]. It has been claimed that P2X2
receptors expressed by interstitial cells of Cajal in vas deferens
are involved in semen emission [68].

During developmental, changes in purinergic signalling in
the vas deferens occur later than in the gut, because rats are not
sexually active until about 10 weeks, although the muscle
morphology of the vas deferens appeared to be mature by
day 35 [131]. EJPs in response to nerve stimulation and ATP
were not observed in the vas deferens of mice of less than
18 days postnatal [139]. Another early study showed that at
3 weeks postnatal in the rat (the earliest time studied) the
responses of the vas deferens to field stimulation with single
or trains of pulses lacked the adrenergic component, although
the non-adrenergic (purinergic) component was present [248].
Responses to ATP first appeared at day 15 and increased with
age [169]. Adenosine, acting via prejunctional A1 receptors,
inhibited nerve-mediated contractions when they were first
seen at day 15, but its actions decreased with age [169].
Inhibitory postjunctional A2-like receptors and prejunctional
A1 receptors were present from days 10 and 15, respectively
([318]; Fig. 4). They also identified postjunctional excitatory
A1 receptors that only appeared after day 20. Expression of
P2X receptors also occurred at day 20 [168]. Changes in
sympathetic nerve-evoked contractions of the circular muscle
layer of the guinea-pig vas deferens showed a significant
decrease with increasing age, apparently due to postjunctional
rather than prejunctional mechanisms; responses to α,β-
meATP decreased in parallel [338]. An increase in P2X1
receptor mRNA expression was shown between postnatal
days 10 and 42 [238]. Both pre- and post-junctional mecha-
nisms caused the maturation of fast purinergic junctional
transmission of the longitudinal muscle of the mouse vas
deferens between 21 and 42 days postnatal [239].

Fig. 3 a and b Antagonism of adrenergic and purinergic activity. b
Inhibition of the electrically evoked twitches after incubation of the
tissues for 10 min with 10 μM α,β-mATP. c Inhibition of the electrically
evoked twitches after incubation of the prostatic (n =10) and epididymal
(n =8) segments with 1 μMprazosin for 20min. Bars represent SEM. *P
<0.005. Seven separate prostatic and epididymal segments of rat ductus
were utilized. Symbols as in b . (Modified from [345], with permission
from Elsevier.) c The time course of the effect of ARL 67156 on
neurogenic contractions evoked by trains of pulses for 20 s at 2 Hz.
The trace shows contractions recorded at 10-min intervals. ARL 67156
(100 μM) was added immediately after the end of the control response
(first panel), left in contact with the tissue for 30 min (second, third and
fourth panels), then washed out and stimulation repeated (fifth panel).
(Reproduced from [436], with permission from John Wiley & Sons)

Fig. 4 Diagram summarizing the development of functional responses
mediated by purine receptors in the rat vas deferens. The dashed lines
represent ages at which it was not possible to study functional responses,
and the solid lines show when responses were observed, with the slope of
the line indicating whether a response, in general, increased or decreased
with age. (Modified and reproduced from [168], with permission from
Elsevier)
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By analogy with the release of transmitters from endothe-
lial cells lining blood vessels (see [61]) and urothelial cells in
bladder and ureter [212,421], it was shown that prostaglandin
E2 was released from epithelial cells of the rat vas deferens in
response to neurally released ATP acting via P2Y receptors to
mediate neurogenic contractions [353].

Data about the role of ATP as a cotransmitter with NA in
the vas deferens from humans is conflicting. Early studies
suggested that sympathetic neuromuscular transmission was
largely by NA [16,38,163]. However, staining with quina-
crine, which indicates high ATP levels, was described in nerve
terminals in human vas deferens [11] and the involvement of
both P2X1 receptors and α1-adrenoceptors in neurotransmis-
sion was reported [22]. A recent paper has shown that there is
purinergic transmission to the longitudinal, but not circular
muscle, which might explain some of the earlier ambiguities
[13]. P2X1 receptor antagonists acting as non-hormonal male
contraceptives has been proposed (see [101,294]), but the
effectiveness of such drugs in man is not yet established.
However, a purinergic cotransmitter pathway in the vas
deferens of man appears to be present [101]. In P2X1
receptor-deficient mice, contractions of the vas deferens to
sympathetic nerve stimulation were reduced by up to 60 %
and there was a 90 % decrease in male fertility [294].

An enhanced initial fast component of cotransmission of
the vas deferens in response to sympathetic nerve stimulation
from spontaneously hypertensive rats (SHR) was described in
1985 [415]. This appears to be in keeping with reports of a
significant increase in the purinergic component of
cotransmission from sympathetic nerves supplying blood ves-
sels of SHR (see [333]). A reduction in purinergic
prejunctional neuromodulation via A1 receptors in SHR has
also been described [176] and other possible sites of adenosine
malfunction in hypertension discussed [21]. In streptozotocin
diabetic rats after 8 and 12 weeks, there was an increase in the
purinergic component of the responses to sympathetic nerve
stimulation in the vas deferens [427], although an earlier paper
concluded that sympathetic neuropathy occurred in the vas
deferens of the streptozotocin-diabetic mouse [188]. Chronic
alcohol treatment differentially affects noradrenergic and
purinergic responses in the rat vas deferens, perhaps modify-
ing male reproductive tract function [49,197].

Seminal vesicles

Seminal vesicles are a pair of male accessory sex glands that
open into the vas deferens before it joins the urethra. They
secrete most of the liquid component of semen.

ATP was considered in an early paper as an excitatory
transmitter in response to hypogastric nerve stimulation to
the guinea-pig seminal vesicle [297]. EJPs in response to
nerve stimulation were recorded in the circular muscle of the
guinea-pig seminal vesicle, resembling those mediated by

ATP in the vas deferens [309]. Evidence was presented that
ATP was involved as a cotransmitter in the hypogastric nerves
supplying the guinea-pig seminal vesicles [269,320,424].
Endothelin (ET)-1 causes modest tonic contractions of the
rat seminal vesicle via ETA receptors and selectively potenti-
ates the motor responses to ATP [246].

Epididymis

The epididymis is a highly convoluted tube about seven
metres long in man that connects the testes to the vas deferens.
Spermatozoa, entering the epididymis from the efferent ducts
of the testes, undergo maturation as they progress through the
epididymis in response to contractions.

ATP stimulates via P2 receptors short circuit currents in
primary monolayer cultures of rat epididymal cells when
applied to the apical, but not to the basolateral side of the
monolayer and ATP included in the luminal perfusion solution
caused an increase in water and Cl− secretion [231,441]. The
authors noted that spermatozoa contain high levels of ATP and
it has been proposed that ATP released from spermatozoa may
affect anion and fluid secretion by the epididymis. ATP-
activated cation conductance in human epididymal cells may
be responsible for secreting K+ across the epididymal epithe-
lia, resulting in a much higher K+ concentration in the lumen
of the epididymis than in the blood [74]. ATP activates both
Ca2+ and cAMP-dependent Cl− conductances in rat epididy-
mal cells [75]. ATP is released from principal cells in the
cauda epididymis of mice and evidence presented that the
CFTR is involved in the release mechanism [354]. Since
mutations of CFTR are a leading cause of infertility, the
authors propose that defective ATP signalling in the epididy-
mis might contribute to the dysfunction. It has been claimed
that pannexins may play a role in ATP secretion into the
epididymal lumen and basal extracellular spaces for functions
involving sperm transport and maturation [405].

Evidence was presented that both ATP and NA act as
cotransmitters in sympathetic nerves supplying the smooth
muscle of the rat cauda epididymis involving P2X and α1-
adrenoceptors, respectively [416]. Prejunctional inhibitory
neuromodulation of nerve-mediated contractions by P1 and
possibly P2Y receptors was later proposed [417]. Both A1 and
A2A receptor subtypes appear to be involved [162]. The
sympathetic nerves supplying the cauda epididymis mediate
the ejaculatory contraction at orgasm, with both cotransmitters
NA and ATP involved. When α,β-meATP, which is a selec-
tive desensitiser of purinergic transmission, was injected di-
rectly into the cauda epididymis, fertility of male rats was
impaired [335].

Using immunohistochemistry and RT-PCR, P2X1, P2X2,
P2X4, P2X5 and P2Y1 and P2Y2 receptor subtype protein and
mRNAwere identified in the mouse epididymis and shown to
mediate Cl− fluid secretion from epididymal epithelium and
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sperm maturation [365]. In a more recent paper, P2X3 and
P2X6 receptor genes were also identified in rat epididymal
epithelial clear cells as well as A1, A2B and A3 adenosine
receptor genes [33]. They suggest that activation of these
receptors may play a significant role in luminal acidification
in the epididymis, a process that is crucial for the establish-
ment of male fertility.

Prostate

The fluid secreted by the prostate during ejaculation consists
of about a third of the volume of semen. Nerve stimulation
responses of the smooth muscle of the prostate gland were
inhibited by the prejunctional action of adenosine [327]. ATP
and UTP caused an increase in outward current and
hyperpolarisation of isolated rat prostate secretary epithelial
cells, perhaps controlling exocrine secretions [204].

ATP is an excitatory cotransmitter with NA to the smooth
muscle and fibromuscular stroma of the prostate gland of rat
and guinea-pig [56,418]. The P2 receptor antagonist, suramin,
attenuates nerve-mediated contractions of the guinea-pig pros-
tate [225]. P2 receptors have been shown to be present in the
human prostate, including P2Y1 receptors [181] and P2X1
receptors [205,244]. P2X1 receptors were also expressed in
the rat prostate [227]. Human prostate epithelial cells express
P2X1, P2X2 and P2X7 receptors [371]. It was shown further
that expression of these receptors is low in healthy men, but
with the development of prostatic cancer their expression
increases. Prostate expression of P2X1, P2X2 P2X5 and
P2X7 receptors in rats decreases with age, while expression
of P2X3, P2X4 and P2X6 receptors increases [369].
Ectonucleotidases have been identified in the human prostate
[215]. Histamine, acting via H1 receptors, potentiates nerve-
mediated contractions of the guinea-pig prostate by
postjunctional enhancement of the response to ATP [196].
ATP modulates the release of NA from sympathetic nerves
supplying the prostate via two different prejunctional recep-
tors, namely A1 and P2Y receptor subtypes [289]. Activation
of adrenergic receptors in the rat prostate triggers the release of
ATP both in vitro and in vivo [295].

A2B receptors were claimed to be present on human pros-
tatic stromal cells [83]. Adenosine A1 and A2A receptors
modulate α1-adrenoceptor-mediated contractions of human
cultured prostate stromal cells [328]. Transgenic mice with
disrupted A2A receptors have reducted nerve-mediated con-
tractions of the prostate [155], suggesting that prejunctional
A2A receptors facilitate sympathetic neurotransmitter release.

Purinergic drugs have been considered for the treatment of
benign prostatic hyperplasia [15]. Injection of botulinum tox-
in, which is known to reduce release of ATP as well as
acetylcholine [249], into the prostate have been used to treat
bladder obstruction hyperactivity, since it decreases prostate
size and thereby improves urine flow rate [82].

Multiple P1 and P2 receptors are expressed by prostate
cancer cells [78,180,363,428]. For a detailed coverage of the
involvement of purinergic signalling in malignant prostatic
hyperplasia see [62].

Sperm

ATP is obligatory for sperm movement. Sperm develop their
motile capacity during maturation in the epididymis, during
which sperm exonemes change their sensitivity to ATP [447].
Measurement of the ATP concentration in semen has been
used to estimate the motility and energy status of human
spermatozoa and has been recommended as a method to
define optimal conditions for sperm function [325,380], al-
though other groups concluded that ATP measurement had
only limited value in the evaluation of semen quality
[267,273]. Deficient generation of ATP may cause low
sperm motility in some, but not all, conditions of sperm
infertility [242]. In P2X1 receptor knockout mice, there
was diminished fertility with decreased numbers of sperma-
tozoa in the ejaculate [294].

Changes in ATP content of sperm depends on temperature
[71,379]. Spermatozoal ATP concentrations decrease during
passage through the epididymis [129]. High flagellar beat
efficiency that occurs during hyperactivation is related to a
fall in intracellular ATP levels [182]. ATP-supplemented me-
dium has been used for the conservation of human semen for
use in artificial insemination [91]. ATP concentration and
ATP/ADP ratios in human sperm appear to be unrelated to
fertility [419]. Reactive oxygen species, which inhibit sperm
motility, is associated with loss of intracellular ATP and mo-
tility of spermatozoa ceased when the concentration of ATP
was reduced by 85±5 % [88]. Prostasomes transmit signalling
complexes between acinar epithelial cells of the prostate and
sperm cells and have the capacity for ATP formation [349].

Evidence was presented that an ATP receptor in the egg
membrane may be the recipient target for ATP released from
sperm, where ATP-induced increase in sodium permeability
mediates the initial sperm and egg signal in the fertilisation
process [218]. Guanethidine-induced sympathectomy delayed
epididymal transit, but did not produce qualitative changes in
sperm [195].

In the trout, extracellular ATP and adenosine were shown to
influence the in vitro proliferation of spermatogonia and it was
suggested that they may be released from nerves to influence
the induction, speeding up, then slowing down of spermato-
genesis [243]. In humans, extracellular ATP induces signifi-
cant increase of sperm fertilising potential and the use of ATP
for in vitro treatment of spermatozoa during in vitro
fertilisation (IVF) for male factor infertility was proposed
[350]. Preincubation of fresh spermatozoa with adenosine
before the transient co-incubation IVF can also improve the
monospermy rate in pigs [137]. Freeze-thawing spontaneously
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activated sperm motility did not negatively affect fertility in
the carp [48]. The post-thaw motility of avian sperm was
improved with a combination of ATP and dimethylacetamide
[42]. Cryopreserved sperm penetrated rat oocytes when the
gametes were cultured in an ATP- and dibutyryl cAMP-
containing medium and the resultant embryos formed
blastocysts [445].

While early papers considered the role of ATP in terms of
its role largely as an energy source for mitochondrial respira-
tion in sperm, from the early 1990s the possible roles of ATP
and its breakdown product, adenosine, were also considered
as extracellular signalling molecules. For example, the stimu-
latory affect of adenosine by regulating adenylate cyclase
activity in the fertilising ability of mouse sperm in the early
stages of capacitation, i.e., the physiological changes needed
for sperm to penetrate and fertilise an egg [164,386]. Ecto-5′
nucleotidase was abundantly detected in the corpora lutea of
the ovaries; it showed changes during the oestrous cycle,
being maximum coinciding with female sexual receptivity. It
was speculated that the high levels of adenosine generated at
that time might contribute to sperm capacitation, thus signif-
icantly influencing fertility [7]. Adenosine was shown to act
via A2 receptors and adenosine stimulates sperm motility via
A2 receptors [119,132] and to stimulate human sperm motility
via A2 receptors [134,366]. In a later study A1 receptors were
also identified on epididymal bovine spermatozoa [277–279].
A1 receptor agonists induce calcium release and transient
InsP3 increase, capacitance and increase in acrosome reaction
rate in human sperm cells [10]. A significant reduction in the
number of pups produced by A1 receptor knockout mice
suggests that A1 receptors must be fully operative to accom-
plish the optimal degree of capacitation and thereby
fertilisation [280] involving modulation of classical Ca2+-de-
pendent PKC isoforms and upregulation of the ERK1/2 phos-
phorylation [281]. In the hamster, an influx of calcium accom-
panies capacitation [439] and this may be induced by extra-
cellular ATP. Extracellular ATP was shown to be a trigger for
the acrosome reaction in human spermatozoa, via P2 receptors
but the subtype involved was not clear at that time [125]. In a
later paper from this group it was suggested that a P2X
receptor was involved that mediated transient Na+ influx
[127]. Later it was claimed that only a limited population of
human spermatozoa has the potential to undergo the acrosome
reaction stimulated by ATP and progesterone [401]. Another
study suggested that ATP induces acrosomal exocytosis via a
P2Y receptor. This leads to an elevation of [Ca2+]i and to
activation of PKCα, which phosphorylates proteins, partici-
pating in the cascade leading to the sperm acrosome reaction
[247].

Guanine, guanosine, inosine and adenosine were found in
large amounts in human seminal plasma and more significant-
ly higher in the seminal plasma of oligozoo- and azoospermic
men [109]. Guanosine triphosphate had earlier been shown to

regulate sperm adenylate cyclase activity [164]. Both
fertilising promoting peptide and adenosine stimulate capaci-
tation and inhibit spontaneous acrosome loss in epididymal
mouse spermatozoa [138].

A detailed study of the expression of P2X receptor sub-
types on the various germ cell types throughout the different
stages of the cycle in the seminiferous epithelium within
which spermatogenesis takes place from sperm spermatogo-
nia through spermatocytes to spermatids [145]. P2X2 and
P2X3 receptors were always observed together on the same
cells at the same stages; P2X7 receptor expression was present
throughout all stages, P2X5 receptors were expressed in the
later stages. It was suggested that purinergic signalling may
play a role in the maturation of germ cells at the different
developmental ages that exist alongside each other in the adult
testis (see Table 1). P2X1, P2X2, P2X3 and P2X4 receptors
were localised in the head, probably on the acrosome, of
immature sperm in human, mouse and hamster caput epidid-
ymis, but this staining was reduced progressively through the
epididymis and was absent on mature sperm in the cauda
epididymis, except in humans where P2X4 receptors were
retained in the cauda epididymis [24] These changes in
localisation of P2X receptors were coincident with the
maturational changes seen in sperm as they travel through
the epididymis, suggesting a role for purinergic signalling
in sperm maturation and possibly fertility. P2X2 receptors
have been identified on mouse epididymal sperm, localised
to the sperm midpiece [241]. ATP-induced current on
mouse spermatozoa was mediated by P2X2 receptors;
however, despite the loss of ATP-gated current, spermato-
zoa from P2X2 knockout mice had normal progressive
motility, hyperactivated motility and acrosome reactions
[300]. Nevertheless, fertility of male P2X2 knockout mice
declined with frequent mating over days, suggesting that
P2X2 receptors add a selective advantage under these
conditions.

Sperm preincubation with oestradiol 17βE2 inhibited the
effects of extracellular ATP on sperm plasma membrane po-
tential variations and the acrosome reaction [352].
Extracellular ATP improves human sperm motility parameters
and provides a rational explanation for increased IVF percent-
ages when sperm is treated with ATP [103]. The effects of
ATP on acrosomal exocytosis, protein tyrosine phosphoryla-
tion and sperm maturity parameters were quantified. While
ATP did not affect acrosomal exocytosis or protein tyrosine
phosphorylation in sperm from healthy donors, it significantly
altered several motility parameters, with the largest effect
manifested in increased curvilinear velocity and percentage
hyperactivation. ATP similarly affected sperm selected for
poor motility and thawed cryopreserved sperm, although to
a lesser extent on spermwith normal motility. These important
findings constitute a novel therapeutic modality in the treat-
ment of male infertility. Extracellular ATP was shown to
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similarly alter motility and improve the fertilising capacity of
mouse sperm [344].

Spermatozoa possess a high level of ecto-ATPase activity
[256]. The effect of ATP and adenosine on sperm function
could be regulated by hydrolysis of ATP, ADP and AMP by
ecto-NTPDases and ecto-5′-nucleotidases identified in human
spermatozoa [346].

In asthenozoospermic or oligoasthenozoospermic patients
with less than 1,000,000 round spermatid cells/ml, the con-
centration of ATP is significantly lower than normal [70].
Semen ATP content was not helpful in predicting the occur-
rence of pregnancy in which the female partner was normal
and the male partner had sperm concentrations of 720×106/ml
[442]. The enzymatic treatment of spermatozoa with a trypsin
solution enhanced ATP concentration and improved motility
[121]. Control of anion and fluid secretion by ATP released
from sperm during transit was acting via P2 receptors [441].

In summary it appears that ATP is involved in sperm mo-
tility and fertilising ability by two independent mechanisms:

on the presence of high intracellular levels of ATP to supply
the energy for mitochondrial respiration; and release of ATP
from sperm during transit to regulate their microenvironment
by acting on receptors for both ATP (probably via P2Y1

receptors) and its breakdown product adenosine (via A1

receptors) to activate the acrosome reaction to facilitate
motility and fertilisation. Treatment of sperm with ATP used
for IVF is now being explored. For example, a recent paper
showed, with IVF experiments in mice, that treatment of
sperm with ATP improved the in vitro fertility rate of genet-
ically modified (transgenic and knockout) mice with low
fertility [411].

Female reproductive organs

Purinergic signalling has been identified in the ovary, oviduct,
amnion, oocytes, uterus and cervix, placenta and umbilical
vein, vagina and mammary glands.

Table 1 Summary of P2X-immunopositive cells in the seminiferous tubules throughout the l4 stages of the seminiferous epithelium

Reproduced from [145], with permission from Karger

The stages of the cycle of the seminiferous epithelium are given in roman numerals. Shaded boxes indicate the presence of immunopositive cells for a
single P2X receptor subtype throughout the respective stages of the cycle. Italic numerals indicate the developmental steps of spermatid maturation.
Throughout stages I to VIII younger (1–8) and older (16a–19c) generations of spermatids coexist, whereas through stages IX to XIVonly one generation
of developing spermatids is present

X2 P2X2 receptor, X3 P2X3 receptor, X5 P2X5 receptor, X7 P2X7 receptor, A type A spermatogonia, B type B spermatogonia, P pachytene
spermatocytes, Di diplotene spermatocytes, PL preleptotene spermatocytes, Sperm spermatids, Serto Sertoli cells
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Ovary

The principal source of estrogens and androgens in the female
are ovarian granulosa and theca cells.

A surge of pituitary LH 12 h prior to ovulation stimulates
oocyte maturation. In rabbit isolated ovarian follicles ATP
inhibited LH-stimulated testosterone accumulation [245]. A
7-fold amplification of LH-stimulated cAMP accumulation
and progesterone secretion in rat luteal cells was produced
by adenosine, but it did not have a similar effect on LH-
stimulated cAMP accumulation and androgen secretion in
Leydig cells [159]. Adenosine had predominantly inhibitory
actions on hormone-induced granulosa cell differentiation
[210]. Adenosine acting via A2 receptors stimulated adenylate
cyclase in rat ovarian membrane preparations and preovula-
tory granulosa cells [37]. Progesterone secretion by rat gran-
ulosa cells was regulated by AMP-activated protein-kinase
[403]. Adenosine and prostaglandin F2α are possible regula-
tors of luteal cell function, acting by local control of the action
of LH [31]. This group later showed that there was no effect of
adenosine on androgen secretion in Leydig cells. Rather,
adenosine produced marked amplification of FSH-stimulated
cAMP accumulation and steroid secretion from granulosa
cells from both rat and human ovaries [32,323]. Luteal cell
ATP is rapidly depleted by LH. This appears to be a physio-
logical event as a result of cells undergoing apoptosis (i.e.,
luteolysis) at the end of the pseudopregnant cycle [382].

Gonadotrophins as well as adenosine can affect ATP levels
in granulosa cells [36]. The effect of purine nucleotides on
human and porcine granulosa cells was examined using lu-
teinised cells [184]. The authors suggested that the results
indicated the presence of P2U (i.e., P2Y2 and/or P2Y4) recep-
tors on human granulosa cells and P2U and P2T (i.e., P2Y12)
receptors on porcine granulosa cells, but the functional roles
of these receptors was unclear. P2U receptor mRNAwas found
in human granulosa cells and ATP/UTP was shown to cause
rapid transient increase in [Ca2+]i [391]. ATP has an
antigonadotrophic action in human granulosa cells [392].
This group later showed that ATP induced nuclear transloca-
tion of phosphorylated ERKs and the induction of egr-1 and c-
raf-i expression in the human ovary [393]. This suggested that
the mitogen-activated protein kinase signalling pathway plays
a role in mediating the effects of ATP on gonadotrophin-
induced progesterone secretion in the human ovary. P2, but
not P1, receptors were shown to be expressed on chicken
granulosa cells [292]. Calcium oscillations were mediated by
P2Y2 and/or P2Y4 receptors in human granulosa-luteal cells
[228,385].

ATP acts on granulosa cells via a mechanism that involves
P2Y2 receptor stimulation and the participation of ryanodine
receptors [288]. UTP-sensitive P2Y receptors are expressed in
cultured murine theca/interstitial cells and occupation of these
receptors leads to the activation of mitogenic signalling

pathways to promote cell proliferation [413]. The authors
concluded that regulation of proliferation of these cells and
steroidogenesis plays an important role in ovarian pathophys-
iology, since theca hyperplasia is found in rats with polycystic
ovarian syndrome [357]. Signalling to ovarian perifollicular
smooth muscle changes frommediation via P2X2 receptors to
P2X1 receptors during pregnancy, and there is an increase in
P2X2 receptor expression on ovarian vascular smooth muscle
[191].

Menopause is associated with a decline in ovarian function.
In a murine menopause model, ovarian levels of P2X2 recep-
tor protein increased with ageing, suggesting that the P2X2
receptor is involved with menopause/ageing-related decline in
ovarian function [464].

Thecal cells, which form the external layer surrounding the
ovarian follicle, are involved in the synthesis of androgens.
Apoptotic cell death of porcine ovarian theca cells is caused
by ATP acting via P2X7 receptors [412].

The cat ovary is densely innervated by sympathetic
nerves, which release NA and ATP, as well as by intrinsic
neurons, most of which are parasympathetic. The storage
and release of NA and ATP decreased after ovulation, but
sympathetic nerve activity appears to increase during ovu-
lation [222]. Sympathetic neurotransmitters are present in
the rat ovary during early postnatal development and
affect steroidogenesis before the ovary becomes responsive
to gonadotrophins and before the first primordial follicles
are formed.

Chinese hamster ovary (CHO) cells contain very few en-
dogenous receptors, which makes them ideal transfection
recipients. However, a constitutive ATP receptor linked to
arachidonic acid release has been reported [116]. A two-
phase response of acid extrusion triggered by P2Y2

purinoceptors on CHO cells was later reported [310]. This
ATP receptor is also linked to the mobilisation of [Ca2+]i and
through pharmacological characterisation it appears to be a
P2Y2 and/or P2Y4 receptor [178]. Exposure to ATP or UTP
on the apical side of confluent CHO cell monolayers produced
an increase in [Ca2+]i [407]. It was also shown that functional
expression of human CFTR in the plasma membrane of CHO
cells infected with adenovirus regulated the increase in intra-
cellular Ca2+ produced by ATP released from the cells. A2B

receptors have also been identified on CHO cells [6].
The hydrolysis of ATP and ADP is decreased by ovariec-

tomy and oestradiol replacement therapy [322]. Ovarian tu-
mours arise mainly from the surface of simple squamous-to-
cuboid mesothelium that covers the ovary. Mitogen-activated
kinase in pre-neoplastic and neoplastic surface epithelial cells
is stimulated by ATP, suggesting that co-released ATP from
sympathetic nerves may play a role in regulating cell prolif-
eration in both normal and neoplastic ovarian surface epithe-
lial cells [80]. FSH has a stimulatory effect on ATP release and
platelet aggregation [25]. Phosphodiesterase 8 has been found
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in the mammalian ovarian follicle and may be involved in
hormonal regulation of folliculogenesis [359].

Oocytes

K+ current responses to FSH or adenosine in monolayers of
small follicular cells surrounding a single large oocyte of
Xenopus are suppressed by ATP [136]. P2 receptors are
expressed by the follicular cells of Xenopus [207,286].
Since UTP and ATP are equipotent, this effect could be
mediated by a P2Y2 or P2Y4 receptor subtype [136].
Moreover, it has been suggested that there are close interac-
tions between A2 and P2Y receptors in Xenopus follicles [19].
Cultured CHO cells express a P2 receptor equi-reactive to
ATP and UTP [178], probably the P2Y2 and/or P2Y4 subtype.
Extracellular ATP has been shown to facilitate the develop-
ment of parthenogenetically activated bovine oocytes [444].
Redistribution of mitochondria leads to bursts of ATP produc-
tion during spontaneous mouse oocyte maturation [453]. The
Xenopus oocyte can release ATP, both in basal conditions and
in response to mechanical stimulation or osmotic changes to
have paracrine actions [5,46,160,259].

P1 receptors on follicular cells mediate K+ current re-
sponses, while P2Y2 receptors are involved in the activation
of Cl− currents [356]. These authors and others [329] sug-
gested that these effects are consistent with intrafollicular ATP
signalling that modulates oocyte maturation.

In Xenopus oocytes ectonucleotidases rapidly and locally
convert ATP to adenosine, which leads to activation of A2B

receptors [264]. A study in human ovaries has shown a
relationship between the higher follicular fluid adenosine
levels and follicular/oocyte maturity [433]. The ATP content
and fertilisation outcome of bovine oocytes were shown to
increase with maternal age [179].

Cumulus cells consist of a cluster of follicle cells that
surround a freshly ovulated ovum and they are dispersed at
fertilisation by the contents of the acrosome. Data has shown
that cumulus cells express P2Y2 and possibly P2Y12 receptor
subtypes, but not P2X receptors (Bains, unpublished data).

Fallopian (uterine) tubes/oviduct

Released oocytes are captured by the fallopian tubes/oviduct
and transported in an appropriate condition to the site of
fertilisation in the distal ampullary region of the tube. They
also provide tubal secretions for sperm to migrate proximally
from the uterus. The sperm acrosomal reaction occurs mainly
at the cervix and uterus. Purinergic receptor-mediated in-
creases in [Ca2+]i were described in single isolated epithelial
cells of the human uterine tube [92,384]. P2X1 and P2X2
receptors are expressed on blood vessels in rat fallopian tubes,
but not peritubular smooth muscle [28]. ATP-mediated con-
traction of the human fallopian tube is enhanced with acute

purulent inflammation, probably by upregulation of P2X1 and
P2X2 receptors [463]. A functional purinergic receptor was
identified on primary cultures of bovine oviduct epithelia
[84,420]. ATP evoked a rapid increase in [Ca2+]i in oviductal
endosalpingeal cells isolated from heifers at different repro-
ductive stages [397]. The receptor involved in increases of
[Ca2+]i and regulation of ion transport on the basal surface of
bovine oviduct cells is likely to be the P2Y2 or P2Y4 subtype
since UTP and ATP were equipotent [85]. Both ATP and
adenosine receptors are present on single ciliated oviductal
cells acting via P2Y2 an A2A receptor subtypes, respectively
[287]. The ciliated cells from oviduct play an important role in
the control of mucociliary transport velocity of gametes and
embryos. ATP increases ciliary beat frequency [29] and this
effect is modulated by adenosine [30]. Purinergic signalling
via P2Y2 receptors also constitutes a key mechanism for
regulating chloride secretion and thus fluid formation in the
bovine oviduct [193]. In a later paper, they claimed that
purinergic activation of a calcium-dependent, apamin-
sensitive potassium conductance was essential to promote
chloride secretion [194].

Uterus

The uterus is the site of sperm migration, implantation of the
fertilised ovum, placental development, embryo and foetus
development and the generation of contractions at term for
delivery. The myometrium and endometrium are the main
uterine functional tissue types.

Myometrium

ATP and ADP contract the uterus [100,311] partly through the
action of prostaglandins induced by P2Y receptor occupation
[4,291,390]. In the longitudinal muscle of the mouse
myometrium, ATP produced a biphasic response, an initial
hyperpolarisation followed by a depolarisation, which
remained the same in both non-pregnant uterus and through-
out pregnancy [306]. In the cat uterus reversal of the ATP
response during gestation was reported, namely inhibition of
spontaneously generated electrical and mechanical activity in
the virgin uterus, but excitation in the early stages of gestation
[55]. Whole cell voltage clamp studies of cultured smooth
muscle cells from the pregnant rat myometrium showed that
ATP, but not adenosine, AMP or ADP, activated a monovalent
cation-selective and oestrogen-sensitive conductance [167].

Data from experiments using isolated uteri of non-pregnant
guinea-pigs suggests that myometrial cells contain a mixture
of P2 receptors, a UTP-sensitive receptor (probably P2Y2 or
P2Y4), another P2Y receptor and an α,β-meATP-sensitive
receptor (probably P2X1, P2X2/3 or P2X3) [321]. Using
immunohistochemistry, P2X2 receptors were expressed by
the smooth muscle of the rat uterus, with only weak
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immunostaining of P2X1 receptors [28]. P2X1 and/or P2X2/3
receptor-mediated contractions of isolated human pregnant
uterus were evoked by α,β-meATP and shown to be term-
dependent, increasing during pregnancy [462]. P2X1 and
P2X2 receptors were identified in uterine smooth muscle,
suggesting that P2X1 and P2X2/3 receptors mediate contrac-
tions of the pregnant human uterus, although it is likely that
P2Y2 and/or P2Y4 receptors are also involved, to account for
the high potency of UTP [461].

P2X1 receptors have been shown to be closely associ-
ated with connexin 43 (Cx43) in the human myometrium,
and may be involved in gap junction formation [183].
Expression of Cx43 is upregulated in the later stages of
pregnancy and peaks near parturition, perhaps playing a
role in the synchronised and coordinated uterine contrac-
tions at parturition. It was suggested that the high levels of
ATP released from uterine cells during childbirth may act
on P2X1 receptors in gap junctions to inhibit expression of
Cx43, thereby reducing gap junctions and coordinated
contractions in the post-partum uterus, when P2X1 recep-
tor expression peaks [199]. Enhanced expression of P2X4
and P2X7 receptors has been observed in the myometrium
of pregnant rats in preterm delivery models, which could
be related to uterine contraction leading to term and pre-
term delivery [406].

It has been claimed that extracellular ATP is essential for
the initiation of contractions and control of their frequency
(but not contractile force) and may be involved in the pace-
making mechanism for the generation of uterine contractions
[173], perhaps via P2Y2 receptors [174]. Neocuproine, a
copper chelator, can affect uterine contractile activity by mod-
ulation of purinergic excitatory responses [217]. Two different
ectonucleotidase phosphohydrolases have been described in
the rat myometrium [252]. Changes in apyrase activity were
shown to occur during pregnancy [409].

Adenosine acting via A1 receptors contracts the smooth
muscle of the virgin guinea-pig uterus [361,372]. It has been
suggested that there are two types of receptors for adenosine,
the breakdown product of ATP, in the myometrium, one
mediating excitatory, the other inhibitory responses [124]. It
was later claimed that A1 receptors mediate excitatory re-
sponses mainly during the proliferation phase of the menstrual
cycle, while A2 receptors, mediating excitation, are largely
involved during the secretory phase [358]. Adenosine is also a
prejunctional modulator of adrenergic neurotransmission to
the human uterus [440]. Evidence for the presence of the A2B

subtype of the adenosine (P1) receptor in the rat myometrium
has also been presented [144]. A purinergic receptor was
identified in human myometrium membranes using 5′-
N -[3H]ethylcarboxamide-adenosine as a radioligand [348].
The binding site had the characteristics of the A2 adenosine
receptor and some of those of P2 receptors too. Later
pharmacological studies suggested that both P1 and P2

receptors are present in the guinea-pig myometrium, both
mediating contraction [372].

It has been shown that ATP induced ion currents and
contractions via P2X7 receptors in freshly isolatedmyometrial
cells from pregnant rats and that P2X7 receptor mRNA was
localised in these cells [282,283], supporting the earlier find-
ings of Urabe et al. [406]. These authors showed further that
Mg2+ blocked the P2X7 receptor-mediated contraction in
tocolysis and suggested that targeting P2X7 receptors could
lead to novel treatments for the prevention of uterine contrac-
tions in preterm deliveries. The ectonucleotidase, NTPDase 1,
has been localised on the surface of myometrial smooth mus-
cle cells and blood vessel endothelium [275].

Endometrium

ATP, released from nerves innervating the uterus and uterine
blood vessels and by autocrine or paracrine release from
epithelial cells, plays an important role in regulating endome-
trial functions such as local (paracrine) coordination of sperm
migration and capacitation, implantation of the fertilised egg,
endometrial fluid formation and composition; cell prolifera-
tion and differentiation in post-partum reorganisation; and
endometrial epithelial cell differentiation and apoptosis.

Human endometrial epithelial cells express P2X7 receptors
[236]. P2X5 and P2X7 receptors were shown to be immuno-
reactive in the rat uterine epithelium [28]. Changes in the
expression of P2X receptor subtypes in uterine epithelial cells
were shown during the endometrial cycle and early pregnancy
in the rat [368] and in humans [150]. These changes are
related to, and mediate differentiation and apoptosis of the
endometrium.

One of the functions of ATP is regulation of the steroid-
binding activities of oestradiol receptors [220]. Extracellular
nucleotides may play an important role in the fine-tuning of
the uterine fluid microenvironment by regulating both Cl−

secretion and Na+ absorption across the endometrium
[92,425], since over-expression of Na+ channels in mouse
endometrial epithelium suppresses ATP-induced Cl- secretion
[426]. Oestrogen and progesterone differentially regulate
UTP-stimulated anion secretion in endometrial epithelial cells
by altering the expression of P2Y2 receptors and basolateral
K+ channels [314].

Extracellular ATP activates nuclear translocation of ERK1/
2 leading to the induction of matrix metalloproteinase expres-
sion in human endometrial stromal cells [76]. In a later paper,
these authors showed that the P2Y2 receptor is expressed by
stromal cells, suggesting that it mediates the expression of the
early growth response 1 and inhibits stromal cell viability
[77]. The distribution of ecto-nucleotidases in human cyclic
and post-menopausic endometrium has been described [8].
Ecto-NPP3 was identified as a new biological marker of tubal
metaplasia. It has been proposed that uridine diphosphate-
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glucose and its P2Y14 receptor are key players able to trigger
innate uterine mucosal immunity in human endometrial epi-
thelial cells by inducing interleukin-8 [18].

In the rat, P2X7 receptors are localised on eosinophils,
macrophages and fibroblasts of the endometrium during
oestrus [216]. The authors speculated that ATP-mediated re-
sponses may be important in uterine preparation and remod-
elling before implantation, and that the presence of P2X7
receptors in stromal cells may indicate their involvement in
immune and inflammatory responses. There is a strong tran-
sitory expression of A2B adenosine receptors on the mouse
uterus after blastocyst implantation during early post-
implantation development [40].

In the rat uterine epithelium on day 1 of pregnancy, there
was no expression of P2X7, P2Y2 or P2Y4 receptors, although
there was some diffuse immunolabelling of P2Y1 receptors.
On day 3, P2X7 and P2Y2 receptors were present and con-
fined to the lateral plasma membrane of the epithelium. At the
time of implantation on day 6, there was strong labelling for
P2X7 and P2Y2 receptors, found along the entire surface of
the apical epithelium, suggesting a role for calcium-modified
events proceeding and facilitating attachment and implanta-
tion of the blastocyst [370].

In the pig uterus, epithelial cells of the endometrial gland
expressed P2Y2 and P2Y4 receptors [313]. P2X7 receptors
were shown to be expressed on the luminal surface of endo-
metrial cells prior to implantation in rats [396] and in the
periovulatory period in humans [150]. In the rat, at the time
of implantation on day 6, apoptosis was reduced in the non-
implantation uterine epithelium, but was markedly increased
adjacent to the implanting blastocyst [396]. It was proposed
that P2X7 receptor-mediated apoptotic cell death is an impor-
tant regulatory factor involved in uterine remodelling prior to
and during implantation. It was later proposed that P2X7
receptor-mediated apoptotic cell death and endometrial re-
modelling facilitate the attachment and implantation of the
blastocyst to the endometrium [233].

In the human endometrium, as in the cervix and vagina,
P2X7 receptors regulate terminal differentiation and are the
main physiological pro-apoptotic mechanism in vivo [150].
Activation of the P2X7 receptor induces pore formation in the
plasma membrane and facilitates terminal differentiation and
apoptosis [117]. In the human endometrium in vivo, expres-
sion of the P2X7 receptor depends on the state of tissue
differentiation. In the early proliferative phase, the receptor
is diffusely expressed in the plasma membrane, while in more
advanced stages of maturation, i.e., mid-late proliferative
phases, expression of the P2X7 receptor increases in regions
of the apical (luminal) plasma membrane (Fig. 5). Treatment
of cultured epithelial cells with ATP or 2′(3′)-O -(4-
benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) induces
pore formation preferentially in the apical membrane, suggest-
ing that the terminal differentiation in vivo is mediated by

formation of P2X7 receptor pores, and that the apical
localisation of P2X7 receptors in the endometrium in vivo
reflects the accumulation of P2X7 receptor aggregates within
apical P2X7 receptor pores. The apical localisation of P2X7
receptor pores in vivo is not specific to the endometrium, and
is found also in other normal human monolayered epithelia.

Dysregulation of the P2X7 proapoptotic receptor plays a
role in the development of endometrial cancers, as well as in
other types of cancers of epithelia derived from the ectoderm,
the urogenital sinus and the distal paramesonephric duct
[236]. Decreased levels of P2X7 receptors are associated with
cancer development, and in women decreased expression of
the P2X7 receptor can be found in pre-cancerous endometrial
lesions [237]. Mechanisms that could lead to decreased ex-
pression of the P2X7 receptor include epigenetic dysregula-
tion through hypermethylation of the P2X7 receptor gene
[457]; enhanced degradation of the P2X7 transcript [456];
and decreased glycosylation [117]. Of the naturally occurring
P2X7 splice variants, the P2X7j receptor, a dominant negative
form that blocks P2X7 receptor-mediated actions [118], is co-
expressed with the P2X7 receptor in epithelia, primarily those
of the female reproductive tract. The P2X7j isoform can hetero-
oligomerise in the plasma membrane with the P2X7 receptor,
and form non-functional complexes. Co-expression of P2X7
receptors plus P2X7j receptors blocks ATP-induced pore for-
mation, and abolishes baseline and agonist-induced apoptosis.

Cervix

The cervix is the distal part of the uterus, which opens into the
vagina. Columnar (endocervical) epithelium lines the proxi-
mal region of the cervix bordering the endometrial epithelium,
while stratified squamous epithelium lines the distal part of the
cervix, the ectocervix, which is continuous with the vaginal
epithelium. A major function of the cervical epithelium is the
synthesis and secretion of cervical mucous. The cervical mu-
cous controls access to the uterine cavity for microorganisms
and particulate matter. The content and composition of the
cervical mucous change throughout the menstrual or oestrous
cycles, and is influenced by changes in levels of ovarian
oestrogen, androgens and progesterone [153]. During the
pre-ovulatory phase, changes in mucous facilitate sperm
movement towards the fallopian tube, and provide an optimal
milieu for sperm capacitation. During other phases of the
cervical cycle, changes in mucous characteristics impede
sperm penetration and capacitation.

Cervical cells express different subtypes of purinoceptors.
HeLa cervical epithelial cells express P2Y1, P2Y2, P2Y6 and
P2X7 receptors [429]. In the rat cervix, expression of P2X3
receptors on afferent nerves increases during pregnancy, and
this increase is probably related to coordination of cervical
tone and contraction/dilation during labour [317]. Primary
cultures of human endocervical and ectocervical epithelial
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cells express P2Y2 and P2X4 receptors, which are involved in
epithelial transport [148] as well as P2X7 receptors, which are
involved in the regulation of terminal differentiation and ap-
optosis of endocervical and ectocervical epithelial cells. The
P2X7 receptor may also be involved in the control of cervical
infections, since P2X7 receptor-mediated activation of cervi-
cal epithelial cells inhibits infection by Chlamydia and
mycobacteria [87].

Data from experiments using three-dimensional culture
models of human normal epithelial cervical cells suggest that
the purinergic system controls cervical mucous secretion
in vivo. Activation of the P2Y2 receptor stimulates [Ca2+]i-
dependent chloride secretion, osmotic water efflux and in-
creased transepithelial fluid secretion [146]. Activation of
the P2X4 receptor, induces a slower and longer increase in
tight junctional resistance and decreased transepithelial fluid
secretion [147]. The P2X4 receptor effect is mediated by
[Ca2+]i-dependent activation of phospholipase (PL)-D, upreg-
ulation of diacylglycerol and activation of PKC-mediated
threonine dephosphorylation of the tight-junctional protein,
occludin [153,458]. Both P2Y2 and P2X4 receptors are locat-
ed on the apical (luminal) surface of the epithelial cells
[146,147,151] (Fig. 6).

The dual regulation of transepithelial fluid secretion sug-
gests that net fluid secretion (and thus cervical mucous secre-
tion) in vivo is determined by the combined actions of the
P2Y2 and P2X4 receptors. It was also suggested that P2X4
receptor-induced decrease in permeability and a decrease in
mucous secretion in the micro-environment of the endocervix

in vivo could result in retention of sperm cells in endocervical
crypts [152]. Longer retention and longer exposure to
endocervical fluid can improve capacitation and provide for
graded transport of sperm cells to the uterus and tubes [177].

In the mammalian male reproductive tract, the epididymal
and vas deferens epithelial cells acidify the lumen via an apical
V-H+-ATPase mechanism; the epididymal and vas deferens V-
H+-ATPase transporter is regulated by the P2X4 receptor [52].
A similar mechanism is present in the cervix and vagina,
where baseline active proton secretion occurs constitutively
throughout life, and the acidification is upregulated by
oestrogen ([154]; see [133]).

Endocervical and ectocervical epithelial cells express the
P2X7 receptors and the main role of P2X7 receptors in these
epithelia is regulation of terminal differentiation and control of
apoptosis [236,237]. Expression and function of the P2X7
receptor in the monolayered endocervical epithelium are sim-
ilar to those in the endometrium, and decreased expression of
the P2X7 receptor is associated with the development of
endocervical cancer.

In the ectocervix, i.e., the distal part of the cervix which
projects into the vagina, the P2X7 receptor is expressed by the
stratifying ectocervical epithelial cells. In vivo, there is an
abundance of P2X7 receptor expression by reserve cells in
the basal layer of the epithelium and an abundance of expres-
sion of P2X7 receptor aggregates in more superficial cells
undergoing terminal differentiation in vivo [150]. Data from
cultured ectocervical cells showed preferential apical
localisation of P2X7 receptors and preferential P2X7 receptor

Fig. 5 Upper panel (endometrium): P2X7 receptor expression in
cross sections of human endometrial glands at different phases of
the menstrual cycle. The increases in P2X7 receptor immunoreactiv-
ity in apical regions of the plasma membranes (facing the lumen)
represent P2X7 aggregates within pores. (Reproduced from [237],
with permission from Springer.) Lower panel : full-length P2X7 re-
ceptor type-A (P2X7A) expression in cross sections of human

ectocervix. P2X7A receptor immunoreactivity in reserve cells (basal
layer) represents de novo-synthesized P2X7A molecules. P2X7A
receptor immunoreactivity in intermediate layers represents mainly
P2X7A molecules aggregating into pores. P2X7A immunoreactivity
in superficial layers represents P2X7A aggregates within pores that
are retained in clumps of squames. (Reproduced from [150], with
permission from Wiley)
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pore formation in the apical membrane. Similar data were
found also in the epidermis [135], suggesting that P2X7
receptor pore formation initiates terminal differentiation in
stratifying epithelia in vivo. Decreased levels of the P2X7
receptor are associated with the development of ectocervical
cancers, and in women decreased expression of the P2X7
receptor can be found already in pre-cancerous lesions
[236,237]. In cultured human ectocervical cells treatment with
ATP or BzATP augments apoptosis [118], and in mice local
application of BzATP on the skin augments apoptosis mainly
of epidermal reserve cells, and blocks carcinogen-induced
skin cancer [135]. The authors suggested that activation of
P2X7 receptor-dependent apoptosis could be a novel chemo-
therapeutic growth-preventive modality for pre-cancerous and
early cancerous epithelial lesions [135,149].

Amnion

The amniotic membrane forms the sac which contains the
embryo, and it connects to the embryo at the umbilical cord.
ATP activates the PLC cascade system in human amnion cells
without increasing prostaglandin production [410].

Placenta

The placenta and umbilical vessels are involved in regulation
of blood flow and control of transport of materno–foetal fluid

and solutes, as well as in steroidogenesis. High plasma circu-
lating levels of adenosine have been measured at birth in
sheep and it was suggested that the adenosine, probably
derived from the placenta, inhibits thermogenesis before birth.
After cord occlusion, adenosine decreases, allowing thermo-
genesis to begin. These data suggest that adenosine plays a
role in regulating foetal metabolism [360]. Increases in plasma
levels of adenosine were also found in pregnant women, and
the authors suggested that the adenosine is derived, in part,
from platelet activation and an increase in 5′-nucleotidase
activity during pregnancy [450]. Hyperemesis gravidorum is
characterised by an overaction of sympathetic nerves and
enhanced production of TNF-α. Plasma adenosine is signifi-
cantly increased in hyperemesis gravidarum, and could serve
as a prejunctional modulator of sympathetic neurotransmis-
sion and to counteract further progression of the disease [451].

Chronic caffeine or theophylline intake during pregnancy
inhibits A1 receptor function in bothmaternal and foetal brains
[230]. Adenosine is important as a metabolite of ATP in the
human term placenta in ischaemic or hypoxic conditions
[254]. Binding sites were identified in human placenta with
characteristics of an adenosine receptor, probably the A2

receptor subtype [130]. Adenosine uptake by human placenta
has been described, including its metabolism both intra- and
extracellularly [2]. Adenosine uptake at both the maternal and
foetal sides of the syncytiotrophoblast was demonstrated, and
shown to be inhibited by dipyridamole; this suggested that the

Fig. 6 P2Y2 and P2X4 receptor regulation of epithelial permeability and
transepithelial transport across human cervical cultures (compiled from
data in [146,147,152,153,458]). Extracellular ATP (ATPe) modulates
paracellular permeability by activating two distinct apically localized
receptor–effector mechanisms. The P2Y2 receptor stimulates acute re-
lease of calcium from internal stores, active Cl− secretion and osmotic
water efflux, resulting in cell shrinkage and reciprocal increase in the
pericellular intercellular space volume; this leads to decreased

paracellular resistance and an increase in the paracellular permeability.
P2X4 receptors stimulate sustained release of diacylglycerol (DAG) and
activation of protein kinase C (PKC). PKCmodulates the tight junctional
resistance by dephosphorylation of the tight junctional protein occluding,
and stimulates a slow and long increase in the tight junctional resistance
and a reciprocal decrease in paracellular permeability. The net effect on
epithelial permeability is dependent on the spatial and temporal effects of
the P2Y2 and P2X4 mechanisms. (Schematic courtesy of G.I. Gorodeski)
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placenta is involved in the regulation of adenosine-related
function [438]. Adenosine induced relaxations in segments
of human chorionic arteries and veins pre-contracted with K+

and pharmacological analysis led to the conclusion that both
A1 and A2 receptor subtypes were involved [339]. Adenosine
causes a biphasic response (vasoconstriction followed by
vasodilation) in the ovine foetal placental vasculature [337].
Chromosomal abnormality exhibited in TR21 (Down syn-
drome) pregnancies often end in abortion and represents a
good model for examining the mechanism regulating miscar-
riage. Downregulation of A1 and A2B receptors in human
trisomy 21 mesenchymal cells from first-trimester chorionic
villi has been reported [142].

ATP (and adenosine) caused vasoconstriction of the human
foetoplacental vascular bed, but there was reduced sensitivity
to adenosine in cotyledons from some placentae that may
represent downregulation of adenosine receptors as a result
of exposure to adenosine during delivery [253]. ATP, α,β-
meATP and β,γ-methylene ATP constricted the perfused
human placental cotyledon via P2X receptors, but vasodila-
tion via P2Y receptor-mediated NO release from endothelial
cells was also demonstrated [94,336]. ATP increased Ca2+

uptake by microvillous boarder vesicles formed from term
human placental syncytiotrophoblasts [312]. Continuousmea-
surement of ATP was examined by 31P-nuclear magnetic
resonance spectroscopy in human perfused placenta in vitro
during ischaemia [257]. It was shown that after 4 h of ischae-
mia, ATP decreased by 85 % of controls, but after reperfusion
ATP levels increased. Stimulated increase in [Ca2+]i by ATP
and UTP in human term placental calls [319] suggests that a
P2Y2 and/or P2Y4 receptor is involved.

In a study of P2 receptor subtypes in the arterial vascular
bed of human perfused placental cotyledons [334], it was
shown that:

(1) The contractile responses mediated by α,β-meATP and
ATP of the placental smooth muscle was resistant to
desensitisation and insensitive to antagonism by
PPADS, thus showing dissimilarity to the classic P2X1
receptor.

(2) A smooth muscle P2Y2 or P2Y4 receptor also mediates
vasoconstriction to UTP and ATP.

(3) Vasodilation responses are mediated by P2Y1 receptors
located on endothelial cells that, when occupied by ADP,
lead to release of NO.

Evidence has been presented that a similar, novel P2X
receptor is present in human placental chorionic surface arter-
ies [95]. mRNAs for P2X1, P2X4, P2X5, P2X6 and P2X7
receptors were identified in the vascular smooth muscle from
chorionic (and umbilical) arteries and veins, while mRNA for
P2Y1, P2Y2 and P2Y6 receptors was found on the endotheli-
um of these vessels [170] highlighting the role of extracellular

nucleotides as regulators of foetal blood flow. Adenosine,
acting via A2B receptors, has also been claimed to produce
human chorionic vasoconstriction in perfused cotyledons and
that this involves synthesis of a thromboxane receptor activa-
tor or a related prostanoid [98]. In a study of P2 receptor
mRNA and protein expression in human placental villus
fragments at two stages of gestation, the first trimester and
term [342], P2X4, P2X7 and P2Y2 (but not P2Y4) receptor
subtypes were found and fluorescent calcium imaging exper-
iments showed that ATP, UTP and 2 ′(3 ′) -O - (4-
benzoylbenzoyl)adenosine 5′-triphosphate caused significant
elevation of [Ca2+]i in term compared to the first trimester.
Systematic pharmacological studies of purinergic signalling in
human placenta showed functionally active P2X4, P2X7,
P2Y2 and P2Y6 receptors on cytotrophoblast cells and it
was proposed that activation of these receptors and subse-
quent elevation of [Ca2+]i modulates syncytiotrophoblast
homeostasis and maternofoetal ion exchange [341]. P2Y1

and P2Y2 receptors are unevenly distributed along the
human placental vascular tree; there is a 6- to 8-fold
increase in these receptors from the cord to the chorionic
or cotyledon vessels [69]. In the cord and chorionic ves-
sels the receptors are mainly on smooth muscle, while in
the cotyledon vessels P2Y1 and P2Y2 receptors were
equally distributed between endothelial and smooth muscle
cells. mRNA for P2Y4, P2Y6 and P2Y11 receptors was
also found. P2X1, P2X4 and P2X7 receptors were also
present on the smooth muscle of human chorionic blood
vessels [408].

Cytotrophoblast cells isolated from human term placenta
were maintained in culture for 18 h (relatively undifferentiated
mononuclear cells) or 66 h (differentiated multinucleate
syncytiotrophoblast-like cells) [340]. P2X1 and P2X4, but
not P2X3 or P2X5, receptors were expressed by all the cell
types studied, while P2X2 receptors were found to be present
in term placenta, and P2X7 receptors were found in both the
first trimester and term. P2X7 receptors mediate production of
PLD in human placental trophoblasts, implying involvement
in the regulation of trophoblast function [93]. The varying
P2X2 and P2X7 receptor expression may be correlated with
gestational development and cytotrophoblast cell differentia-
tion. ATP stimulates placental 11β-hydroxysteroid dehydro-
genase type 2 activity, which is believed to play a key role in
foetal development [446].

In late human pregnancy there is an increase in placental
5′-nucleotidase, and it was suggested that this may be
associated with enhanced oestrogen synthesis and facilita-
tion of uterine contractions during labour [59]. 5′-
Nucleotidase was localised on the external surface of the
microvillous plasma membrane of the syncytiotrophoblast,
perhaps playing a role in regulation of the foeto–placental–
maternal microcirculation in the human term placenta
[262].
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ADP-degrading properties of the placenta were described
[175]. Later, ATP diphosphohydrolase (or apyrase) was iden-
tified in human term placenta [81,198,316]. Two isoforms
(enzymes I and II) of placental ecto-ATP diphosphohydrolases
were later identified by cDNA cloning [263]. Four ATPases,
which bind to ATP at the external surface of the membrane of
syncytiotrophoblast brush boarder membranes, were de-
scribed [54]. Adenosine deaminase activity is differentially
regulated in the maternal and foetal placental compartments.
There are marked spatial and temporal changes in the profile
of adenosine deaminase distribution in the antimesometrial
decidua and basal zone of the chorioallentoic placenta and a
rapid transition from maternal to foetal expression in mid-
gestation [213]. Placental adenosine deaminase has been
shown to be important for foetal development in mice [39].
Multiple regulatory protein binding motifs are necessary
for adenosine deaminase gene expression in the placenta
[367].

A study was undertaken to evaluate the relationship be-
tween utero–placental circulatory insufficiency and the foeto–
placental release of adenosine in pregnancies complicated by
pre-eclampsia [449]. It was concluded that foetal plasma
adenosine increases before utero–placental insufficiency be-
comes severe enough to cause generalised foetal hypoxia. It
was postulated that enhanced adenosine formation in the
foetus, umbilical cord vessels and particularly the placenta
may, at least in part, contribute to the control and maintenance
of placental blood flow. P2X receptors have been identified on
the smooth muscle of umbilical vessels [45].

Pre-eclampsia is characterised by elevated maternal blood
pressure, proteinuria and altered foetal growth. It has been
suggested that the pathophysiology of pre-eclampsia begins
with shallow trophoblast invasion leading to placenta hypox-
ia. Hypoxia is a potent stimulus for the release of ATP, which
is rapidly broken down by ectonucleotidases to adenosine.
Women with pre-eclampsia and foetuses show increased cir-
culating concentrations of adenosine. Adenosine A2A recep-
tors expression is elevated in placental biopsies, villous ex-
plants and placental microvillous membranes [423]. A2B re-
ceptors on microvascular endothelial cells have also been
implicated in pre-eclampsia [108]. Adenosine A2A receptor
stimulation decreases NO synthesis in placental microvascular
endothelial cells from women with pre-eclampsia and intra-
uterine growth retardation [107]. Post-translational modifica-
tions of the P2X4 receptor in the human placenta occur in pre-
eclampsia and the authors propose that there is increased
release of ATP in pre-eclampsia in response to hypoxia and
oxidative/nitrative stress to act on P2X4 receptors to influence
placental cell homeostasis [343].

Evidence has been presented that suggests that placental
adenosine mediates the placental disturbances elicited by al-
cohol, which may contribute to the pathogenesis of foetal
alcohol syndrome [3].

NO released from endothelial cells following occupa-
tion of P2 receptors in response to ATP and ADP may
play a major role in control of foetal vessel tone in
human placenta and NOS activity is markedly reduced
in pre-eclampsia. NO may also regulate the release of
corticotrophin-releasing hormone from human placental
syncytiotrophoblast cells. However, while it was consid-
ered that NO released from syncytiotrophoblasts
prevented platelet aggregation in both maternal and foe-
tal circulations, there is no evidence that platelet aggre-
gating agents other than ADP can affect the production
of NO [90].

The P2Y6 receptor has been shown to be expressed in
normal placenta and in gestational trophoblastic disease
[381]. The authors showed that P2Y6 mRNA production is
highly characteristic of the epithelial-like cytotrophoblast and
syncytiotrophoblast, whereas expression is absent in the
mesenchymal-like intermediate trophoblast, suggesting that
P2Y6 receptors may play an important role in trophoblast
development, differentiation and neoplasia.

Vagina

P2X5 and P2X7 receptors have been local i sed
immunohistochemically in the stratified squamous epithelium
of rat vagina, and it was suggested that they play a role in the
physiological turnover of continuously regenerating cells
[28,156]. Adenosine A2A and P2 receptors are present in the
wall of the rabbit vagina that mediate relaxation, but it was
suggested that they are not involved in the NANC relaxant
responses that remained after removal of NO transmission by
the NOS inhibitor, L-NAME [459,460].

P2Y2 receptor-selective agonists stimulate vaginal mois-
ture in ovariectomised rabbits and P2Y2 receptor mRNA is
localised in stratified squamous epithelium of the vagina
[276]. It was suggested that P2Y2 receptor agonists produce
a potential non-hormonal alternative for treating vaginal dry-
ness in postmenopausal women. In the human vagina, similar
to the ectocervix and epidermis, the P2X7 receptor plays an
important role in the regulation of terminal differentiation and
apoptosis [150].

Mammary glands

The epithelial cells lining the ducts of the human mammary
gland are responsible for modifying sodium and potassium
concentrations in milk by actively absorbing Na+ from and
secreting K+ into the ductal fluid. ATP increased [Ca2+]i
leading to contraction of cultured mouse mammary
myoepithelial cells [298]. These effects were unaffected by
Ca2+ removal, suggesting that P2Y receptors were involved
and the responses were blocked by suramin. In a later paper
from this group, synergistic effects of ATP on oxytocin-
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induced increases in [Ca2+]i were demonstrated in these cells
and it was suggested that purinoceptors may facilitate
myoepithelial cell contraction in milk-ejection responses
[299]. In another study, ATP and growth hormone were shown
to cause prompt responses in H+ efflux rate and increase in
[Ca2+]i in an opposite direction by treatment with lactogenic
hormones [190]. Mechanically-induced calcium waves medi-
ating purinergic coupling between myo- and secretary epithe-
lial cells in mammary glands have been reported [140]. P2Y2

receptors on the apical and basolateral membranes of 31EG4
mammary epithelia mediate apical Ca2+-dependent Cl− chan-
nels and cause fluid secretion that appears to be involved in
the regulation of milk composition in vivo [43]. P2Y receptor
regulation of sodium transport in human mammary ep-
ithelial cells has been described [229]. Adenosine, in
concert with epidermal growth factor, stimulates mam-
mary epithelial cell growth and DNA synthesis [454].
ATP and UTP stimulate Na+ absorption and K+ secre-
tion via P2Y2 receptors that increase [Ca2+]i and acti-
vate Ca2+-dependent K+ channels [315]. They showed
further that addition of the nucleotides to the luminal
surface stimulated K+ secretion, while their action on
the basolateral surface led to increase in Na+ absorption.
Mastitis in cows is a problem to the dairy industry. A
high level of ATP was found to be associated with
mastitis in the udders of cows [302]. Ca2+-ATPase was
elevated in mammary tissue and milk fat globule mem-
branes in cows with milk fever [326]. There is upregu-
lation of P2 receptors in breast cancer (see [62]).

Conclusions

There is widespread functional expression of purinoceptors in
reproductive organs: P2X1 and P2X2 receptors mediate
contraction of smooth muscle in organs and blood ves-
sels; P2X2 receptors mediate capacitation of sperm;
P2X3 receptors mediate activation of sensory nerve
fibres involved in reflex activities and pain; P2X4 re-
ceptors mediate luminal acidification in the epididymis
and vas deferens, and probably also in the vagina and
ectocervix; P2X5 receptors mediate differentiation and
consequently have antiproliferative effects; P2Y1 and
P2Y2 receptors mediate cell proliferation; P2Y2 and
P2X4 mediate regulation of epithelial transport in fe-
male reproductive tract epithelia; and P2X7 receptors
mediate terminal differentiation and apoptotic cell death
in epithelia.
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