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Abstract The involvement of purinergic signalling in kid-
ney physiology and pathophysiology is rapidly gaining
recognition and this is a comprehensive review of early
and recent publications in the field. Purinergic signalling
involvement is described in several important intrarenal
regulatory mechanisms, including tuboglomerular feedback,
the autoregulatory response of the glomerular and
extraglomerular microcirculation and the control of renin
release. Furthermore, purinergic signalling influences water
and electrolyte transport in all segments of the renal
tubule. Reports about purine- and pyrimidine-mediated
actions in diseases of the kidney, including polycystic
kidney disease, nephritis, diabetes, hypertension and
nephrotoxicant injury are covered and possible purinergic
therapeutic strategies discussed.
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Studies of the involvement of purinergic signalling in
kidney physiology and pathophysiology are growing rap-
idly, so we believe it is timely to prepare a comprehensive
review of the history and current views about the wide
variety of events mediated by receptors for purines and
pyrimidines. Reviews are available on various aspects of
the field, including:

Adenosine and regulation of renin secretion [159,273];
Adenosine and kidney function [69,248,259,349,384];
Glomerulus and tuboglomerular feedback [148,200,

255,320];
Nucleotide signalling along the renal tubules (sodium and

water transport) [12,28,77,103,192,215,216,233,288,297,
308,328,372,381,383,409,414];

Cilia in renal epithelium and paracrine purinergic signal-
ling [298];

Nervous control (ATP as a cotransmitter) [306];
Ectonucleotidases in the kidney [333];
Purinergic regulation of renal blood flow [45,146,147,

150,153,165,256,261,321];
P2X receptors and kidney function [17].
Pathophysiology [30,113,402,403];
Physiological and pathophysiological renal actions of pu-

rines [113,118,160,161,217,379,402,403];
Polycystic kidney disease (PKD) [133,139,267];
Role of dinucleotide polyphosphates in chronic kidney

disease and uremia [171].
Renal microvascular function and hypertension [117].
Sympathetic hyperactivity in renal disease [6];
Mechanotransduction in the renal tubule [400].
Human embryonic kidney (HEK-293) cells are often used

as a recombinant expression system for the study of a variety
of receptors, including P2 receptors (see e.g. [7,68,334,374]),
even though they express native P2Y1, P2Y2 and P2Y4 recep-
tors [88,89].

Glomerulus and the renal vasculature

The mammalian glomerulus is structurally complex,
consisting of central glomerular tuft of endothelial (~20 % of
total cells) and mesangial (~25 %) cells, encapsulated by a
double layer of visceral (podocytes) and parietal epithelial
(~55%) cells ([266]; see Fig. 1).Most information concerning
P2 receptor expression in the glomerulus comes from cell
culture with very few studies on receptor distribution in the
native mammalian glomerulus. Nevertheless, mRNA for
P2Y1 and P2Y2 was identified in extracts from whole rat
glomeruli [16]. P2Y2 immunoreactivity colocalised with
podocytes and cells of the parietal sheets; P2Y1 immunoreac-
tivity was limited to the mesangial cells. ATP evoked calcium
transients in the intact glomerulus and in the isolated parietal
sheet. These studies suggest that extracellular ATP may

regulated glomerular ultrafiltration directly, independent of ac-
tions of the renal microvasculature. ATP can also relax glomer-
uli via P2Y receptors on endothelial cells resulting in release of
nitric oxide (NO), supporting the notion that P2 receptors
influence glomerular filtration rate (GFR) [166]. Uridine aden-
osine tetraphosphate may also act as an autocrine hormone
affecting glomerular filtration rate [170]. Tubular sodium trans-
port systems are more sensitive to diadenosine tetraphosphate
(Ap4A) than systems involved in glomerular filtration rates
[167]. β-Blockers induce relaxation of the glomerular micro-
vasculature by releasing ATP, which acts via P2Y receptors on
endothelial cells to produce NO, resulting in vasodilation [180].
Connexin (Cx) 40 hemichannels and extracellular ATP are the
key molecular elements of the glomerular endothelial calcium
wave [371]. A review that discusses the roles of ATP and
adenosine in tubuloglomerular feedback (TGF) regulation of
glomerular filtration is available [46]. In addition to the effects
of GFR, P2 receptors in the extraglomerular mesangium play
an important role in TGF, as discussed below.

Mesangial cells

Functionally, ATP and uridine 5′-triphosphate (UTP), proba-
bly acting via P2Y2 and/or P2Y4 receptors, increased inositol
1,4,5-trisphosphate formation and activated the p38-stress-
activated protein kinase cascade in rat renal mesangial cells
[144,286,361]. Extracellular ATP increases [Ca2+]i by release
from intracellular stores, indicating mediation via P2Y recep-
tors [121,282], although P2X receptor-mediated increase in
[Ca2+]i has also been claimed [311]. Cultured mouse
mesangial cells expressed P2X2, P2X4, P2X7, P2Y2 and
P2Y4 receptors; mRNA (but not protein) for P2X1 and
P2X3 receptors was also found [311]. Using RT-PCR, P2X1
receptor mRNA was shown to be expressed by an
immortalised mouse mesangial cell line (G3) [131]. ATP and
UTP stimulate the mitogen-activated protein kinase (MAPK)
cascade and the MAPK pathway to promote proliferation of
rat renal mesangial cells [143,145,157,323,392]. Extracellular
ATP causes apoptosis and necrosis of cultured mesangial cells
via P2X7 receptors [326], although P2X4 receptors may also
be involved in the apoptotic actions [347]. The generation of
reactive oxygen species in rat mesangial cells may contribute
to P2X7 receptor-induced apoptotic cell death [125]. ATP
potentiates mesangial cell proliferation induced by growth
factors [324] and growth hormones reverse desensitization
of P2Y2 receptors in rat mesangial cells [122].

Diadenosine polyphosphates, which influence renal perfu-
sion pressure, activate Cl− and non-selective cation conduc-
tance in rat mesangial cells as do ATP and angiotensin II (Ang
II); Ap4A was the most effective of the dinucleotides
[194,318,325]. Diadenosine pentaphosphate (Ap5A) and
diadenosine hexaphosphate appear to play a regulatory role
in mesangial cell proliferation [129]. Ap4A and Ap5A
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decrease, while diadenosine triphosphate appears to increase
glomerular filtration rate [359].

The effect of sphingosine-1-phosphate, a potent mitogen of
mesangial cells, is rapidly desensitized by activation of P2Y
and P1 receptors [420]. ATP and UTP induce migration of
mesangial cells by upregulating sphingosine kinase-1 expres-
sion and activity [193].

Adenosine inhibits platelet-derived growth factor in human
glomerular mesangial cells via A2B receptors [73]. A1 and A2

receptors appear to mediate opposite actions on intracellular
levels of cyclic adenosine monophosphate (cAMP) in
mesangial cells [265]. A2 receptor-mediated hyperpolarisation
of cultured rat mesangial cells has been described [283]. A2

receptors have been identified on human glomerular
mesangial cells [350]. Adenosine activates mesangial cell
proliferation [235], but can also induce apoptosis of mesangial
cells [437]. High concentrations of glucose increase extracel-
lular levels of ATP in mesangial cells, which in turn activates
ERK1/2. This effect is partially dependent on the generation
of reactive oxygen species and subsequent upregulation of
transforming growth factor-1β [300].

Podocytes

Podocytes maintain the permselectivity of the glomerular
filtration barrier. Podocyte function is implicated in human
health: proteinuria is a significant independent risk factor for
cardiovascular mortality and an indicator of underlying chron-
ic kidney disease. Cultured human podocytes produce super-
oxide in response to extracellular ATP [115]. Increase in

[Ca2+]i by purines and pyrimidines is mediated mainly by
P2Y2 and P2Y6 receptors, but P2Y1, P2Y11 and P2X7 recep-
tors are also expressed by podocytes [40,87,118,375]. ATP
acting via P2 receptors stimulated AMP-activated protein
kinase and suppressed superoxide generation in cultured
mouse podocytes [287]. Functionally, activation of A2A re-
ceptors reduces glomerular proteinuria at least in part by
preserving the structure and function of podocytes [9].

Kidney blood vessels

P2X1 receptors have been identified in the vascular smooth
muscle of the rat renal, arcuate and interlobular arteries and in
the afferent arteriole: P2X1 is not expressed in the efferent
arteriole [51,375]. A P2X1-like receptor has been confirmed
functionally in the afferent arteriole [149]. In the smooth
muscle of the larger renal arteries, P2X2 receptor subunits
have been immunolocalised [146,375], and at a molecular
level, P2X4 receptor subunits are found, at least in arcuate
and interlobular arteries [127]. At a protein level, however,
P2X4 expression is limited to the vascular endothelium [242].
P2X7 receptors are also expressed in the healthy kidney:
expression in the vascular smooth muscle and outer-
adventitium is very low [218], whereas functionally signifi-
cant expression is observed in the endothelium [242]. Of the
P2Y receptors, P2Y1 is expressed in the endothelium of the
large arteries and both afferent and efferent arterioles [375].
ATP released from renal tubular epithelial cells acts on
pericytes to regulate the diameter of vasa recta capillaries that
are in close proximity to renal tubules and are key to

Fig. 1 Schematic showing the
structural and functional
relationships within the JGA. The
macula densa (MD) cells are
shown in brown , the
extraglomerular mesangium in
blue, the vascular smooth muscle
cells (VSMCs) in magenta , the
renin-producing cells in green,
the fibroblasts of the adjacent
interstitium in yellow and the
blood vessels in red. Note that
both signalling pathways from the
MD pass the extraglomerular
mesangium, either to reach the
VSMCs (I) to regulate filtration
or the renin-producing cells (II) to
mediate renin secretion
(reproduced from [200], with
permission from the American
Society for Clinical Investigation)
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regulating renal medullary blood flow [61]. P1 receptors are
expressed on mouse afferent arterioles and it was concluded
that activation of A3 receptors blunted the vasoconstrictor
effects mediated by A1 receptors [231].

Physiological responses in the glomerulus and renal
vasculature

Infusion of ATP into the renal artery alters renal vascular
resistance, although the vasoactive response is dependent upon
species and basal vascular tone and can be influenced by the
experimental approach [147]. Functionally, the larger renal
arteries serve principally as conductance vessels [428], and
renal vascular resistance, which determines renal blood flow,
is regulated primarily through pressure-dependent vasoactivity
of the preglomerular arterioles [351]. The interlobular arteries
also contribute, but to a lesser extent [130]. The responsiveness
to ATP of the arcuate and interlobular arteries and the glomer-
ular arterioles of the rat has been assessed in the isolated
perfused kidney preparation [149]. The preglomerular arteries
were relatively insensitive to ATP, with micromolar concentra-
tions required to cause a short-lived vasoconstriction. In con-
trast, sub-micromolar concentrations of ATP caused sustained
contraction of the afferent arteriole. The efferent arteriole was
unresponsive to extracellular ATP, consistent with the reported
absence of P2 receptors in this section. In the isolated perfused
rat kidney, intrarenal administration of ATP is normally vaso-
constrictive, an effect potentiated by inhibition of NO synthesis
(NOS) [79]. In contrast, ATP causes vasodilatation when
baseline renal vascular resistance is high. This reflects P2Y-
mediated production of NO [86]. More recent data have shown
vasoactive actions of P2X4 and/or P2X7 in the rat renal artery
[242]. It would appear that P2 receptor ‘tone’ influences renal
vascular resistance, with P2Y-mediated vasodilatation oppos-
ing P2X-mediated vasoconstriction.

Renal autoregulation

Autoregulation of blood flow is an intrinsic property of most
vascular beds. In the kidney, autoregulation is highly efficient
so that renal blood flow is effectively independent of blood
pressure over the physiological range [64]. Whole kidney
autoregulation is governed through the combined influence
of TGF and the intrinsic myogenic response of the vascular
smooth muscle. These regulatory systems have overlapping
operational frequencies and may interact to a degree [394] so
that afferent arteriolar constriction through TGF enhances the
myogenic response in the upstream vasculature [135].

Myogenic responses to altered perfusion pressure

The intrinsic myogenic response to altered perfusion pressure
is both necessary and sufficient for full whole kidney

autoregulation [64]. The myogenic response operates along
the preglomerular vascular tree, with increased transmural
pressure causing channel-mediated calcium influx and pro-
moting reflex vasoconstriction of the vascular smooth muscle.
Mechanistically, the underlying signalling processes are not
fully defined, but local release of ATP is implicated. In the
afferent arteriole, for example, pressure-mediated vasocon-
striction is markedly blunted by pyridoxalphosphate-6-
azophenyl-2′,4′-disulfonic acid (PPADS) or suramin or by
the saturation and subsequent desensitization of the P2 recep-
tor system [151]. The central role of the P2 system is further
suggested by the fact that pressure-induced reductions in
afferent arteriole diameter are abolished in P2X1-deficient
mice [152]. Pharmacological [272] or pathological [119] ma-
noeuvres that impair P2X1 receptor signalling will also blunt
whole kidney autoregulation of blood flow, both in vivo and
in vitro. Finally, mice with a targeted deletion of the
ectonucleotidase NTPDase1 exhibit enhanced pressure-
induced vasoconstriction in the mesenteric artery [183]. This
probably reflects the prolonged half-life of extracellular ATP
and is consistent with a key role for local nucleotide signalling
in the general myogenic response.

Tubuloglomerular feedback and the juxtaglomerular
apparatus

TGF is a dynamic process whereby changes in the concentra-
tion of NaCl in the fluid emerging from the loop of Henle elicit
inverse changes in the GFR of the nephron of origin. TGF is
mediated by the juxtaglomerular apparatus (JGA), which in-
cludes a sensor, the macula densa and an effector (granulated
cells in the afferent arteriole); other components of the JGA
(e.g. mesangial cells) also play a role.

Changes in luminal NaCl concentration within the physio-
logical range promote a directly correlated release of ATP
from the basolateral membrane of macula densa cells
[21,196]. Furthermore, the concentration of ATP in the corti-
cal interstitium changes to reflect inhibition or activation of
TGF [260]. These data suggest that ATP is the primary sig-
nalling molecule for TGF [22,258]. Gene targeting experi-
ments, however, indicate that ATP is not the ultimate signal
through which activation of TGF causes constriction of the
afferent arteriole: hydrolysis of ATP to adenosine appears to
be critical. A1 receptors mediate TGF in both rats [91] and
mice [34]. In vivo TGF responses are blunted in mice lacking
either the adenosine A1 receptor [222,356] or ecto-5′-nucleo-
tidase, the enzyme catalysing the final stage of the degradation
of ATP to adenosine [47]. This proposition is supported by a
recent in vivo study in which the TGF response in mice (as
assessed by changes in stop-flow pressure in the proximal
tubule) was unaffected during intravenous infusion of PPADS
or suramin [319]. Nevertheless, an anatomical consideration
argues for involvement of the P2 receptor system in the TGF
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response: the ATP released from macula densa cells cannot
activate directly P2 receptors in the afferent arteriole, being
physically separated in most species by the extraglomerular
mesangium. An intact mesangium is required for TGF re-
sponses [307]. Intracellular Ca2+ wave propagation occurs
between rat juxtaglomerular cells; this is mediated by ATP
and is involved in the synchronisation of renin release [424]. It
was later shown that both ATP and gap junctions were integral
components of the TGF calciumwave and that TGF activation
causes a wave of increased cytosolic calcium to pass through
the mesangium, to the granulated cells of the afferent arteriole
and into the glomerular podocytes [285]. Propagation of this
calcium wave was abolished by suramin but not by adenosine
receptor antagonism. The P2 receptor response requires gap
junctional coupling and is inhibited by antagonists against
Cx37 and Cx40 [364]. It has been claimed recently that TGF
adapts and stabilizes early distal delivery at a new set-point,
via an A1 receptor-dependent mechanism [27].

Finally, the basolateral membrane of macula densa cells
expresses a P2Y2-like receptor. The function of this receptor is
unknown but it may provide a mechanism through which ATP
release can be coupled to production [22]. A schematic illus-
trating the underlying mechanism of TGF is shown in Fig. 2.

Glomerular and medullary microcirculation

Infusions of nucleotide analogues into the renal artery exert
powerful effects on regional blood flow, and these can be
measured by laser Doppler flow probes inserted into specific
regions of the kidney. In the rabbit, ATP evokes a biphasic
response, with vasoconstriction of the medullary blood flow
being followed by hyperaemia [82]. On the basis of relative
agonist potency, the vasoconstriction was attributed to P2X1
receptors; the secondary vasodilatation, which was indepen-
dent of NO, to adenosine receptors. In the rat, the net effect of
ATP is influenced by sodium status. In sodium-restricted rats,

Fig. 2 Proposed mechanism of
adenosine acting as a mediator of
the tubuloglomerular feedback.
Numbers in circles refer to the
following sequence of events. 1 ,
Increase in concentration-
dependent uptake of Na+, K+ and
Cl− via the furosemide-sensitive
Na+–K+–2Cl− co-transporter
(NKCC2); 2 and 3 , transport-
dependent, intra- and/or
extracellular generation of
adenosine (ADO) and the
extracellular generation involves
ecto-5′-nucleotidase (5′-NT); 4 ,
extracellular ADO activates
adenosine A1receptors triggering
an increase in cytosolic Ca2+ in
extraglomerular mesangium cells
(MC); 5 , the intensive coupling
between extraglomerular MC,
granular cells containing renin
and smooth muscle cells of the
afferent arteriole (VSMC) by gap
junctions allows propagation of
the increased Ca2+ signal
resulting in afferent arteriolar
vasoconstriction and inhibition of
renin release. Factors such as
nitric oxide, arachidonic acid
breakdown products or
angiotensin (ANG) II modulate
the described cascade. NOS I
neuronal nitric oxide synthase,
COX-2 cyclooxygenase-2
(reproduced from [384], with
permission of the American
Physiological Society)
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ATP increased medullary blood flow in a NO-dependent
manner [71]. In salt-loaded rats, ATP caused vasoconstriction
in the outer medulla without affecting inner medullary flow.
The authors speculated that the inner medullary vasodilatation
reflected an effect of nucleotides on vasa recta pericytes.
Consistent with this, purinergic cross-talk between the thick
ascending limb and abutting vasa recta exerts a countervailing
influence on Ang II vasoconstriction, an action lost during
salt-sensitivity [263]. The integrated picture is far from clear,
however, since data obtained in slices of rat kidney suggest
that P2 receptor activation promotes vasoconstriction of the
vasa recta due to contraction of pericytes [61].

Responses to adenosine,mediated byA2 receptors,modulated
TGF by counteracting the effects of A1 receptor-mediated actions
[44]. Both A2A and A2B receptors are functionally expressed in
juxtamedullary afferent arterioles, and the dilator effects of aden-
osine are predominantly mediated byA2B receptors, which coun-
teract A1 receptor-mediated vasoconstriction [84].

Renin release

The renin–angiotensin system is influenced bymany factors, the
final pathways of which converge at the level of altered intra-
cellular calcium signalling in the granular cell; renin secretion is
inversely related to [Ca2+]i [424]. The renin-containing epitheli-
oid juxtaglomerular cells are modified vascular smooth muscle
cells and are localised in the media of the afferent arteriole close
to its entry into the glomerulus and are innervated by sympa-
thetic nerves. ATP was shown to increase renin release from
juxtaglomerular cells in an early paper [97]. Both renal
juxtaglomerular and microvascular endothelial cells express P2
purinoceptors andATP inhibited cAMP-stimulated renin release
from juxtaglomerular cells only in the absence of endothelial
cells [203]. P2Y receptors mediate stimulation of renin secretion
in rat renal cortical slices [59]. ATP can stimulate the renin gene
promoter via P2Y11 receptors [385]. Stimulation of sympathetic
nerves released ATP as a cotransmitter with noradrenaline (NA)
to elicit excitatory junction potentials in both smoothmuscle and
juxtaglomerular cells, to produce vasoconstriction and release of
renin, respectively [38]. A recent paper reports that adenosine,
formed during renal sympathetic nerve stimulation, enhances
via A1 receptors the postjunctional effects of released NA,
thereby contributing to renal sympathetic neurotransmission
[162]. Juxtaglomerular A1 receptors are also involved in the
control of the glomerularmicrocirculation [184]. Adenosinewas
shown to depress renin secretion in sodium-restricted rats, ac-
companied by amarked fall in GFR, while this effect was nearly
abolished in sodium-loaded rats [274]. A2 receptors mediate
arteriolar dilation and stimulation of renin secretion, whereas
activation of A1 receptors mediates arteriolar constriction and
inhibition of renin secretion [58,252]. Adenosine inhibits renin
release by a mechanism that involves the juxtaglomerular cells
located in the afferent arteriole at some distance from the

glomerulus [343]. From other studies, it was concluded that
adenosine decreases renin release via the activation of
juxtaglomerular A1 receptors and that adenosine may be an
inhibitory signal from the macula densa to juxtaglomerular cells
[158,271]. In A1 receptor-deficient mice, TGF is abolished (see
above) and there is increased plasma renin [34]. A1 receptors are
required for the inhibition of renin secretion produced by an
increase in blood pressure, suggesting that adenosine is respon-
sible for baroreceptor-mediated inhibition of renin release; in
contrast, stimulation of the renin system by low blood pressure
appears to follow a different pathway [327].

Renal tubules

The pattern and distribution of P1 [345,390] and P2 receptors
[14,49,375] along the rat renal tubule have been reported (see
Fig. 3), and the major transporters for sodium and water are
illustrated in Fig. 4. In recent years, our understanding of the
functional consequences of receptor activation has advanced
considerably, in part due to physiological studies in gene-
targeted mice (see Table 1).

Proximal convoluted tubules

P2Y receptors were identified in the renal cortex over 20 years
ago [254], and since then, a variety of approaches has begun to
catalogue the distribution of specific receptor subtypes. P2Y1

and P2X5 receptors have been immunolocalised to the apical
membrane in the S3 segment of the rat pars recta and P2Y4

and P2X6 receptor protein is found basolaterally in the prox-
imal convoluted tubule (PCT). Low level expression of P2X4
protein is also seen in the PCT but not ascribed to a specific
membrane domain [375]. Western analysis has shown the
P2Y1 receptors in brush-border membrane vesicles from the
S2 segment of rat PCT [12].

mRNA has been identified for P2Y1, 2, 4 and 6 receptors in
the rat proximal tubule [14,15]. Measurements of Ca2+ tran-
sients following application of P2 receptor agonists of varying
selectivity support expression of apical P2Y1-like receptors in
an immortalised cell line with a proximal phenotype [178] and
for basolateral P2Y1 receptors in native rat PCT [14,49].
Bailey and colleagues [15] also reported that basolateral uri-
dine 5′-diphosphate (UDP) was effective in increasing [Ca2+]i,
corroborating the presence of P2Y6 receptors. Finally, ATP
and UTP were equipotent when applied to rat or rabbit
basolateral membranes [14,422], implying P2Y2 or P2Y4

receptors. Notably, the immunohistochemical evidence in rats
favours P2Y4 receptors [375].

In vivo, microperfusion studies show that adenosine nucle-
otides, applied from the luminal side, inhibited NHE3 activity
in the rat PCT [11]. Adenosine diphosphate (ADP) was more
effective than ATP, suggesting a P2Y1 receptor effect. This

76 Purinergic Signalling (2014) 10:71–101



was supported by the observation that the P2Y1-selective
agonist 2-methylthio ADP also had a potent inhibitory effect,
which was blocked by the P2Y1-selective antagonist
MRS2179. Addition of ATP to peritubular capillaries in vivo
caused an increase in transepithelial bicarbonate reabsorption
in rat PCT [70]. Increasing the viscosity of the peritubular
perfusate also stimulated bicarbonate reabsorption, and this
effect was blocked by peritubular suramin, suggesting P2
receptor mediation. (Shear stress was proposed as the activat-
ing factor.) Interestingly, the increase in bicarbonate reabsorp-
tion induced by ATP or by raised viscosity could be blocked
by a NOS inhibitor. Thus, P2 receptors exert in distinct mem-
brane domains opposing effects on sodium bicarbonate flux.
This complexity of paracrine regulation is also observed for
Ang II.

In the proximal tubules of P2Y2 receptor knockout mice,
the expression of NaPT2 protein is increased but NHE3
abundance is normal [225]. Consistent with this, ATP inhibits
phosphate uptake (and mRNA for NaPT2) in primary cultures
of rabbit PCTs [211]. In the same preparation, ATP stimulates
sodium–glucose co-transport by increasing both SGLT1 and
SGLT2 protein expression [210].

A study in rats, using lithium clearance as an index of end
proximal tubular fluid delivery, reported that intravenous in-
fusion of the diadenosine polyphosphate, Ap4A, increased
lithium clearance almost twofold. This occurred despite a fall
in GFR and suggested that proximal tubular reabsorption was
markedly reduced [353]. Ap4A can stimulate a number of P2
receptor subtypes, including P2Y1 and P2Y4 receptors
[331,410], which are both expressed in the rat proximal tubule
(P2Y1 apically, P2Y4 basolaterally); intravenous delivery of

the agonist does not allow differentiation between these
possibilities.

Effects on transport have also been observed in the am-
phibian kidney. Cells of the frog proximal tubule contain at
least two different K+-selective conductances, both of which
are regulated by extracellular ATP [312]. Extracellular ATP
raises cytosolic Ca2+ and activates basolateral chloride con-
ductance in Necturus proximal tubules [32]. A more recent
paper presented evidence that P2X1 receptors played a role in
the regulation of cell volume and K+ channels in frog renal
proximal tubule cells [66].

Adenine-based and uracil-based nucleotides can also reg-
ulate metabolic functions in the proximal tubule. Early papers
showed that ATP inhibited citrate synthase activity in the
kidney cortex [33] and stimulated tetraethylammonium trans-
port by rabbit renal brush border membrane vessels [240].
Gluconeogenesis is also stimulated by P2 receptor activation
[48,247] and by diadenosine polyphosphates [75]. ATP and
UTP were equipotent in stimulating gluconeogenesis, impli-
cating P2Y2 or P2Y4 receptors [247]. Although these authors
suggested P2Y2 mediation, these receptors have not been
found in rat proximal tubules. P2Y4 receptors are expressed
here, making a basolateral P2Y4-mediated effect more likely.

A long-term trophic role for purinergic signalling in the
kidney has also been described, where ATP stimulates prolif-
eration of proximal tubule cells via increase in [Ca2+]i and
activation of p38, p44/42, MAPKs and cyclin-dependent ki-
nase [212]. It has been claimed that there is paracrine stimu-
lation of vascular smooth muscle proliferation by diadenosine
polyphosphates released from proximal tubule cells [169],
probably via P2Y receptors [39]. Tubular remodelling is

Fig. 3 The distribution of P2 receptors along the nephron: an amalgam of
available functional, mRNA and protein (immuno-) detection studies
showing how widespread and overlapping it is. To date, there has been
no full report of their distribution in native renal tissue of any species.

P2Y is shown in blue and P2X in red; presence of those in parentheses is
still uncertain. (updated from [381], with permission from the American
Physiological Society)
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complex, and in cultured mouse, proximal cells subjected to
ATP depletion below ~15 % of control died uniformly of
necrosis, while cells subjected to ATP depletion by 25 % or
more of controls all died by apoptosis [224]. Prior heat stress
or Zn2+ inhibits apoptosis in ATP-depleted kidney proximal
tubule cells [396,399]. Extracellular ATP protects cultured
proximal tubule cells against oxidative stress [213].

Adenosine, acting via P1 receptors, also plays roles in the
regulation of proximal tubule activity. Adenosine A1 receptor
mRNAwas identified in rat nephron segments [423] and also
A2A receptor mRNA [398]. Regulation of Na+-3HCO3

− co-
transport in rabbit proximal tubules via A1 receptors was
claimed [360]. A1 receptors were characterised in human
proximal tubule epithelial (HK-2) cells [367]. In the pig
proximal tubule, Na+-ATPase activity is stimulated via aden-
osine A2A receptors, thus regulating sodium reabsorption
[406]. Transepithelial fluxes of adenosine across human prox-
imal tubule cells involve specific nucleoside transporters [80].
Adenosine is deaminated to inosine in isolated basolateral
membranes from proximal tubules, leading to modulation of
protein kinase (PK) A activity [8]. Low salt intake increases

A1 receptor expression and function in rat proximal tubules
[202]. Inhibition of A1 receptors increases fluid uptake in the
proximal tubule [278]. Adenosine-induced PKA activation
reduced Ang II-induced stimulation of phosphoinositide spe-
cific phospholipase (PL) Cβ [109].

The loop of Henle

P2X4 and P2X6 receptors have been immunolocalised to the
rat thin descending limb of Henle [375]. Measurements of
agonist-induced [Ca2+]i transients indicate a functional pyrim-
idine receptor in the basolateral membrane of this segment
[14], but neither P2Y2 nor P2Y4 protein has been demonstrat-
ed. mRNA for P2Y1 and P2Y6 is expressed here [14,15], but
again evidence of receptor protein is lacking. In the rat thin
ascending limb, the functional evidence for a pyrimidine
receptor in the basolateral membrane [14] is, in this case,
supported by immunohistochemical confirmation of P2Y2

receptor protein; P2X4 and P2X6 protein expression has also
been reported [375]. The physiological role of P2 receptors in
the thin limbs is unknown, but this reflects the general absence
of information regarding transport in these segments.

The expression and function of P2 receptors in the thick
ascending limb (TAL) is increasingly well-defined but there
appear to be species differences between rat and mouse. In the
rat TAL, basolateral binding sites for adenosine-5′-(γ-thio)-
triphosphate (ATPγS) are found [13], but this agonist does not
discriminate well between different receptor (both P2Y and
P2X) subtypes. P2Y2, P2X4 and P2X6 receptor proteins have
been immunolocalised to the TAL [375] and mRNA is
expressed here for P2Y1, 2, 4 and 6 subtypes [14,15,188].

Rat TAL segments appear poorly responsive to basolateral
application of nucleotides, at least in terms of Ca2+ signalling
[14,15]. In the mouse, however, basolateral ATP and UTP
each causes large Ca2+ transients, consistent with P2Y2 recep-
tor activation [13,280]. This work is extended with luminal
application of ATP or UTP causing calcium transients in
mouse medullary TAL (mTAL) perfused in vitro, an effect
absent in P2Y2 knockout mice [174]. P2Y2 knockout mice
have proven a useful tool for defining the role of these recep-
tors in the kidney. These animals have increased expression of
the Na+–K+–2Cl− co-transporter and an augmented natriuretic
response to furosemide [309]. These data imply that P2Y2

receptors exert a tonic inhibitory effect on NaCl transport in
mouse TAL. A recent study has further indicated that activa-
tion of basolateral P2X receptors triggers a marked reduction
in NaCl absorption in mouse mTAL [237].

Further evidence directly supports a regulatory role for
extracellular nucleotides on TAL function. In suspensions of
rat mTAL, ATP increased intracellular NO production in a
concentration-dependent manner, a response inhibited by
suramin [340]. Flow-induced NO production is dependent
on ATP release in TAL [41]. On the basis of agonist profiling,

Fig. 4 Architecture of rat nephron and collecting duct showing segmen-
tal localisation of major transporters and channels that play critical roles
inwater and solute reabsorption.AQP1 ,AQP2 , AQP3 , AQP4 Aquaporin
water channel isoforms (reproduced from [189] with permission from
Springer)
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it was argued that the response was mediated primarily by
P2X receptors. Further studies from the same group have
defined NOS3 (eNOS) as the target for P2 receptor activation
[338], in a process requiring activation of Akt1 (serine threo-
nine kinase; aka PKB).

The physiological process coupling P2 receptor activation
and NO production may be the flow rate of fluid thought the
lumen of the TAL, which regulates nucleotide [174]. In-
creased flow within the physiological range has previously
been shown to stimulate NO production [270] and promote
translocation of NOS3 towards the apical membrane in TAL
cells. Mechanistically, therefore, ATP is likely to reduce sodi-
um flux in this segment via NO-mediated inhibition of apical
transport processes and this has indeed been shown for both
Na+–K+–2Cl− co-transporter [269] and Na+/H+ exchange ac-
tivity [102]. Nevertheless, the primary effect of ATP may be
reduction in basolateral Na+–K+–ATPase activity, since ATP
reduces oxygen consumption in suspensions of TAL cells
[339]. Pharmacological characterisation of this effect found
it to be P2X-mediated and NOS-dependent. However, as with
nucleotide-stimulated NO production, a weak inhibitory effect
on oxygen consumption of UTP was found and there may be
some additional P2Y involvement.

Distal tubules

The distal tubule is that segment of the nephron between the
macula densa and the first confluence with another tubule in
the collecting duct. It is a heterogeneous segment,

incorporating the distal convoluted tubule, the connecting
duct and the initial portion of the cortical collecting duct
(CCD). The transport properties also vary: the distal convo-
luted tubule is the site of thiazide-sensitive sodium reabsorp-
tion and the epithelial sodium channel is expressed in the
CCD. The connecting tubule, which is not well-defined in
humans, has hybrid transport processes. P2 receptors have
been identified in the native distal convoluted tubule and
CCD ([13]; see [77]) and the collecting duct is discussed in
detail below. However, many of the studies of distal tubule
cells have been carried out on cell lines such as A6 (derived
from Xenopus kidney) and Madin–Darby canine kidney
(MDCK) cell. ATP activates both Cl− and K+ channels in
distal nephron epithelial cells from the cell line A6 by a
Ca2+-dependent mechanism [243,257,315], probably via
P2Y2 receptors [19,250,251] and also in a rabbit distal con-
voluted tubule cell line [26]. The high-affinity Ca2+ channel of
the distal tubule luminal membrane is regulated by ATP, and
ATP plays a crucial role in the integrity of the cytoskeleton,
which is also involved in the control of Ca2+ channels in this
membrane [35,284]. Stretch-released ATP, acting through an
autocrine PLC-dependent pathway, masks stretch activation
of epithelial sodium channels (ENaC) in A6 distal tubule cells
[232].

Connexin hemichannels have been shown to be localised in
the luminal membrane of the distal nephron and may be the
mechanism underlyingATP release from these cells and play a
role in the regulation of salt reabsorption [239]. Multiple P2X
recep to r s (P2X4 , P2X5 and P2X6) have been

Table 1 Effects of P2 receptor
activation in kidney segments Kidney segment P2

receptor
Action

Aldosterone-sensitive distal
nephron

P2 Decrease Na+ absorption

P2Y2 Decrease aldosterone sensitivity
and K+ excretion (with high K+ diet)

Proximal tubule P2Y1 Increase [Ca2+]i, decrease bicarbonate reabsorption

P2Y2 Increase [Ca2+]i and gluconeogenesis

P2Y6 Increase [Ca2+]i and inositol phosphates

Loop of Henle

Thin descending limb P2Y2 Increase [Ca2+]i
Thin ascending limb P2Y2 Increase [Ca2+]i
Thick ascending limb P2Y2 Increase [Ca2+]i, decrease NKCC2 activity

Collecting ducts P2 Decrease phosphatidylinositol bisphosphate

P2X4 Decrease ENaC activity in high [Na+]

P2Y2 Increase phospholipase C, decrease ENaC
activity and H2O reabsorption

Cortical collecting duct P2Y2 Increase [Ca2+]i and phospholipase C, decrease ENaC
activity and small conductance K+ channel

Inner medullary collecting duct P2Y2 Increase [Ca2+]i, prostaglandin E2 protein kinase C and
phospholipase C, decrease endothelin-1 release,
cAMP and vasopressin-stimulated osmotic water
permeability
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immunolocalised in the distal tubule cells [411]. In particular,
P2X4 and P2X6 receptors are present on the basolateral
membranes of the rat distal tubule epithelium [375], and it
has been claimed that P2X4-like receptors regulate ATP-
stimulated epithelial Na2+ channel activity in distal tubule
A6 epithelium [432].

The intercalated cells of the distal nephron protrude 1–
3 μm further into the lumen than the principal cells; they
release ATP in response to mechanical stress [136]. Extracel-
lular nucleotides regulate Na+/H+ exchanger isoform 3 activ-
ity in the A6-NHE3-transfected cell line; A6-NHE3 cells are
A6 cells selected on the basis of high transepithelial respon-
siveness to aldosterone [10]. The P2Y1 receptor in A6 cells
can increase both cAMP/PKA and Ca2+/PKC intracellular
levels, and it is claimed that the PKC pathway is involved in
cystic fibrosis transmembrane conductance regulator activa-
tion [120]. A6 cells were used to show that aldosterone
stimulates ATP release from the basolateral side of distal
tubular cells; ATP then acts via purinoceptors to produce
contraction of small groups of adjacent epithelial cells, which
results in apical swelling that disrupts the ENaC interaction
with the F-actin cytoskeleton, opening the channel and hence
increasing sodium transport [112]. ‘Aldosterone escape’ refers
to the excretion of sodium during high sodium intake; local
purinergic tone in the aldosterone-sensitive distal nephron
downregulates ENaC activity. P2Y2

−/− mice had significantly
less increased sodium excretion than wild-type mice [354]. It
was concluded that control of ENaC by purinergic signalling
is necessary for aldosterone escape and this was supported by
another laboratory in a later paper, and in addition, it identified
a potential role for NO and prostaglandins in response to
aldosterone [434]. Mechanical stimulation of purinergic sig-
nalling leads to activation of transient receptor potential
vanilloid (TRPV) 4 channels, an important component of the
mechano-sensitive response of the aldosterone-sensitive distal
nephron [236].

The MDCK cell line has been widely used for studies of
distal tubule activities. An early paper showed that exogenous
ATP stimulated ion transport in cultured MDCK cells [341].
Electrophysiological studies showed that ATP and UTP
hyperpolarise MDCK cells by increasing the K+ conductance
[95,206]. A later paper from this group showed that ATP
increased [Ca2+]i; calcium then activates K+ channels and thus
leads to hyperpolarisation of the cell membrane [281]. Regu-
lation of transepithelial ion transport by two different recep-
tors on the apical membrane of MDCK cells was claimed
[430], the data implicating P2Y1 and P2Y2 (or P2Y4) recep-
tors. Lanthanum inhibits UTP-induced Ca2+ mobilization in
MDCK cells [164]. P2Y1, P2Y2 and P2Y11 receptor mRNA
was shown to be expressed by MDCK cells, but the P2Y2

receptor was dominant in mediating ATP activation of cAMP
formation [155,295,373,427]. A later paper showed expres-
sion of P2Y6 (as well as P2Y1, P2Y2 and P2Y11) receptors in

MDCK cells [142]. Functional P2X7 receptors are also
expressed by MDCK cells [163].

Mechanical stimulation of ATP release from MDCK cells
(as well as COS-7 and HEK-293 cells) occurs on changing the
medium and other experimental protocols with cultured cells,
leading to P2Y1 and P2Y2 receptor activation [275]. Activa-
tion of P2Y receptors caused strong and persistent shrinkage
of MDCK renal epithelial cells [195]. The cloning and tissue
expression ofMDCK P2Y2 receptors has been reported [426].
Cyclooxygenase (COX)-2 is constitutively expressed by
MDCK cells, which participates in P2Y2 receptor-mediated
signalling [276]. Transcellular ion currents in ATP-treated
MDCK cells are mainly caused by the coupled function of
apical and basolateral anion transporters providing transient
Cl− secretion [31]. Adenosine induces ATP release via A1

receptors in MDCK cells [244]. Cl− secretion in MDCK
monolayers treated with basolateral ATP is triggered by
P2Y1 receptors and is mediated by subsequent [Ca2+]i-inde-
pendent activation of PLA and PKA [3].Mitochondria play an
important role in adenosine-induced ATP release fromMDCK
cells [245]. Activation of the Na+–K+–Cl− co-transporter in
MDCK cells is via Ca2+-independent signalling triggered by
apical P2Y2 and basolateral P2Y1 receptors [4]. Rapid pres-
sure changes induce both apical and basolateral ATP release
[299]. In a later paper, it was shown that subtle flow changes
sensed by the primary cilium induced nucleotide release,
which amplified the epithelial [Ca2+]i response [296].

As reported earlier for proximal tubule cells, there is reversible
tight junction disassembly during ATP depletion and repletion in
MDCK cells [111]. MDCK epithelia spontaneously release ATP
resulting in [Ca2+]i oscillations leading to modifications of
steady-state renal function [105]. In a later paper, it was shown
that the frequency of oscillations was increased by extracellular
nucleotides and was decreased if the nucleotides were removed
by apyrase [380]. Betaine serves as an osmolyte that is accumu-
lated by tubular cells to maintain osmotic balance. Acute inhibi-
tion of the betaine transport by ATP and adenosine in MDCK
cells has been reported [185]. Endogenous ATP release inhibits
electrogenic Na+ absorption and stimulates Cl− secretion in
MDCK cells [419]. Activation of c-Jun and/or p38 contributes
to Na+–K+–Cl− co-transport suppression in MDCK cells by
exposure to P2Y1 agonists [5]. The proto-oncoprotein
SYT(SS18) controls ATP release and regulates cyst formation
by polarised MDCK cells, suggesting that SYT plays a vital role
in controlling epithelial morphogenesis and might explain the
lethality of its loss in the developing embryo [56]. P2 receptor-
mediated inhibition of vasopressin (AVP)-stimulated fluid trans-
port and cAMP response in AQP2-transfected MDCK cell has
been reported [186].

Adenosine modulates Mg2+ uptake in distal convoluted
tubule cells via A1 and A2 receptors [181] and a volume-
sensitive-like chloride conductance in a rabbit distal convo-
luted tubule cell line (DC1) [316]. Both basolateral and apical
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A1 receptors were shown to mediate sodium transport in
cultured A6 cells [234].

Collecting ducts

A large number of P2X and P2Y receptor subtypes have been
localised to the rat collecting duct. Immunohistochemistry has
identified the expression of P2X1 (intercalated cells only,
sodium-restricted only) P2X2, 4, 5 and 6 subunits and P2Y2,

4, 6, 11, 12 and 13 subtypes [188,375,409]. These immunohisto-
chemical data have largely been validated by mRNA expres-
sion profiles in the rat tubule. P2Y1, 2, 4 and 6 metabotropic and
P2X4 ionotropic receptor mRNAs were identified in the cor-
tical and outer medullary collecting duct [13,15,409], with
P2X1 and 6 receptor mRNAs also reported following dietary
sodium restriction [409]. mRNA for P2Y1, 2, 4 and 6 subtypes
was identified in the inner medullary collecting duct (IMCD)
[188,433]. P2X1, 4, 5, 6 and 7 mRNAs have been localised to
the murine cortical and outer medullary collecting duct, indic-
ative of species differences in expression profiles [219]. In
humans, only P2X4 has been detected in significant amounts
in the collecting duct [50]. Activation of P2X receptors in-
creased both sodium and water excretion [168]. Hypotonic
treatment evokes biphasic ATP release across the basolateral
membrane of cultured A6 cells [106,172].

Although the functional role of P2 receptors in the
collecting duct is complex, several studies, using a combina-
tion of approaches, have demonstrated that extracellular nu-
cleotides modulate water and electrolyte handling in this
region of the nephron. These effects are important for sodium
and water homeostasis since it is in this section of the nephron
that urinary excretion is fine-tuned to meet the body’s overall
requirements.

Water transport

The regulation of urine concentration and water homeostasis
occurs in the collecting duct, under the control of AVP re-
leased from the brain. AVP increases the water permeability of
the collecting duct by evoking the translocation to the apical
membrane of the aquaporin 2 water channel (AQP2): this
requires phosphorylation of AQP2 by PKA. In addition to
these rapid, non-genomic effects, chronic AVP stimulation
increases the water permeability of the collecting duct through
the increased transcription of the AQP2 gene. Several studies
have demonstrated that nucleotides have an inhibitory affect
on the action of AVP in the collecting duct.

The ability of ATP to modulate AVP-induced water per-
meability in the collecting duct was first demonstrated in the
mid-1990s. ATP was shown to reversibly inhibit AVPs’ ac-
tions in isolated perfused rabbit CCD and rat IMCD
[187,188,314]. Since UTP and ATP were equipotent, the
inhibitory effects were attributed to the activation of P2Y2

[188]. P2Y2 couples to the G-protein Gq, and as such, its
stimulation causes the activation of PLC, increased inositol
trisphosphate production and consequently the mobilization
of [Ca2+]i. Both ATP and UTP stimulated intracellular calcium
release in rat IMCD [74], and inhibition of calcium mobiliza-
tion attenuated ATP’s effects in isolated rabbit CCD [314].
Notably, adenylate cyclase, stimulated by AVP and PLC,
stimulated by ATP, are mutually inhibitory pathways. PLC
activates PKC, which inhibits adenylate cyclase [369]. Indeed
the inhibitory effects of P2Y2 receptors have been shown to be
associated with PKC-dependent reductions in cAMP [187].
More recently, COX-1-mediated prostaglandin (PG) E2 syn-
thesis has also been implicated in ATPs’ inhibitory effects.
ATPγS stimulation of IMCD fractions from hydrated rats
resulted in increased PGE2 synthesis [357,401], an effect that
was blunted in IMCD fractions from dehydrated rats [357].
Furthermore, enhanced P2Y2 abundance (mRNA and protein)
was documented in hydrated rats and was associated with
increased PGE2 [191]. Since PGE2 decreases the water per-
meability of the collecting duct, these data add support to the
concept that cross-talk between AVP and ATP provides an
additional level of hydrosmotic regulation. Indeed, chronic
stimulation of V2R with ddAVP, as would occur during de-
hydration, reduced P2Y2 abundance in rats [357]. However,
the interaction between AVP and ATP may vary in the short
and long term. In isolated perfused CCD, acute AVP exposure
stimulated nucleotide secretion [264]. A recent paper has
shown that ATP counteracts AVP-induced water permeability
by increasing AQP2 degradation in lysosomes, preceded by
ubiquitin internalization and by decreasing AQP2 gene tran-
scription by reducing AVP-induced cAMP levels [29].

P2Y2 is located on both the apical and basolateral mem-
branes of the collecting duct [188]; however, the demonstra-
tion that luminal ATP did not alter AVP-stimulated water
permeability in isolated rat IMCD suggested that its effects
are mediated by activation of P2Y2 receptors on the
basolateral membrane [76]. Recent studies in immortalised
mouse collecting duct cells (mpkCCDc14) have provided a
possible mechanism for ATP’s inhibitory effect on water
transport. Whereas ddAVP application resulted in increased
AQP2 immunofluorescence at the apical membrane, ATP and
ATPγS resulted in AQP2 internalisation. In addition to
basolateral P2Y2 receptors, luminal P2X2 and P2Y4 stimula-
tion may also be involved in ATP’s inhibitory effects. Co-
expression of these receptors with AQP2 in Xenopus oocytes
resulted in decreased membrane expression of AQP2 and,
consequently, attenuated water permeability [415].

Gene deletion studies have substantiated the findings from
the pharmacological manipulation. P2Y2

−/− mice have in-
creased medullary AQP2 expression and greater basal
collecting duct fluid reabsorption than wild-type controls.
These data suggest that P2Y2 stimulation provides a tonic
inhibition of AVP actions at V2 receptors [309,382,433].
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Sodium transport

The effects of extracellular nucleotides on sodium reabsorp-
tion in the collecting duct have largely been discerned through
the evaluation of amiloride or benzamil-sensitive sodium
transport, taken to reflect the activity of the epithelial sodium
channel. Koster et al. [197] made the first demonstration that
activation of P2 receptors inhibited benzamil-sensitive sodium
transport. Using cultured rabbit collecting duct cells, they
showed that both apically and basolaterally applied ATP
inhibited benzamil-sensitive short circuit currents (an indica-
tor of sodium transport). The inhibition of Na+ transport was
dependent on PKC but not Ca2+ signalling. Since ATP and
UTP were equipotent, and ADP had no effect, inhibition of
ENaC-mediated sodium transport was attributed to activation
of P2Y2 [197]. Subsequently, studies in the M-1 mouse
collecting duct cell line demonstrated that amiloride-
sensitive sodium reabsorption was reduced by both the apical
and basolateral application of ATP and UTP. Since ADP and
UDP had no effect, these results were consistent with the
activation of P2Y2. Indeed, the presence of P2Y2 receptors
in the cell line was confirmed by RT-PCR [63]. However, in
contrast to the data from cultured rabbit collecting duct cells,
the effects of ATP were not dependent on PKC activation
[370]. In a different model, mIMCD-K2 mouse collecting
duct cells, apical (but not basolateral) nucleotides inhibited
sodium reabsorption, an effect, which based on mRNA ex-
pression and pharmacological profiling, was attributed to
activation of P2Y1, P2Y2, P2X3 and P2X4 receptors [238].
More recently, studies in the mouse IMCD cell line (mIMCD-
3) provided a possible mechanism for nucleotide-mediated
ENaC inhibition. Extracellular nucleotides caused a reduction
in serum- and glucocorticoid-inducible kinase-1 (SGK1) ex-
pression and activity. Since SGK promotes the insertion of
ENaC into the apical membrane, it was postulated that nucle-
otides modulate sodium reabsorption through the regulation

of SGK1 and, consequently, ENaC activity [220]. In addition,
local phosphoinositide levels may modulate basal and acute
ENaC activity. In immortalised mouse CCD cells,
(mpkCCDe14), phosphatidylinositol 4,5-bisphosphate (PI(4,
5)P2) concentrations correlated with ENaC activity. Given
that the inhibition of both purinergic signalling and PLC
rescued ENaC activity, it was postulated that purinergic regu-
lation of PI(4,5)P2 concentrations, through the activation of
P2Y receptors, modulates ENaC activity [288]. ENaC in the
aldosterone-sensitive distal nephron is under tonic inhibition
by local purinergic signalling responding to changes in dietary
sodium intake [37]. Table 2 summarises P2 receptor actions
on ECaC activity.

In addition to the inhibition of sodium reabsorption,
ATP stimulation also increases Cl− secretion. In mIMCD-
3 cells, ATP stimulates Cl− conductance by a calcium-
dependent mechanism [352]. Extracellular ATP-induced
calcium signalling requires both P2X and P2Y receptors
in mIMCD-3 cells [417]. The TRPC3 is exclusively
expressed in the apical membrane of principal cells of
the collecting duct, both in vivo and in the mIMCD cell
line. It has been shown that mIMCD-3 cells have two
distinct calcium influx pathways: a store-operated channel
activated by thapsigargin and basolateral ATP and TRPC3
channels activated by apical ATP [108]. Adenosine, acting
on A2B receptors, also enhances Cl− secretion through
cystic fibrosis transmembrane conductance regulator
(CFTR) in IMCD-K2 cells [302]. The authors proposed
that the adenosine receptor pathways might provide one
mechanism for enhancing urine NaCl excretion in the
setting of high dietary NaCl intake. It was later proposed
that P2Y1 and P2Y2 receptors operate in tandem in IMCD
cells to enhance urinary NaCl excretion in these conditions
[303]. A recent whole kidney study showed that in rats on
high sodium intake, adenosine had the potential to en-
hance renal excretion [201].

Table 2 A summary of the effects of P2 receptor activation on ENaC activity (reproduced from [414], with permission from Springer)

Epithelia Species P2 receptor involved (localisation) Effect on Iam-s Mechanism Reference

CCD Mouse P2Y2 (ap., baso.) Inhibits – [214]

CD Rat P2X4-like (ap.) Inhibits – [332]

CCD/OMCD Rat P2Y2/P2Y4 (ap.) Inhibits PKC [413]

P2X4/P2X4/6 (ap.) Inhibits or potentiates ? or PI3K [413]

M1 cell line Mouse P2Y2 (ap., baso.) Inhibits ↑ [H+]int [63,370]

A6 cell line Xenopus P2Y2 (ap.) Inhibits PLC, ↓ PIP2, ↓ open prob. [232]

P2X4-like (baso.) Potentiates PI3K, ↑ open prob. [432]

CCD 1° cultures Rabbit P2Y2-like (ap., baso.) Inhibits PLC, PKC [197]

mIMCD-K2 cell line Mouse P2X3, P2X4, P2Y1, P2Y2 (ap.) Inhibits – [238]

Iam-s amiloride-sensitive current (i.e. ENaC-mediated current), ap. apical membrane, baso. basolateral membrane, ↑ increase, ↓ decrease, PKC protein
kinase C, PLC phospholipase C, PI3K phosphoinositide 3-kinase, PIP2 phosphatidylinositol bisphosphate,MAPK mitogen-activated protein kinase, 1°
primary cell cultures, open prob. single channel opening probability, CCD cortical collecting duct, OMCD outer medullary collecting duct
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Further to the results from cell culture, nucleotide-induced
inhibition of sodium transport has also been demonstrated in
native collecting duct tissue. In isolated perfused mouse
collecting ducts, the application of luminal ATP and UTP caused
increased calcium release [67] and inhibition of amiloride-
sensitive sodium transport [214], effects which were attributed
to the stimulation of P2Y2 receptors. Consistent with P2Y2

receptors being the primary mediator of nucleotide-induced in-
hibition of ENaC, ATP’s effects on sodium reabsorption were
significantly reduced in collecting duct cells isolated from P2Y2

−/

− receptor mice. However, residual ATP effects implicated the
involvement of other P2 receptors [289]. Recently, P2Y2 recep-
tor activation has been shown to increase renal Na+ excretion and
decrease blood pressure [310].

Shirley et al. [332] provided the first in vivo evidence that
P2 receptors on the apical membrane of the collecting duct
inhibit sodium reabsorption. Rats were maintained on a low
sodium diet to induce ENaC expression and urinary recovery
of 22Na during microperfusion of the late distal nephron used
to assess sodium reabsorption. Notably, despite the firm evi-
dence from in vitro studies in mice showing P2Y2-mediated
inhibition of sodium reabsorption in the collecting duct, P2Y2/
P2Y4 ‘selective’ agonists had no effect in the rat preparation,
and the involvement of a P2X heteromer was hypothesised
[332]. More recently, patch-clamp studies in split open rat
CCDs have demonstrated the involvement of both apical
P2X and P2Y receptors in the modulation of ENaC activity.
Activation of P2Y2 and P2Y4 receptors resulted in PLC-
dependent inhibition of ENaC activity. Interestingly, activa-
tion of P2X4 and P2X4/6 receptors caused an inhibition of

ENaC activity when luminal concentrations of sodium were
high (145 mM); however, when sodium concentrations were
reduced to more physiological levels (50 mM), activation of
the receptors potentiated ENaC activity [412,413]. In accor-
dance with a P2X4 component to purinergic regulation of
sodium transport is the demonstration that in the ‘distal-like’
cell line, Xenopus A6 cells, activation of basolateral P2X4-
like receptors resulted in increased apical membrane insertion
of ENaC. These data suggest that there is reciprocal purinergic
signalling for the control of sodium transport by both apical
and basolateral purinoceptors ([432]; see Fig. 5). These data
highlight the complex relationship between apical and
basolateral P2 receptors in the modulation of sodium transport
in the collecting duct.

An additional layer of complexity was unveiled with the
demonstration that sympathetic nerve varicosities are in close
apposition to basolateral membranes of collecting duct epithe-
lial cells of the rat kidney [230]. It was suggested that while
luminal responses to autocrine or paracrine release of ATP
from epithelial cells may dominate in normal physiological
conditions, in pathological states, such as stress and dehydra-
tion, ATP released as a cotransmitter from sympathetic nerves
may be involved in modulating collecting duct fluid and
electrolyte transport via basolateral purinoceptors. It is inter-
esting that in a recent paper, it was shown that chronic renal
sympathetic denervation increased the renal tubular natriuretic
and diuretic actions of ATP mediated by P2X receptors [199].

Gene deletion studies have focused on sodium homeostasis in
P2Y2 null mice. Mice lacking P2Y2 receptors have hypertension
and facilitated sodium and water reabsorption of the aldosterone-

Fig. 5 A summary of known effects of P2 receptor (P2R) activation on
ENaC activity taken from experiments using renal principal cells (PCs) or
distal nephron-derived cell lines. Relevant references are superscripted. In
a , effects where 5 min or less are left between P2R activation and
measurements of ENaC activity. All but apical P2X4/6 activation de-
creases the activity of ENaC. Apical P2X4/6 has the ability to inhibit or
potentiate ENaC activity depending on the concentration of luminal Na+.
Noteworthy is that basolaterally expressed P2X4 receptors have not been

reported to affect ENaC activity. In b , effects where 15–30 min are left
between P2R activation and measurement of ENaC activity. All apically
expressed P2Rs inhibit ENaC, although the ability of P2Y receptors to
inhibit ENaC is less than that in a (from 49–56 to 16%). The potentiating
effect of apical P2X4/6 receptors (when luminal Na+ is low) has not been
investigated over a 30-min period, but a potentiating effect of
basolaterally expressed P2X4-like receptors has been reported
(reproduced from [414], with permission from Springer)
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sensitive distal nephron [309]. Resting ENaC activitywas greater
in P2Y2

−/− receptor mice than controls suggesting that local ATP
may be involved in the regulation of basal ENaC activity in the
murine collecting duct [289,290]. Additional studies from the
same laboratory demonstrated that ENaC downregulation in
response to sodium restriction was lost in the P2Y2 null mice,
suggesting a role for the receptor in the renal response to altered
sodium intake [291]. Despite this, the hypertension was not salt-
sensitive, suggesting that these renal changes are compensated
for elsewhere.

Extracellular ATP in the CCD not only inhibits ENaC, but
also stimulates calcium-activated chloride channels (CACC). It
has been shown that ATP stimulates CACC-mediated Cl− ad-
sorption during aldosterone stimulation, and it was suggested that
an interplay between purinergic signalling pathways and aldo-
sterone may be involved in regulation of NaCl transport in CCD
cells under different states of extracellular fluid volume [304].

Release and metabolism of nucleotides

Release of nucleotides from renal cells was originally sug-
gested from studies of cell lines [328,329,387]; it is now clear
that native renal tubules are also able to secrete ATP. Nucleotide

release from renal epithelia is both constitutive (suggestive of a
‘purinergic tone’) and activated by mechanical or agonist-
induced stimuli. Microelectrodes have measured steady-state
ATP concentrations of ~400 nM in the rat kidney cortex and
showed that infusion of Ang II caused a rapid and transient
increase, consistent with regulated release of nucleotide [277].

In vivo micropuncture experiments indicate that luminal
ATP in the PCT is 200–300 nmol/l, higher than concentrations
in the glomerular filtrate [388], consistent of release into the
urine from epithelial cells. In contrast, concentrations in distal
tubule fluid were approximately 30 nmol/l.

In isolated perfused mouse TAL, spontaneous oscillations in
[Ca2+]i were dependent on tubular nucleotide release [105].
Furthermore, flow-induced elevations of Ca2+ transients were
also dependent on nucleotide release, being blocked by applica-
tion of an ATP scavenger or the P2 receptor blocker suramin
[174]. Agonist-induced nucleotide release has also been demon-
strated in the TAL, with intraluminal AVP causing intraluminal
nucleotide concentrations to rise to 200–300 nmol/l [264]. This
study also showed that AVP could trigger nucleotide secretion
from the mouse CCD: intraluminal ATP/UTP concentrations
again reached values approaching 300 nmol/l.

It is open to debate whether the nucleotide concentrations
measured intraluminally in the above studies reflect those in

Fig. 6 Potential effects of renal ectonucleotidases and consequences for
activation of purinoceptor subtypes. The major enzymes involved in each
degradative pathway are shown in bold print ; for more details, see text.
The information given in the figure indicates the relative potencies of ATP
and ADP with respect to P2X and P2Y receptor subtypes. At sufficiently
high concentrations, ATP can activate all P2 receptors other than P2Y6

and P2Y14. It is important to note that nucleotides derived from other

bases are also hydrolysed/synthesised by these enzymes, but have been
omitted for clarity. Uracil-based nucleotides are particularly significant:
UTP is a potent agonist of P2Y2 and P2Y4 subtypes, and its dinucleotide
derivative UDP is the major naturally occurring agonist of the P2Y6

subtype. The mechanism(s) of ATP exit from renal cells has/have not
been defined. NDP nucleoside diphosphate, NTP nucleoside triphos-
phate (reproduced from [333], with permission from Springer)
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the vicinity of the P2 receptors in the cell membrane.
Membrane-bound and soluble ectonucleotidases (vide infra)
will rapidly metabolize secreted nucleotides, and it has been
estimated that bulk-phase measurements could underestimate
concentrations at the cell membrane by more than 20-fold, at
least in astrocytes [179]. Figure 6 summarises the distribution
of ecto-nucleotidases along the nephron.

Flow-induced nucleotide release

In renal cells, a primary cilium protrudes into the tubule lumen
and responds to changes in flow by bending and increasing
[Ca2+]i [299]. MDCK cells, which have properties of cells in
the collecting duct, are ciliated and release ATP in response to
increased flow [297]. Removal of the cilium or application of
apyrase or suramin to the apical membrane prevented flow-
induced nucleotide release.

TRPV4 channels are critical to flow-induced nucleotide
release. In isolated thick ascending limbs, ATP secretion is
substantially reduced following blockade or siRNA knock-
down of TRPV4 [337]. Similar data were obtained in MDCK
cells [198], and here TRPV4 colocalises in cilia with
polycystin 2. Polycystin 2 is an ion channel devoid of intrinsic
mechanosensitive properties but forms with TRPV4 in the
cilium base a complex allowing Ca2+ influx when the cilium
is bent. This triggers the release of nucleotides and autocrine/
paracrine activation of P2 receptors [297].

Mechanism of nucleotide release

The exit route for secretion of nucleotide is not yet resolved:
several pathways may contribute and this may differ from
segment to segment. Exocytosis of vesicles containing ATP
is well established in neurones, and a similar mechanism is
observed in cell lines of proximal tubular origin [387]. A
variety of channels/transporters may also contribute to nucle-
otide release. In the macula densa, for example, ATP transport
across the basolateral membrane is mediated by maxi-anion
channels [22] and contributes to tubuloglomerular feedback
(see above). CFTR channels may also mediate ATP release in
the kidney [348], but this has not received firm support [296].

More recently, connexin hemichannels have emerged as a
route for ATP release from renal cells. Connexins are trans-
membrane proteins and several members of the family are
expressed in the renal vasculature and tubules [123]. The
homo- or heteromeric assembly of six connexins forms a
connexon: two connexons from neighbouring cells can dock
to form a gap junction. Undocked connexons may also func-
tion as transmembrane hemichannels and these contribute to
cellular ATP secretion [60]. Evidence from Cx30 null mice
suggests a similar role in the distal nephron [342]. In wild-type
mice, increases in tubular flow or reductions in osmolarity of
the bathing solution caused increases in ATP concentration to

10–50 μmol/l: these responses were almost absent in Cx30
knockout mice.

Although intriguing, these datamust be assessed cautiously
since connexin hemichannels appear to open only under non-
physiological conditions [297]. In contrast, pannexins, struc-
turally homologous to connexins [317], are permeable to ATP
and can be activated by membrane depolarisations in the
physiological range [229]. It now seems likely that
pannexin-1 hemichannels mediate ATP release from epithelial
cells involved in water and sodium reabsorption [124].

Metabolism by ectonucleotidases

Extracellular nucleotides are rapidly degraded to other nucle-
otides or nucleosides by surface-located and soluble enzymes
(ectonucleotidases). Four families of ectonucleotidases exist:
ectonucleoside triphosphate diphosphohydrolases (NTPDases),
ectonucleotide pyrophosphatase phosphodiesterases (NPPs),
ecto-5′-nucleotidase and alkaline phosphatises, and all are
found in the kidney [333]. These enzymes play an important
part in renal nucleotide signalling. They will control the avail-
ability of nucleotides agonists by hydrolysis and also dictate the
signalling environment via generation of nucleotides or nucle-
osides that preferentially target different P2/P1 receptor
subtypes.

The NTPDase family comprises eight members of
which four (NTPDases 1, 2, 3 and 8) hydrolyse extracel-
lular nucleotides. NTPDase1 hydrolyses ATP and ADP
with almost equal preference, whereas NTPDase2 has a
much greater preference for ATP, therefore causing accu-
mulation of ADP; NTPDases 3 and 8 are intermediate in
their preference [333]. These differential preferences for
hydrolysis are functionally significant. For example, the
presence of NTPDase1 will abruptly terminate all P2
receptor stimulation, whereas if NTPDase2 is expressed
alone, the conversion of ATP to ADP would potentiate
P2Y1, P2Y12 and P2Y13 receptor activation [382].

NTPDase1 is prominent throughout most of the renal vas-
culature and evident in the thin ascending limb of Henle and
medu l l a ry CD [190 ,389] . NTPDase2 has been
immunolocalised to Bowman’s capsules and to most nephron
segments beyond the proximal tubule [190,389]. NTPDase3
has a similar distribution to NTPDase2 [389], whereas infor-
mation on NTPDase8 is incomplete.

The NPP family comprises seven members, but only NPPs
1–3 are able to hydrolyse nucleotides. NPPs can hydrolyse ATP
and ADP to AMP. Information on the intrarenal distribution of
NPPs is limited. NPP1 protein is expressed in proximal tubules
and in basolateral membranes of distal tubules [126]. NPP3 is
localised to rat glomeruli and the proximal straight tubule but is
absent in distal nephron segments [389].

Ecto-5′-nucleotidase catalyses the final stage of nucleotide
hydrolysis to nucleoside and is highly expressed in the kidney;
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it is found in apical membranes of rat PCT and in intercalated
cells throughout the distal nephron, as well as the peritubular
space [98,207,389].

The physiological role of these enzymes is not clear and
experimental evidence is limited. Nevertheless, NTPDase1 in
the vasculature prevents ADP-induced platelet aggregation
[81] and may also terminate P2X1-mediated vasoconstriction
in response to ATP. In the glomerulus, NTPDase1 and NPP3
could influence the ultrafiltration coefficient by controlling P2
signalling in mesangial cells [166].

Renal pathophysiology

Renal injury and failure

It has been proposed that adenosine mediates haemodynamic
changes in adult renal failure [57,344]. In human renal cortex,
sympathetic nerve stimulation releases ATP and NA, and NA
acting on non-neuronal cells also releases ATP. The released
ATP has mitogenic effects on glomerular epithelial cells, prob-
ably via P2Y1 receptors, andATP has the potential to contribute
to remodelling of the kidney and progression to chronic renal
failure, a condition that presents with sympathetic overactivity
[391]. While P2X7 receptors are only weakly expressed in
healthy glomerulus, following glomerular injury (for example,
in diabetes and hypertension), it is significantly upregulated,
mainly in podocytes, but also in endothelial andmesangial cells
[393]. P2X7 receptors have been shown to participate in dis-
turbed intracellular calcium homeostasis in peripheral blood
mononuclear cells of patients with chronic kidney disease
[205]. Cyclosporine has become a standard component of the
immunosuppressive regime in both solid organ and bone mar-
row transplantation as well as for the treatment of autoimmune
diseases. However, a limiting factor in its use has been the
development of nephrotoxicity and hypertension in many pa-
tients. Using the adriamycin nephropathy mouse model of
chronic renal injury, regulatory T cells were shown to partici-
pate in CD39-mediated protection from renal injury [397]. A
Katp channel opener, nicorandil, reduces chronic renal injury by
targeting podocytes and macrophages [365].

Primary idiopathic nephrotic syndrome is a source of mor-
bidity in children; in some cases, mutations in podocyte genes
explain the proteinuria, although it has been proposed that the
condition is linked to T cell immunity. It has been claimed that
ATP plays a key role in the regulation of innate immunity in this
disease, and the effects of adenosine are reduced by the de-
creased expression of ectonucleotidase in this syndrome [24].

A mechanism has been proposed linking renal tubular
epithelial cell death and injury to renal interstitial peritubular
fibroblasts, which suggests that P2X7 receptors mediate del-
eterious renal epithelial–fibroblast cross-talk [293]. In another
paper from this group, it was shown that necrotic renal

proximal epithelial cells stimulated the expression of P2X7
receptors in renal interstitial fibroblasts through activation of
the ERK signalling pathway [294]. It has been suggested that
P2X7 receptor antagonists could offer innovative preventive
and therapeutic modalities for the treatment of morbidity and
mortality associated with kidney injury [429]. ATP binding
enhanced the activity of ClC-5, the transporter mutated in
Dent disease, a disease affecting the renal proximal tubule
[405]. Arterial calcification is prevalent in patients with chron-
ic kidney disease and ATP signalling appears to be involved
(see review by [90]).

It has been reported that A2B receptor-mediated induction
of interleukin (IL)-6 contributes to renal fibrogenesis, and the
authors suggested that this receptor may have therapeutic
potential for treatment of chronic kidney disease [65]. A2B

receptor activation protects against acute kidney injury via
inhibition of neutrophil-dependent release of tumour necrosis
factor-α [116]. Dendritic cells activated by A2A receptor ago-
nists attenuate acute renal injury [221]. A review describing
adenosine generation and signalling during acute kidney in-
jury is available [20].

Polycystic kidney disease

PKD is a genetic disorder associated with abnormal prolifer-
ation of tubular cells of the adult nephron [53]. This leads to
progressive dilation of tubules, which eventually become
encapsulated in fluid-filled cysts that compress and destroy
neighbouring tissue. ATP is released and reaches high con-
centrations within cysts [329,416]. Autosomal dominant poly-
cystic disease (ADPKD) is characterised by bilateral cyst
formation in the kidneys. It is a genetic disease caused by
the mutation of either PKD1 or PKD2, which encodes for
polycystin. Polycystin-2 is localised to the cilia of mouse and
human vascular endothelial cells, which sense fluid flow via
purinergic receptor activation and NO release, but in ADPKD
patients, it is absent [1]. The authors suggest that aberrant
expression of polycistin-2 in cilia could promote high blood
pressure because of inability to synthesise NO in response to
shear stress produced by changes in blood flow. Expression of
polycistin-1 enhances endoplasmic reticulum calcium uptake
and decreases capacitative calcium entry in ATP-stimulated
MDCK cells [137]. The nematode Caenorhabditis elegans
has been used as an animal model for studying basic molec-
ular mechanisms underlying human ADPKD; the C. elegans
LOV-1 and PKD-2 proteins are homologues of human PC-1
and PC-2 proteins. Using this model, it was claimed that
ciliary localised ATP synthase may play a role in polycystin
signalling [141]. The involvement of nucleotide release in
both fluid flow and pressure responses and its role in altered
mechanosensory transduction in the aetiology of PKD is
discussed in a recent review [279]. Using collecting duct
principal cells derived from the Oak Ridge polycystic kidney
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mouse model of ARPKD, it was shown that the loss of apical
monocilia impairs flow-induced ATP secretion across the
apical cell surface and ATP-induced calcium signals [140].

P2X7 receptors were shown to be expressed in collecting
duct cysts in the cpk/cpk mouse model of congenital PKD
[132], where it mediates cyst development [133]. In a later
paper from this group P2Y1, P2Y2, P2Y4, P2Y6, P2X5 and
P2X7 receptors were detected on the epithelial cells lining
renal cysts in the Han:SPRD cy/+ rat model of ADPKD [376].
The expression levels of mRNA and protein for P2Y2, P2Y6

and P2X7 receptors increased significantly as the disease
developed, all mediating mechanisms potentially relevant to
cyst growth and cell turnover. Blockade of the P2X7 receptor
with oxidised ATP (or A-438079) reduced cyst formation via
ERK-dependent pathways in a zebrafish model of PKD [52].
It was suggested that nucleotides present in the cyst lumen
fluid could activate P2Y receptors to increase the growth of
MDCK-derived cysts [377]. Attenuated flow-induced ATP
release contributes to the absence of flow-sensitive, purinergic
[Ca2+]i signalling in human ADPKD cyst epithelial cells
[421]. Monocilia of ductal epithelia are a major focus in
PKD. It has been proposed that ATP is released from
monocilia to act as an autocrine regulator via P2 receptors
[138]. Deficiency of PKD-1 gene expression increases A3

receptors in human renal cells [2]. The potential for cyst
formation has been examined for two MDCK cell subclones,
C7 cells that resemble principal cells and C11 cells that
resemble α-intercalated cells [36]. It was concluded that prin-
cipal rather than intercalated cells had the ability to form cysts,
based on a synergism of cAMP and ATP signalling in enhanc-
ing apical fluid secretion.

Ischaemia

There is rapid early decline of proximal tubular ATP in ischae-
mic acute renal failure [336]. Over-expression of manganese
superoxide dismutase protects against ATP depletion-mediated
cell death of proximal tubule cells occurring with ischaemia/
reperfusion injury during kidney transplantation [62].

Human antigen R (HuR) is a nucleocytoplasmic shuttling
protein that binds and stabilizes mRNAs containing adenine-
and uridine-rich elements. ATP depletion from proximal tu-
bule cells during ischaemia results in heightened HuR protein
translation and suggests a role for HuR in protecting kidney
epithelia from injury during ischaemic stress [175]. STAT 3, a
member of the family of signal transducers and activators of
transcription, inhibits apoptosis of human proximal tubular
epithelial cells induced by ATP depletion during ischaemia
[395].

ATP depletion of MDCK cells has been used as an in vitro
model of renal ischaemia and Rho GTPase signalling shown
to regulate tight junction assembly and protect tight junctions
during ATP depletion [110]. It has been claimed that in renal

ischaemia, the ATP depletion-induced alteration in membrane
transport function and cell viability are due to reactive oxygen
species generation and cytosolic PLA2 activation in proximal
tubular cells [209]. Hepatocyte growth factor has been shown
to enhance recovery from renal tubular ischaemia and to
promote adhesion of the ATP-depleted renal collecting duct
cell line, mIMCD-3, in a MAPK-dependent manner [228].
Restoration after ischaemia by perfusion of ATP-MgCl2 was
described early [104,335]. A3 receptor knock-out mice are
protected against ischaemic renal failure [208]. Ischaemia
remodels filamentous actin leading to desquamation of prox-
imal tubular epithelial cells via ATP depletion-induced p38
MAPK–HSP27 signalling [72]. These findings are of poten-
tial pathophysiological importance for understanding the
overall involvement of the actin cytoskeleton in cell detach-
ment during ischaemia. Deficiency or inhibition of the
ectonucleotidase CD73 protected against kidney ischaemia–
reperfusion injury and the authors suggested that AMP may
play a direct protective role against this type of injury [305]. In
a later study, it was claimed that CD73 protects the kidney
from ischaemia–reperfusion injury through adenosine produc-
tion and reduction of free radicals [177]. The role of adenosine
in protection from acute kidney injury has been discussed
[425].

Nephritis

Glomerulonephritis is a leading cause of end-stage renal dis-
ease and its treatment is non-specific immunosuppression,
which has significant adverse side effects. Increased expres-
sion of the pro-apoptotic ATP-sensitive P2X7 receptors has
been demonstrated in both experimental and human glomer-
ulonephritis and opens up the possibility that P2X7 receptor
antagonists may have therapeutic potential [378]. Indeed, a
later paper from this group showed that P2X7 receptor defi-
ciency attenuated renal injury in experimental glomerulone-
phritis [368]. In P2Y1 receptor knock-out mice, there is pro-
tection against capillary loss, fibrosis and death by renal
failure during experimental crescentic glomerulonephritis
[134]. Treatment with an adenosine uptake inhibitor attenu-
ates glomerulonephritis in mice [262]. Activation of A2A

receptors has been proposed as a treatment for macrophage-
mediated experimental glomerulonephritis ([100]; see also
[85]). In experimental mesangial proliferative glomerulone-
phritis in the rat (anti-Thy-1 model), there is a pronounced
mesangial cell proliferative response leading to glomerular
hypercellularity. In the anti-Thy-1 model, PPADS specifically
and dose-dependently reduced early (day 3) but not late (day
8) mesangial cell proliferation [313]. The authors also report-
ed that P2Y2 and P2Y6 receptors showed a transient marked
increase in expression during anti-Thy-1 disease. There are
significant pro-inflammatory activities of extracellular nucle-
otides during anti-Thy-1 nephritis, and an anti-inflammatory
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role for glomerular ecto-nucleotidases suggested to convert
ATP and ADP into anti-inflammatory adenosine [292].
Tuboglomerular feedback is diminished in Thy-1 nephritic
rats, but this is improved by exogenous 5′-nucleotidase [363].

Lupus nephritis is a frequent and potentially fatal compli-
cation of systemic lupus erythematosus. A2A receptor activa-
tion reduced inflammation in the kidneys of MRL/lpr mice
and it was suggested that this could be considered as a novel
therapeutic approach for human lupus nephritis [431]. In a
recent paper, it has been reported that P2X7 receptor blockade
attenuates lupus nephritis by inhibiting NLRP3/ASC/caspase-
1 inflammasome activation [436].

Hypertension

Hypertension is a feature of chronic renal disease and it has
been claimed that this is largely due to sympathetic overactiv-
ity triggered by afferent signals emanating from the kidney
and resetting sympathetic tone by stimulation of hypothalamic
centres [268]. Both essential hypertensive patients and pa-
tients with renal artery stenosis show a dose-dependent vaso-
dilation following adenosine infusion [407,408]. Enhanced
increase in [Ca2+]i was found in mesangial cells in response
to ATP in spontaneously hypertensive rats [226] and NO can
increase P2Y receptor resensitization [227].

The kidney plays a dominant role in the development and
maintenance of hypertension and the shift of renal autoregulation
towards higher pressure underlying sodium-insensitive hyperten-
sion [362]. There is an enhanced P2 receptor-mediated vasocon-
striction of afferent and efferent arterioles in chronic Ang II-
induced hypertensive rats [94]. It was claimed that gap junction
Cx37 and Cx40 transduce purinergic signals mediating renal
autoregulation [364]. In a recent paper, it was shown that ATP
release through Cx30 is part of a local regulatory system intrinsic
to the aldosterone-sensitive distal nephron important for control
of sodium excretion [246]. They showed that loss of paracrine
ATP feedback regulation of ENaC to respond to changes in
sodium levels contributed to salt-sensitive hypertension in
Cx30−/−mice. Purinergic receptors contribute to early mesangial
cell transformation and renal vessel hypertrophy during Ang II-
induced hypertension [114]. Renal interstitial adenosine is in-
creased in Ang II-induced hypertensive rats [93]. Mice lacking
P2Y2 receptors have salt-resistant hypertension [309]. There is an
exaggerated response to adenosine in kidneys from high salt-fed
rats [223]. While the P2X7 receptor is only weakly expressed in
healthy kidney glomerulus, it is significantly upregulated in ren-2
transgenic hypertension [393]. In a recent paper, it was shown
that P2X7 receptor antagonism prevented the development of
salt-sensitive hypertension and renal injury in Dahl salt-sensitive
rats [176]. ATP-induced hypotension is associated with alteration
of sympathetic nerve activity mediated through vagal afferent
pathways [366]. It has been reported that there is an increase in
ATP hydrolysis resulting from an increase in ecto-5′-nucleotidase

activity and accumulation of adenosine in the kidney of hyper-
tensive animals [96]. A high salt diet given to Ang II hyperten-
sive rats significantly impairs autoregulation of rat
juxtamedullary afferent arterioles, which is associated with a
decline in afferent arteriolar reactivity to ATP mediated by
P2X1 receptors [154]. However, reactivity to UTP via P2Y2

receptors or to adenosine via P1 receptors was unchanged. It
was suggested that understanding this mechanism may lead to
therapeutic interventions to prevent renal decline early in the
hypertension progression. The hypertensive responses to L-NG-
nitroarginine methyl ester and Ang II were attenuated in A1

receptor knockout mice [99]. Adenosine, acting via A1 receptors
in the proximal tubule, modulates deoxycorticosterone acetate–
salt hypertension in mice [404].

Diabetic nephropathy

Diabetic nephropathy is the most common cause of end-stage
renal disease. Lack of A1 receptors augments diabetic
hyperfiltration and glomerular injury [83]. Treatment with
adenosine receptor agonists protected diabetic rats from ne-
phropathy by exerting hypoglycaemic and antioxidant effects
as well as reducing gene expression of proinflammatory cy-
tokines [78]. A recent review is concerned with the targeting
of adenosine signalling via A2B antagonists for the treatment
of diabetic nephropathy [301].

Increased ATP release induced by hyperglycaemia may con-
tribute to mesangial extracellular matrix expansion that occurs in
diabetes [346]. Increased expression of P2X7 receptors was
shown in the streptozotocin diabetic rat model, mainly in
podocytes but also in endothelial and mesangial cells [393].
Diabetic milieu, represented by high glucose concentrations,
affects purinergic modulation of glucose transport into
podocytes, which may play a role in the development of diabetic
podocytopathy [182]. P2X4 receptors mediate high glucose-
induced activation of the NOD-like receptor 3 inflammasome,
regulate IL-1 family cytokine secretion and cause the develop-
ment of tubulointerstitial inflammation in diabetic nephropathy
[54].

A major limitation in chronic lithium treatment for bipolar
patients is the development of nephrogenic diabetes insipidus,
which manifests as polyuria, polydipsia and reduced ability to
concentrate urine associated with a lack of response of the
medullary collecting duct to AVP. Genetic deletion of the P2Y2

receptor offers significant resistance to the development of
lithium-induced nephrogenic diabetes insipidus polyuria [435].

Inflammation

ATP, via P2Y2 receptors, inhibits inducible NOS (iNOS) in
cultured mesangial cells and it has been suggested that it may
play a critical role for iNOS expression and synthesis of NO
during glomerular inflammatory disorders [249]. ATP has also
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been claimed to produce long-term pro-inflammatory effects
in rat mesangial cells via it degradation to adenosine and
action on A2A receptors, resulting in PLA2 and cytokine
induction [322]. The P2X7 receptor plays a major role in the
inflammatory process, since activation leads to release of
inflammatory cytokines [55,204]. Activation of A2A receptors
prevents progressive kidney fibrosis in a model of immune-
associated chronic inflammation [101] and of obstructive
nephropathy [418].

Hyper- and hypothyroidism

ATP-mediated vasoconstriction of perfused rat kidney was
increased in hyperthyroid kidneys and severely attenuated in
kidneys from hypothyroid rats and the vasodilator response
abolished [386]. Experimental hyperthyroidism modifies
binding of A1 and A2A agonists in rat kidney, and this might
be responsible for the incapacity for urine concentration seen
in the hypothyroid kidney [92].

Nephrotoxicant injury

Reduction of drug-induced nephrotoxicity by ATP-MgCl2
was reported [355]. PKB activation increases intracellular
ATP levels and decreases necrosis in proximal tubular cells
injured by nephrotoxicants [330]. ATP levels in kidneys are
decreased by ingestion of tullidora, a poisonous plant, which
may partly explain its acute toxic effects and mortality [173].
Cisplatin is a potent anti-neoplastic drug whose clinical use is
limited by its ability to induce nephrotoxicity. It has been
suggested that adenosine may be involved in the haemody-
namic changes in the kidney induced by cisplatin [128].
Cisplatin upregulates A1 receptors in rat kidney [25] and A1

receptor antagonists have a protective effect against cisplatin-
induced acute kidney injury in rats [107]. Adenosine antago-
nists have protective effects against acute renal failure
[156,253,358]. A1 receptor antagonists are effective against
the development of nephrotoxicity by cyclosporine, an immu-
nosuppressive agent [18]. Cyclosporine increases plasma
levels of adenosine in kidney transplant patients [43]. A3

receptor antagonism is effective against acute tacrolimus tox-
icity [241].

Renal transplants

An ATP release assay has been used to help determine
the risks of developing infection or rejection in renal
transplant recipients [42]. The beneficial effects of aden-
osine and phosphate in kidney transplant preservation
have been claimed [23].

Summary

Purines have been shown to control TGF, regulate renin
release and regulate tubular ion and water transport. There is
autocrine/paracrine release of ATP from epithelial and endo-
thelial cells, as well as release as a cotransmitter from sympa-
thetic nerves. Purinergic signalling is involved in kidney
disorders, including PKD, nephritis, hypertension, diabetes
and nephrotoxicant injury, and purinergic therapeutic strate-
gies are being explored to treat these diseases.
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