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Abstract Purinergic signalling is involved in both the phys-
iology and pathophysiology of the liver. Hepatocytes, Kupffer
cells, vascular endothelial cells and smooth muscle cells,
stellate cells and cholangiocytes all express purinoceptor sub-
types activated by adenosine, adenosine 5′-triphosphate, aden-
osine diphosphate, uridine 5′-triphosphate or UDP.
Purinoceptors mediate bile secretion, glycogen and lipid me-
tabolism and indirectly release of insulin. Mechanical stress
results in release of ATP from hepatocytes and Kupffer cells
and ATP is also released as a cotransmitter with noradrenaline
from sympathetic nerves supplying the liver. Ecto-
nucleotidases play important roles in the signalling process.
Changes in purinergic signalling occur in vascular injury,
inflammation, insulin resistance, hepatic fibrosis, cirrhosis,
diabetes, hepatitis, liver regeneration following injury or trans-
plantation and cancer. Purinergic therapeutic strategies for the
treatment of these pathologies are being explored.
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Introduction

The purinergic signalling hypothesis, i.e. adenosine 5′-triphos-
phate (ATP) acting as an extracellular signalling molecule,
was proposed in 1972 [32]. In 1978, separate families of
receptors for adenosine (P1) and ATP (P2) were identified
[33]. Throughout the 1990s, various receptors for purines and
pyrimidines were cloned and characterised. Nucleotide recep-
tors were separated into P2X ligand-gated ion channel and
P2Y G protein-coupled receptors [206]. Currently, four sub-
types of P1 receptors (A1, A2A, A2B and A3), seven subtypes
of P2X (P2X1-7) and eight subtypes of P2Y receptors (P2Y1,
P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14) are
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recognised [34]. ATP is established as a cotransmitter with
classical transmitters in most, if not all, nerves in the periph-
eral and central nervous systems (see [35]), and receptors are
expressed on many non-neuronal, as well as neuronal cell
types (see [36]).

The liver is the largest internal organ in the body. The liver
is a vital organ with a diverse range of functions including
crucial metabolic pathways, carbohydrate metabolism, protein
synthesis and detoxification and bile secretion, among others.
These functions are absolutely necessary for survival and are
chiefly performed by the parenchymal cells or hepatocytes.
The necessity of these functions is best appreciated in the
absence of adequate liver function. Here, roles of carbohy-
drate and glucose metabolism, detoxification and immunolog-
ic function are lost, and hyperglycemia, hepatic encephalopa-
thy bleeding and infection inevitably result in demise without
liver transplantation. Through this, one begins to appreciate
the complexity of the liver in homeostasis in health and the
resulting loss in disease.

Relevant to this review is that the liver synthesises most
of the nucleotides in the body. These molecular compounds
are released or can leak from cells and extracellular nucle-
otides [e.g. ATP, adenosine diphosphate (ADP), uridine 5′-
triphosphate (UTP) and uridine diphosphate (UDP)] are
key signalling molecules recognised by hepatocytes
impacting metabolic processes. Specifically, extracellular
nucleotides bind type-2 purinergic/pyrimidinergic (P2Y G
protein-coupled receptors and P2X ATP-gated cation chan-
nels), whilst the phosphohydrolytic product adenosine is
recognised by P1 adenosine receptors, as detailed above.
These purinergic effects are closely regulated by ecto-
enzymes termed ectonucleotidases (ecto-ADPases, ecto-
ATPases, etc.) that hydrolyse extracellular nucleotides,
ultimately to the respective nucleosides that often exert
opposing effects.

There are a growing number of papers concerned with
purinergic signalling in the liver, but only a few reviews
[14, 22, 89, 120, 146]. Purinergic signalling regulates
important hepatic processes such as bile secretion, glyco-
gen metabolism and, indirectly, release of insulin. Bio-
logical stress may lead to alteration of release of nucleo-
tides or uptake of nucleosides or may decrease enzyme
function of ectonucleotidases [211].

Perturbations in purinergic signalling responses result in
heightened inflammation, insulin resistance, vascular injury
and abnormal liver cell regeneration.We have shown that high
levels of extracellular nucleotides promote injury while aden-
osine can be protective during acute inflammatory settings as
in vascular reperfusion [14] or with acetaminophen (APAP)
toxicity [130]. In the liver, like many tissues, ethanol or
fructose ingestion leads to an increase in adenine nucleotide
release with both CD39 and ecto-5′-nucleotidase (CD73)-
dependent extracellular increases in adenosine concentration.

Chronic adenosine exposure as a direct result of ethanol or
fructose metabolism and two of the adenosine receptors me-
diate ethanol-induced fatty liver disease by direct effects on
lipid metabolism. Adenosine, however, also activates those
cells that cause hepatic fibrosis and participates in a final
common pathway leading not only to hepatic steatosis but
also to fibrosis and ultimately to cirrhosis.

Thus, the liver is of major importance for both system nucle-
otide homeostasis as well as for local intercellular signalling
within canalicular networks and biliary systems. In addition to
hepatocyte parenchymal cells, the liver contains Kupffer, vascu-
lar endothelial and smooth muscle cells, stellate cells (fat stroma)
and biliary canaliculi (cholangiocytes) all of which express
purinoceptors. This review will examine purinergic signalling
in first health and then in disease. Following recent advances,
several of these divergent elements of the purinergic response are
now susceptible to intervention. Non-selective adenosine recep-
tor antagonists are in common clinical use (e.g. caffeine and
aminophylline), and the more specific targeting of the adenosine
receptor subtypes involved in liver injury and cirrhosis may
reduce the toxicities associated with such nonselective antago-
nists as caffeine, theophylline and aminophylline.

Receptor subtypes for purines and pyrimidines
on hepatocytes

Evidence for two Ca2+-mobilising purinoceptors on rat hepa-
tocytes was reported [58], and ATP and 2-methylthio ATP (2-
MeSATP) were claimed to act via different P2 receptors [149]
probably by P2Y2 and/or P2Y4 receptors [219]. One is
suramin-sensitive, coupled to phospholipase C (PLC) in a
stimulatory manner; the other is suramin-insensitive and
coupled to adenylate cyclase in an inhibitory manner [245].
5′-[α,β-Methylene]-triphosphate potentiates oscillations in cy-
tosolic [Ca2+]i of hepatocytes induced by ATP, but not ADP,
again suggest two different P2 receptors are involved [59].

ATP and UTP have similar effects on activation of glycogen
phosphorylase, generation of inositol 1,4,5-triphosphate (InsP3)
and inhibition of glycogen synthase [152], suggesting that
P2Y2 or P2Y4 receptors were involved. However, ADP and
2-MeSATP produced different effects from those of ATP [60],
suggesting that P2Y1, P2Y12 or P2Y13 receptors might be
present. In a later paper, it was shown that functional P2Y1

and P2Y2 receptors were expressed on rat hepatocytes [61].
Three different receptors to purines and pyrimidines were pro-
posed to be present on liver plasma membranes, one involving
activation of PLC, another activation of phospholipase D
(PLD) and a third the inhibition of adenylate cyclase [146,
172]. The P2Y13 receptor is a key regulator of hepatocyte
high-density lipoprotein (HDL) endocytosis by cultured hepa-
tocytes as well as in situ in perfused mouse livers [137]. It was
also shown that the P2Y13 receptor antagonist, AR-
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C69931MX, is a stimulator of this pathway and opens up the
way for the design of new drugs able to increase HDL-
cholesterol clearance, thus increasing the atheroprotective ef-
fect of the HDL [171]. ADP, acting via P2Y13 receptors,
controls insulin signalling as well as lipoprotein secretion [44].

ATP-activated cation currents via P2X receptors have also
been identified in hepatocytes [40]. In more recent papers,
P2X4 and P2X7 receptor mRNA and protein were detected on
rat hepatocytes and functional roles established [75, 103]. In a
study of P2X receptors on immune cells in the rat liver during
postnatal development, it was shown that P2X6 receptors
were up-regulated by 15-fold on hepatic sinusoid cells during
postnatal days P1 to P30, subpopulations of Kupffer cells co-
expressed P2X4 and P2X6 receptor subtypes, and dendritic
cells co-expressed P2X4 and P2X7 receptors [258]. The P2X6
receptor on Kupffer cells was substantially up-regulated by
exposure of animals to lipopolysaccharide, suggesting that
they may be evoked by endotoxin. ATP mediates calcium-
dependent killing of isolated rat hepatocytes via P2X7 recep-
tors [269]. Table 1 summarises the expression and function of
P2 receptor subtypes by cellular compartments of the liver.

There was early recognition of the effect of adenosine on
hepatic cell activity [52, 212]. Stimulation of glycogenolysis
and vasoconstriction by adenosine and adenosine analogues
was shown in perfused rat liver [39, 227]. Adenosine produced
dose-dependent stimulation of urea biosynthesis in hepatocytes
[109] via all three P1 receptor subtypes, A1, A2 and A3 [110],
although different second messengers are involved [112].
Adenosine reverses in vivo hepatic responsiveness to insulin
[178]. Evidence for adenosine A2 subtype receptors onKupffer
cells was presented [209]. It was claimed that adenosine stim-
ulates cyclic adenosine monophosphate (cAMP) formation

and regulation of glycogenolysis and gluconeogenesis most
likely through the A2B receptor subtype in rat hepatocytes
[265]. Adenosine A2A receptor occupancy stimulates collagen
expression by hepatic stellate cells (HSC; [45]).

Actions of purines and pyrimidines in liver

Early studies showed that ATP and ADP hyperpolarise
guinea-pig liver cells and enhance the response to β-agonists
that probably involve steps subsequent to receptor activation
[138], perhaps by increasing K+ permeability [30]. Later, this
group showed that quinine and apamin greatly reduced the
effect of ATP on K+ content [31]. Extracellular ATP and ADP
induce Ca2+ uptake into rat liver cells [131, 157, 166, 219].
Single cell measurements have shown increases in intracellu-
lar Ca2+ in T51B rat liver epithelial cells stimulated by ATP
[26]. ATP induces intercellular Ca2+ waves in the Fischer 344
rat liver epithelial cell line (WB-F344) derived from normal
liver [96]. Purine nucleotides increase the cellular level of
InsP3 [43], suggesting that P2Y receptors might be involved.
On bile epithelial cells, ATP has been shown to stimulate
transepithelial secretion of potassium. This effect can be
inhibited by suramin and 2-aminoethoxydiphenyl borate
(InsP3 receptor inhibitor), suggesting that the mechanism is
operative through P2Y-InsP3 coupled pathways. Adenosine
did not change [Ca2+]i, but did increase cAMP, suggesting that
P1 receptors were also involved.

Evidence has been presented that P2X4 receptors are func-
tionally important in mediating ATP control of Na+ and Ca2+

transport and may be a mechanism for autocrine regulation of
hepatic glycogen metabolism [75]. ATP (rather than ADP and

Table 1 Expression and function of P2 receptors and ectonucleotidases by cellular components of the liver

Cellular component Expression Function

Hepatocytes P2Y1, P2Y2, P2Y4, P2Y6, P2Y13, NTPDase8
(apical membrane)

Glycogen metabolism, insulin resistance

Cholangiocytes P2Y1, P2Y2, P2Y4, P2Y6, P2X2,
P2X3, P2X4, P2X6

Bile (anion) secretion, nucleotide salvage,
canalicular contraction, interaction with hepatocytes,
adenosine resorption from bile

Endothelial cells P2Y1, P2Y2, P2Y6, P2X4, P2X7;
NTPDase1

NO release, secretion of prostaglandins E2

Vascular smooth muscle cells P2Y1, P2Y2, P2Y6, P2X4, P2X7 Portal vein contraction

Hepatic stellate cells P2Y2, P2Y4, P2Y6, NTPDase2 Secretion of prostaglandin F2 and D2, cell contraction

Portal fibroblasts NTPDase2 Hepatic fibrosis

Kupffer cell/macrophages P2Y1, P2Y2, P2Y4, P2Y6, P2X1, P2X4, P2X7;
NTPDase1

Killing of intracellular pathogens, secretion
of prostaglandin E2, interleukin-6

Liver-associated lymphocytes: NK,
NKT, T cells, B cells

P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y14, P2X1,
P2X2, P2X4, P2X7 NTPDase1

Modulate concanavalin A-mediated hepatitis

Neutrophils P2Y2 Chemotaxis

NK natural killer cells, NKT natural killer T cells.

Modified from [14].
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AMP) was shown to cause hepatic cell degeneration [142]
before the presence of P2X7 receptors (which are known to
mediate apoptotic cell death on hepatocytes) was recognised.
Hypoxic injury to hepatocytes is associated with ATP and
blebbing occurs [116], another feature of P2X7 receptor acti-
vation. The role of P2X7 receptors in the control of liver
homeostasis is discussed in recent reviews [81, 83].

UTP was more effective than ATP in regulating hepatocyte
metabolism, ion fluxes and haemodynamics [121], suggesting
that P2Y2 or P2Y4 receptors might be involved. Using
ATPα35S as a radioligand, high-affinity P2Y receptors were
identified in both human and rat liver plasma membranes
[150], perhaps suggesting that they might be P2Y11 receptors.

ATP release from hepatocytes and biliary epithelium

ATP can be released by hepatocytes into different extracellular
compartments via basolateral, sinusoidal or apical exocrine
routes. Secretion of ATP into the bile is mediated by an
increase in cholangiocyte cell volume, which stimulates nu-
cleotide release by vesicular exocytosis [90, 99]. Movement
of ATP from the intracellular compartment to the extracellular
compartment in liver epithelium may occur via ATP channels
or exocytosis, although it has been claimed that sustained
release of ATP from liver cells is not mediated by vesicular
exocytosis [66]. Exocytosis of ATP-containing vesicles can be
in response to cell volume changes [91]. Hypotonicity resulted
in cell-swelling triggering release of ATP from human Huh-7
hepatoma cells, followed by volume regulatory decrease [77].
Two ATP transport mechanisms were identified, one of which
was vesicular exocytosis. Aside from volume changes, me-
chanical stress seems to cause release of ATP from both
Kupffer cells and hepatocytes. It has been suggested in this
scenario that ATP from hepatocytes is released from lyso-
somes by exocytosis [104]. The source of ATP involving
various actions in the liver is likely to be by paracrine or
autocrine release from hepatocytes [165, 251], but the possi-
bility that ATP released as a cotransmitter from sympathetic
nerves is another source of ATP has also been proposed [35].

Extracellular nucleotides are released into the canaliculus
and modulate bile secretion. The biliary epithelium and hepa-
tocytes constitutively release ATP into the bile [46]. In biliary
epithelium, ATP is stored in vesicles and is released in re-
sponse to cell swelling [99]; concentrations of canalicular
adenine nucleotides in bile samples are estimated to be 5±
0.9 μM [88, 89]. Extracellular nucleotides entering the bile
ducts are potent stimuli for secretion of bile fluid including
anions, and canalicular contraction, which is, in part, ex-
plained by interaction and communication between hepato-
cytes and bile duct via local ATP release [216]. These effects
are mediated and coordinated by apical P2Y2 receptors and
NTPDase8 [69].

Bile acid ursodeoxycholic acid stimulated secretion of
ATP by isolated hepatocytes and perfusion of ATP into
bile duct segments induced Ca2+ signalling in bile duct
epithelia [187]. The authors suggest that this may be used
as a strategy for the treatment of secretary disorders of the
liver.

Kupffer cells

Stimulation of parenchymal cell glycogenolysis by adenosine
involves release of ATP from parenchymal cells and stimula-
tion of eicosanoid release from Kupffer cells [190]. Nucleo-
tide receptors responsive to both ATP and UTP are present on
stellate (fat storing) cells in the rat that mediate contraction of
the cells [237]. ATP release fromKupffer cells stimulated after
mechanical stress promotes liver regeneration [104].

Bile canaliculi and hepatic couplets

Fluid absorption and secretion across intrahepatic bile duct
units (IBDUs) play a key role in modifying the volume and
composition of bile. Bile formation by the liver results from
the combined complementary interactions and functions of
two distinct liver cell types. Secretion is initiated by hepatic
parenchymal cells (about 80 % of liver mass) that actively
transport bile salts and other organic solutes into the canalic-
ular space between cells. Subsequently, canalicular bile flows
into the lumen of an extensive network of intrahepatic ducts,
where it undergoes dilution and alkalinisation as a result of
cholangiocyte Cl- and HCO3

- secretion. P2Y1, P2Y2, P2Y4,
P2Y6 and P2X4 receptor mRNA was identified in isolated,
microperfused IBDUs using RT-PCR [69]. cAMP-induced
secretion of bicarbonate from IBDUs involves apical release
of ATP and stimulation of apical P2 receptors [180]. An
interesting correlation is cystic liver disease. P2X4 recep-
tors are expressed in liver cyst epithelia, and it was spec-
ulated that they mediate fluid secretion leading to increase
in luminal pressure, causing cell proliferation and cyst
expansion [64].

Contraction of bile canaliculi is ATP-dependent [154, 252].
External ATP regulates canalicular bile formation in isolated
perfused rat liver, lowering bile flow, whilst inducing release
of glucose and lactate [158]. ATP and UTP increase [Ca2+]i in
human intrahepatic biliary epithelial cell lines [255], probably
via P2Y2 or P2Y4 receptors. Cholangiocytes, which secrete
Cl- and HCO3

- in the intrahepatic bile ducts, are activated by
purinergic receptors, which were assumed to be activated via
autocrine and/or paracrine release of ATP [213]. Recent data
suggests that vesicles containing ATP within the biliary epi-
thelial cells are, in part, responsible for the initiation of
purinergic signalling in the biliary system [215].
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ATP breakdown and phosphohydrolysis in liver

Among all tissues, the liver has one of the highest ATPase and
ADPase activities. Histochemical studies showed that most of
liver ectonucleotidase activity was associated with the canalic-
ular domain of hepatocytes [78]. Further studies revealed that
NTPDase1 (CD39) is expressed by Kupffer cells and vascular
endothelial cells [224], whereas NTPDase2 is produced by
portal fibroblasts and activated HSC [70]. NTPDase2 is a
preferential ATPase. This ectoenzyme expressed by these ad-
ventitial cells may have differential effects in inflammation and
fibrogenesis that are related to generation of ADP.

More recently, cloning and biochemical characterisation of
NTPDase8 in human and rat species and its identification as the
hepatic canalicular ecto-ATPase/ATPDase with potential roles
in nucleoside salvage from bile as well as biliary electrolyte/
fluid secretion have been reported [82]. Deletion of CD39
results in hepatic insulin resistance [76]. Other ATPases, such
as NTPDase3 and NTPDase5, have been found in hepatic
tissue, but their functional relevance is not yet known.

Nucleotide pyrophosphatase/phosphodiesterase (NPP) has
been localised on the basolateral membranes of hepatocytes
and associated with hepatocellular growth [221]. NPP1 is
absent during the foetal period and is decreased during liver
degeneration [228]. Ecto-5′-nucleotidase (CD73) has been
detected in the canalicular plasma membrane and on hepatic
satellite cells [217]. Ecto-5′-nucleotidase (CD73)-mediated
extracellular adenosine production plays a critical role in
hepatic fibrosis [199]. Coexpression of CD73 with specific
NTPDases (NTPDase 1, 2 and 8) differentially regulated
adenosine formation in rat liver [84]. A recent presentation
has reported the presence of ATP synthase in rat hepatocyte
plasma membrane as well as in mitochondria [167].

Metabolism of glucose

One of the major functions of the liver is the storage and
production of glucose. Purinergic signalling has been shown
to have an impact on almost every element glucose production
and storage including glycogenolysis, gluconeogenesis, and
glycolysis. Glycogenolysis is mainly mediated via the actions
of glucagon. Noradrenaline (NA) and ATP released via the
splanchnic nerve also serve to stimulate glycogenolysis. In
fact glucagon hyperpolarises the liver cell membrane, partly
by inducing the release of ATP to act on P2 receptors [93].
Extracellular ATP comes not only from the splanchnic nerve
but also from surrounding hepatocytes and activated platelets
[24]. Activation of P2Y1 receptors on rat and human hepato-
cytes stimulates glycogen phosphorylase [62, 63]. The mech-
anism involves increases in intracellular calcium as well as
activating PLD, which may enhance hepatic glycogenolysis.
In hepatocytes and perused livers, extracellular ATP stimu-
lates glycogenolysis [38, 122, 147, 148, 151]. ATP, however,

is rabidly degraded to adenosine, which, via the action of P1
receptors, increases both cAMP and intracellular calcium.
This results in the activation of glycogen phosphorylase.
Despite similar levels of activation of glycogen phosphory-
lase, adenosine is inferior to glucagon at increasing glucose
production and even antagonises the stimulation of glycogen-
olysis by glucagon or cAMP [24]. Thus, whilst the net effect
of ATP and adenosine in the liver is to stimulate glycogenol-
ysis, it is unclear to what extent that plays a role in intracellular
glucose concentrations. Hepatocyte heterogeneity in response
to ATP in perfused rat liver has been described, including
glycogenolysis to glucose predominantly in the periportal
area, ATP is predominantly hydrolysed by a small hepatocyte
population located at the perivenous outflow of the acinus,
contractile elements (sphincters) exist near the inflow of the
sinusoidal bed, and a portion of the Ca2+ mobilised by ATP is
derived from liver cells that do not contribute to hepatocyte
glucose output [122].

In isolated rat liver cells exposed to ATP (10μM), gluco-
neogenesis is increased, an effect that was mimicked to a
lesser degree with adenosine [226]. The initial transient rise
in [Ca2+]i evoked by ATP plays a significant role in triggering
gluconeogenesis [155]. The effect, however, may be depen-
dent on the carbon source for gluconeogenesis or the concen-
tration of extracellular ATP. In isolated hepatocyte cells, glu-
coneogenesis from pyruvate and lactate (but not glycerol or
fructose) is inhibited by ATP at high extracellular concentra-
tions (1 mM), with adenosine producing a similar effect [9].

Stimulation of glycolysis by insulin in cultured hepatocytes
is attenuated by ATP via inhibition of phosphofructokinase 2
[205]. The mammalian target of rapamycin (mTOR) pathway
is one pathway utilised in hepatocytes to control glucose
metabolism. Purinergic regulation (mainly P2Y1 and P2Y2)
of certain hepatocyte functions, such as glucose metabolism,
may be controlled by the mTOR pathway [47]. It has been
claimed that activation of A2B receptors modulates glucose
homeostasis and obesity [141].

Lipid metabolism and fatty acids

The effects of ATP on hepatic fatty acid metabolism have been
studied and it was shown that inhibition of acetyl-CoA car-
boxylase activity by ATP may be mediated by elevation of
[Ca2+]i, whereas carnitine O -palmitoyltransferase may be
inhibited through a protein kinase C-dependent mechanism
[113]. A slight decrease in intracellular ATP coincided with
stimulation of fatty acid biosynthesis from glucose in rat
hepatocytes, whilst further lowering of intracellular ATP led
to a gradual inhibition [100]. It has been reported recently that
A1 receptors do not play a major role in the regulation of
lipogenic gene expression in hepatocytes [262].

Reverse cholesterol transport has been shown to be, in part,
modulated by purinergic signalling. Chronic activation of
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P2Y13 receptors decreases HDL-cholesterol levels in mice
[223]. P2Y13-deficient mice had decreased hepatic HDL cho-
lesterol uptake. In addition to decreased HDL uptake, hepatic
cholesterol transport and biliary cholesterol output (but not
plasma HDL) were also decreased [79]. P2Y13 knockout mice
have also been shown to have lower faecal concentrations of
sterols indicating a role for purinergic signalling in cholesterol
transport to the faeces [23].

Cell volume regulation

ATP, acting via P2 receptors, is a critical determinant of
membrane Cl- permeability and cell volume regulation [90].
In response to hypotonic solution, rat hepatoma cells release
ATP into the extracellular environment and rapidly activate
volume-sensitive outward-rectifying Cl- channels [246].

Vascularity of liver

Portally infused ATP leads to trans-hepatic vasodilatation
via P2Y receptors on the endothelium, whilst ATP re-
leased from sympathetic nerves leads to vasoconstriction
of hepatic arteries via P2X receptors on the muscle [27,
28, 203]. In the sinusoidal vascular bed, ATP impairs the
flow-limited distribution of [3H]water [92]. Both
endothelium-dependent and endothelium-independent va-
sodilation of rabbit hepatic artery mediated by purines has
been described [28]. In the ATP perfused liver, both P2X
vasoconstrictor and P2Y vasodilator receptors [leading to
release of nitric oxide (NO)] were identified in the hepatic
vascular bed [177, 207]. Adenosine-induced dilation of
the rabbit hepatic arterial bed is mediated by A2 receptors
[176]. ATP-magnesium chloride (MgCl2) restores de-
pressed hepatocellular function and hepatic blood flow
following haemorrhage and resuscitation [249].

There is evidence for two types of P2 receptor on the
longitudinal muscle wall of the portal vein [145]. ATP dilates
the portal circulation via P2Y receptors on endothelial cells
leading to release of NO [238]. The non-adrenergic contractile
response of the guinea-pig portal vein to electrical field stim-
ulation mimics the response to UTP, but not ATP [136],
perhaps indicative of the presence of a P2Y2 or P2Y4 receptor
on smooth muscle. P2X1 receptors have also been identified
on rat portal vein myocytes [183, 196].

Purinergic signalling in liver disease

Readers are referred to a recent review entitled ‘Pathological
roles of purinergic signalling in the liver’with an emphasis on
potential future clinical applications ([247]; see Fig. 1).

Inflammation, liver injury and immune regulation

Purinergic signalling is one mechanism by which the immune
response is regulated in the liver. UTP and ATP stimulate
thromboxane release from perfused liver [123]. Adenosine,
resulting from the breakdown of ATP, inhibits the incorpora-
tion of radiolabelled leucine into proteins in isolated hepato-
cytes [244]. Alcohol-induced liver injury is associated with
enhanced inflammatory responses and it has been reported
that adenosine, acting via A2A receptors, may be a useful
anti-inflammatory pathway for reducing these effects
[204]. In another study, it was claimed that endogenous
A1 receptor activation protects mice against acute ethanol-
induced liver injury by reducing oxidative stress and de-
creasing lipid accumulation [264]. In cholestasis, bile flow
from the liver is impaired, resulting in liver injury. In mice
lacking the A1 receptor, there was attenuation of α-
naphthylisothiocyanate-induced cholestatic liver injury
[263]. Prostaglandin (PG) F2α and PGD2 are released from
rat liver cells after stimulation by ATP, but not adenosine
[10]. Prostanoid secretion by rat hepatic sinusoidal endo-
thelial cells is regulated by ATP [119].

Liver plasma membrane properties have been used for
studies of nucleotide signalling. For example, phosphati-
dylcholine breakdown by rat liver plasma membrane was
increased by guanosine triphosphate (GTP; [135]). Ca2+-
ATPase is located in hepatocyte plasma membranes and
is involved in calcium homeostasis [57]. A functionally
active ecto-F0F1-ATP synthase has been identified on the
plasma membrane of hepatocytes that mediates extracel-
lular formation from ADP and inorganic phosphate [173].
Membrane-bound ATP synthesis has a role in modulating
the concentrations of extracellular ADP and is regulated
by a plasma apoliproprotein [175]. Synergistic activation
of mitogen-activated protein kinase by insulin and ATP
in liver cells has been demonstrated [114]. Autophagy,
i.e. autophage-lysosomal degradation, in isolated hepato-
cytes is inhibited by purine nucleotides and nucleosides
[156]. Activation of P2Y2 receptors plays a key role in
endotoxin-induced acute liver injury in mice [214]. P2Y2

receptors mediate neutrophil infiltration, thereby regulat-
ing immune responses associated with hepatocyte death
in mice with acute liver injury, and it was suggested that
P2Y2 receptor antagonists might be used to treat inflam-
matory liver disease [11]. A review about purinergic
signalling during sterile liver injury has been published
recently [195].

Diadenosine triphosphate and tetraphosphate, probably
acting via P2Y receptors, like ATP regulate hepatic
haemodynamics and metabolism involving complex interac-
tions between parenchymal and non-parenchymal cells [37,
74]. Adenine dinucleotide-related cytosolic free Ca2+ oscilla-
tions in single hepatocytes have been reported [107]. Adenine
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dinucleotides activate glycogen phosphorylase in isolated liv-
er cells [53]. The metabolic and haemodynamic effects of
extracellular nicotine adenine dinucleotide are caused mainly

by interactions with purinergic receptors with a highly signif-
icant participation of its main transformation product ADP-
ribose [29].

Fig. 1 Schematic overview of the complex interplay mediated between
extracellular ATP and adenosine by ectonucleotidases within the liver. As
illustrated, purinergic signalling influences multiple cell types in the liver
and in the hepatic sinusoids to impact processes of inflammation, metab-
olism and parameters of insulin signalling, cellular regeneration, healing,
fibrosis and cell transformation. As an example, extracellular ATP arising
from biologic stress can incite hepatocytic inflammation mediated by
P2X7 and the inflammasome, whilst driving parenchymal cell prolifera-
tion via P2Y2. With ATP metabolized to adenosine by ectonucleotidases
expressed by non-parenchymal sinusoidal cellular surfaces, the inflam-
matory response is down-regulated and tissue remodelling develops.

Induction of CD39 expression by immune suppressive T regulatory cells
as well as endothelial cells with associated alterations in sinusoidal
vascular responsiveness and hepatic stellate cell (HSC ) responses.
Heightened levels of adenosine generated over a protracted time may
result in increased fibrosis, as formed by myofibroblasts and activated
stellate cells. These considerations and the crucially important levels of
nucleotide:nucleoside balance controlled by CD39 have important impli-
cations for the development of purinergic therapies in liver transplantation
and inflammatory fibrotic liver diseases. (Reproduced from [247] with
permission—License number: 3172040541217; license date: 6/18/2013;
Journal of Hepatology)
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Hepatocyte lipoapoptosis induced by saturated free fatty
acids contributes to hepatic inflammation in lipotoxic liver
injury. It has been suggested that pannexin1 may play an
important role in hepatic inflammation by mediating an in-
crease in ATP release in lipotoxic liver injury [259]. APAP is
often used to treat fever and pain, but it can cause damage to
hepatocytes. In mouse models of APAP-induced inflamma-
tion, full injury after overdose required P2X7 receptor activa-
tion [4]. P2X7 is required for hepatic caspase-1 activation and
migration of neutrophils into the liver. This suggests that
extracellular ATP may play a pivotal role in development of
the inflammasome after APAP overdose [130]. The P2X7
receptor antagonist A438079 is protective against APAP-
induced liver injury, and it was claimed that it acted by
inhibiting P450 isoenzymes rather than by inflammasome
activation [260].

It has been suggested that ATP affects polymerisation of
cytoskeletal elements [143]. Extracellular ATP induces rapid
cell rounding in cultured human Chang liver cells (ATCC
CCL B) [225]. Roles of natural killer (NK) T cells and rela-
tionships with stellate cells as modulated by local mediators is
controversial and of great interest in both murine models and
in clinical studies. Early studies suggest that T-, NK and NKT
cells are exquisitely susceptible to regulation by purinergic
and the adenosinergic microenvironment within inflamed
tissues.

Hepatic encephalopathy is a neuropsychiatric syndrome
that is a complication of either acute or chronic impaired liver
function. It is the result of the inability of the liver to clear
various “toxins” (often amino acids) from the portal tract.
Adenosine had been postulated to have anticonvulsive effects
and potentially anti-ischaemic effects in the brain [68]. Thus,
it was postulated that adenosine could have a therapeutic
effect [218].

Diabetes

Liver dysfunction can produce diabetic syndrome or may be
secondary to it. ATP has been shown to increase insulin
secretion in normal and alloxan diabetic rats and influence
liver function [235]. An increase in adenosine A1 receptor
expression was claimed in the liver of streptozotocin (STZ)-
induced diabetic rats [168]. A later paper showed a significant
increase in A2A and A3 receptor mRNA levels, whilst A2B

receptor mRNA decreased and A1 receptors were unchanged;
administration of insulin for 4 days to the STZ rats led to
return to control levels of P1 receptor expression [106]. In
addition, CD39 knockout mice have higher plasma insulin
levels following a glucose challenge. Whilst the mice do not
develop obesity, they do have higher leptin levels. It is sug-
gested that CD39 acts in the metabolic pathway directly via
insulin receptor substrate-2 phosphorylation; however, it is
also likely that there are indirect mechanisms through altered

inflammatory responses. The end result, however, is that
aberrations in the ability to process extracellular ATP lead to
insulin resistance and likely is involved in the complex path-
ogenesis of diabetes [76]. This process may indicate an im-
portant metabolic cross-link between inflammation and insu-
lin resistance in other disease states.

Fibrosis and HSCs

Liver fibrosis with subsequent cirrhosis is the most common
cause of liver failure. Cell types implicated in hepatic fibrosis
are becoming better defined. The most relevant effector cells
are activated HSC, ductular epithelial cells and (portal and
perivascular) fibroblasts. More recently, it has become evident
that a minor proportion of fibroblastic cells originate from
bone marrow-derived circulating fibrocytes. HSC appear to
be the primary fibrogenic cells of the liver, and these express
functional nucleotide receptors [159, 237], which mediate
PLD activity [20]. Adenosine A2B receptors have also been
identified in human HSC, which play pro-fibrotic roles [266].
During fibrosis, HSC undergo proliferation and senescence
and it has been reported that A2A receptors mediate both these
key processes, making A2A receptor antagonists potential
antifibrotics [1]. Quiescent stellate cells express P2Y2 and
P2Y4 receptors activated by UTP and ATP, whereas activated
stellate cells express P2Y6 receptors responding to UDP [71].
These authors have also shown that activation of these P2Y
receptors regulates procollagen-1 transcription. They suggest
that these cells may be a target to intervene therapeutically to
prevent liver fibrosis and preclude development of cirrhosis
and chronic liver failure. The P2 receptor antagonist,
pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate, inhibited
proliferation of HSC and prevented non-biliary liver fibrosis
[72]. NTPDase2 is produced by portal fibroblasts and activat-
ed HSC [71]. NTPDase2 is a preferential ATPase that appears
to have major effects in inflammation and biliary type
fibrogenesis that are related to generation of ADP. Ecto-5′-
nucleotidase (CD73) activity was found to be higher in the
quiescent, rather than in the activated phenotype of a HSC
line, suggesting that ecto-5′-nucleotidase-dependent adeno-
sine production may play a role in the regulation of quiescent
HSC functions [6]. However, it has been claimed recently that
ecto-5′-nucleotidase (CD73) gene expression increased in
both HSC and portal fibroblasts during myofibroblastic dif-
ferentiation and represents a promising target for antifibrotic
therapy [85].

A2A receptors play an active role in the pathogenesis of
hepatic fibrosis and it has been proposed that A2A receptor
antagonists will inhibit ethanol-induced fibrosis and stellate
cell activation [48, 49, 234]. Fatty liver is associated with
alcohol abuse and it has been reported that adenosine, gener-
ated by ethanol metabolism, plays a role in ethanol-induced
hepatic steatosis via both A1 and A2B receptors and it was
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suggested that targeting these adenosine receptors may be
effective for the prevention of alcohol-induced fatty liver
[210]. The A2B receptor antagonist, MRS1754, reduces he-
patic collagen deposition during fibrosis progression [229].

In a recent paper, it has been claimed that ATP released
from human platelets contributes to suppression of both hu-
man HSC activation and type I collagen production in vitro
[132]. It was suggested further that an adenosine-cAMP sig-
nalling pathway mediated this process. In progressive fibrosis,
eicosapentaenoic acid replenishes hepatic ATP levels resulting
in reduction of inflammation and steatosis [140].

Cirrhosis

ATP-MgCl2 has been used to improve survival following mas-
sive hepatectomy among cirrhotic rats [127]. It has also been
used to treat trauma-haemorrhage and resuscitation, which may
be due, in part, to the restoration of P2 receptor binding capacity
and the enhancement of receptor affinity [170]. Blockade of
intrahepatic adenosine receptors improved urine excretion in
cirrhotic rats induced by thioacetamide [182]. Adenosine par-
tially reversed cirrhosis induced by carbon tetrachloride in rats
[124] and reversed induced micronodular cirrhosis through
enhancing collagenolytic activity and stimulating hepatocyte
cell proliferation [125]. A2A receptors play an active role in
the pathogenesis of hepatic cirrhosis [42]. During fulminant
hepatitis, A2A receptors play an important role in the physio-
logical anti-inflammatory mechanisms that limit liver damage
[50]. Adenosine receptor blockade reduces splanchnic
hyperaemia in cirrhotic rats [162]. Adenosine deaminase activ-
ity was elevated during tuberculous peritonitis in patients with
underlying liver cirrhosis [164].

As cirrhosis progresses, the normal response to increased
portal venous vascular resistance of decreasing hepatic artery
vascular resistance is decreased. The process is mediated by
adenosine in normal livers. In cirrhotic livers, the adenosine-
mediated vasodilation of the hepatic artery is exaggerated
leading to a greater vasodilator effect of the hepatic artery to
adenosine [268].

Platelet dysfunction in cirrhosis may also be mediated, in
part, by purinergic signalling. Patients who had variceal bleed-
ing had platelets that displayed low levels of impaired actin
polymerisation compared to both non-bleeders and controls.
The authors suggest this may be related to cytosolic calcium
levels [7]. Cerebral A1 receptors have been implicated in liver
cirrhosis [25]. Ectonucleotidase NTPDase 2 is selectively
down-regulated in biliary cirrhosis [70].

Cancer

Liver cancer exhibits chronic inflammation, which is associ-
ated with aberrant cell proliferation, disordered metabolism
and immune dysregulation. Deletion of CD39 promotes the

development of both induced and spontaneous liver cancer in
contrast to the effects on transplanted tumours to the liver
[233]. These manifestations are comparable to what has been
observed with Entpd5 studies and knockout mice [80, 208].

Calcium uptake by rat hepatoma cells is increased by ATP
[13]. Nucleotide receptors mediated activation of cation, po-
tassium and chloride currents in HTC cells from a rat liver
tumour line [94]. There was increased incidence of spontane-
ous and induced hepatocellular carcinoma with associated
metabolic perturbations in CD39 knockout mice [256].

ENTPD5/CD39L4 is a related ectoenzyme to CD39 and is
a soluble endoplasmic reticulum UDPase involved in intracel-
lular purine metabolism, which promotes glycolysis as well as
proliferation in cancer cells via the PTEN signalling pathway
[80]. Interestingly, there are also contrasting and somewhat
overlooked roles of this ectonucleotidase in the suppression of
liver cancer development [208] vs. the promotion of
transplanted tumour growth in mice [80]. ATP infusions into
the intraperitoneal space of a two-stage rat model of
hepatocarcinogenesis displayed an increase of preneoplastic
foci in the liver. In this experiment, ATP and adenosine altered
the balance of apoptosis and proliferation towards malignancy
[98]. In developed malignancy, however, ATP plays in impor-
tant role as an early danger signal to the immune system. ATP
released from necrotic cells stimulates neighbouring cells to
die. CD39 is an ectonucleotidase that converts ATP to AMP.
CD39 expression on endothelial cells suppresses the anti-
tumour effect of ATP [87]. Swelling-induced ATP release
results in activation of P2X4 receptors, which leads to modu-
lation of volume-sensitive outwardly rectifying chloride chan-
nels in rat hepatoma cells [246]. Ecto-NTPDase2, which
converts ATP to ADP, was expressed on human Huh-7 hep-
atoma cells and ADP then activates P2Y13 receptors, which
mediate volume regulatory decrease [77]. The generation of
adenosine both inhibits T cell proliferation and promotes
angiogenesis, which ultimately is permissive of the growth
of malignant cells [231].

Metastatic melanoma from mouse livers that were CD39
null had more ATP and less tumour cell growth. In addition,
CD39 expression on T regulatory cells plays a suppressive role
on NK cell-mediated tumour suppression of metastatic tumours
to the liver. Thus, it further supports the role of purinergic
signalling as an important and potentially therapeuticmodulator
in tumour biology in the liver. High concentrations of ATP
switched autophagy to apoptosis in anchored and non-
anchored human hepatoma cell lines [253]. The authors suggest
that this work provides evidence that explains how hepatoma
cells escape from ATP-induced cytotoxicity as well as offering
another clue about effective manipulation of liver cancer.

The hepatoma call line N1S1-67 has been used to study
signal transduction activated by ATP via P2Y2 or P2Y4 sub-
types [201]. Increase in intracellular calcium leads to the
opening of Ca2+-activated K+ channels and membrane
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hyperpolarisation. Intra-arterial injection of an inhibitor of
ATP production has been proposed as a novel therapy for liver
cancer [101]. Release of ATP is, at least in part, by vesicular
exocytosis from HTC cells, and a Cl- channel inhibitor has
been used to specifically stimulate ATP release through exo-
cytotic mechanisms [65]. Hepatoma cell growth inhibition by
adenosine was reported [115]. The A3 receptor agonist,
CF101, caused inhibition of liver metastasis (following
colon carcinoma) [12]. Human hepatocellular carcinoma
HepG2 cells expressed high-affinity A1 receptors, which
mediated decreased AMP and erythropoietin production
[193]. ATP, via the A3 adenosine receptor, induced cell
apoptosis of the human hepatoma cell line Li-7A [12,
254]. A2B receptors were highly expressed in human
hepatoma carcinoma [257].

Hepatitis

Suramin was shown to inhibit in vitro infection by duck
hepatitis B virus, Rous sarcoma virus, and hepatitis delta virus
[202]. An influence of sympathetic nerves in immune-
mediated experimental hepatitis has been demonstrated
[188], and ATP released as a cotransmitter might be involved.
P2X7 receptors regulate NKT cells in autoimmune hepatitis
[144]. In fact, while working with concanavalin A models for
NKT cell-mediated inflammation used to study immune liver
disease, deletion of CD39 was noted to be protective against
liver injury [15]. This suggested that modulation of NKT cell
activation by novel pharmacologic therapies could quell in-
flammation and injury. P2X7 receptor-mediated responses are
needed for infection of human hepatocytes by hepatitis delta
virus and hepatitis B virus [241]. Chronic hepatitis C virus
(HCV) infection results in progressive liver disease including
fibrosis, cirrhosis, insulin resistance and eventually hepatocel-
lular carcinoma. The mechanism of ATP binding has been
explored to facilitate targeting of the ATP-binding site for
potential therapeutic development for hepatitis C [197]. It
has been suggested that P2X4 receptors are a major compo-
nent of the purinergic signalling complex in HCV-induced
liver pathogenesis [174].

Inosine triphosphate (ITP) is broken down by ITPase
(ITPA). A protective effect of ITPA gene variants against
ribavirin associated anaemia has been reported [86]. ITPA
deficiency results in the build-up of ITP that may alter the
pharmacokinetics of ribavirin. Ribavirin has been associated
with low levels of intracellular ATP which is part of the
pathogenesis of anaemia. High levels of ITP, such as those
from deficiency ITPA, allow ITP to substitute for GTP in the
generation of AMP, which may be how high ITP levels
attenuate the ribavirin-induced anaemia [128].

A2a receptor activation prevents hepatocyte lipotoxicity
and non-alcoholic steatohepatitis in rats [134].

Ischaemia and vascular injury

That infusion of ATP-MgCl2 improved hepatic function and
survival after hepatic ischaemia was recognised early [97,
126, 194]. It was also effective following reperfusion [51].
The beneficial effect of ATP-MgCl2 treatment following
trauma-haemorrhage may be associated with a down-
regulation of the circulating levels of the inflammatory cyto-
kines tumour necrosis factor and interleukin-6 [250]. It was
also suggested that reduction of ischaemic damage by ATP-
MgCl2 infusion may be mediated through improvement in
mitochondrial energy metabolism [139]. Treatment of ischae-
mia byATPwas particularly effective in old mice; aging of the
liver is related to mitochondrial dysfunction [222]. During
60 min of ischaemia, there is a 90 % ATP loss from hepato-
cytes [108]. Hepatocyte resistance to hypoxia is promoted via
P2Y2 receptors by down-modulating ERK1/2-mediated sig-
nals that promote Na+ influx through the Na+/H+ exchanger
[41]. Vascular NTPDase activity was lost after hepatic ischae-
mia and reperfusion injury and deletion of NTPDase1 in mice
led to increased injury and decreased survival [133]. Also
deletion of CD39 in NK cells attenuated hepatic ischaemia/
reperfusion injury inmice, suggesting that ATPmodulates NK
cell function during liver regeneration. NK cells that lack the
CD39 gene had less secretion of interferon gamma in response
to inflammatory mediators. This probably, in part, accounts
for the decrease in tissue damage after ischaemia reperfusion
injury [17]. Interestingly, vascular CD39, however, seems to
have a protective role in hepatic ischaemia reperfusion injury.
CD39-null and heterogeneous mice had decreased survival
compared to wildtype after an induced model of ischaemia.
The CD39 deficient mice that received adenosine were
protected from reperfusion injury [232].

Adenosine can also play a protective role against ischae-
mia reperfusion injury [73, 189] probably by activation of
A2 receptors [8, 200], especially A2A receptors [18, 55, 56,
160]. Administration of an adenosine A1 receptor antagonist
before ischaemia attenuated ischaemia-reperfusion injury
[153, 169]. Oxidative preconditioning by ozone was me-
diated by A1 receptors in a rat model of liver ischaemia
reperfusion [163].

Pharmacologic preconditioning is a potential mechanism to
protect against hepatic ischaemic reperfusion injury.
Blockage of A1 receptors abolished ischaemic precondi-
tioning whilst activation of A1 receptors decreased the
effect of ischaemic reperfusion injury [2]. Hepatic ischae-
mic preconditioning is associated with up-regulation of
CD39. This is likely mediated by transcription factor Sp1
and is a potential therapeutic target for the treatment of
liver ischaemia [117]. This also has renal implications as
well, as one study demonstrated that activation of renal
A1 receptors was protective for the liver as well as kidney
after liver ischaemia reperfusion injury [198].
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Administration of UTP before induction of ischaemia
can attenuate, via P2Y2 and/or P2Y4 receptors, post-
ischaemic hepatocyte apoptosis and thereby reverse liver
damage [19]. The authors suggest that the UTP-mediated
protective effect may be regulated through nuclear
factor-κB inactivation. Inosine is an endogenous nucleo-
tide that may be useful in maintaining homeostasis after
tissue ischaemia. Through the action of adenosine recep-
tors (A3), high extracellular inosine stimulated gluconeo-
genesis [111].

Interestingly, ADP-dependent platelet aggregation was
shown to correlate with reperfusion injury as well as thrombo-
cytopenia and early graft survival. ADP-triggered platelet func-
tion may have a role in ischaemia reperfusion injury [220].

Metallothionein protein (MT) is induced in vivo in rat liver
by P1 adenosine agonists, probably via A2 receptors [261].
The authors suggest that adenosine via modulation of tran-
scription of MT genes may be important in stress situations
involving tissue damage, hypoxia and haemorrhage shock.

Hepato-renal syndrome

Purinergic signalling may play a role in hepato-renal syn-
drome. The administration of intra-hepatic caffeine into the
portal vein of rats has been shown to increase urine output.
This effect was not seen with intravenous caffeine or after the
liver was denervated, which suggests a porto-renal effect of
adenosine [181]. This effect is mediated by hepatic A1 recep-
tors. This presents a potentially novel therapeutic option for a
difficult to treat complication of cirrhosis. In fact, selective
blockade of the hepatorenal reflux with SLV329 (an A1 re-
ceptor antagonist) resulted in a diuretic and natriuretic effect
without a change of creatinine clearance in a rat model of
cirrhosis [129].

Regeneration of liver

It is interesting that the sympathetic nervous system has been
implicated in the regulation of liver repair (see [191]). Since
ATP is now well established as a cotransmitter with NA in
sympathetic nerves, it may be a source of ATP involved in
liver regeneration. ATP, released from nerves, from hepato-
cytes or after synthesis of inorganic phosphate and ADP by
the cell membrane via kinases, may participate in the trans-
membrane signal transduction from growth factors to the cell
effector system [102]. ATP activates c-jun N-terminal kinase
signalling and cell cycle progression in hepatocytes, with
involvement in the initiation of regeneration, liver growth
and development [242]. Gene expression profile analysis of
regenerating liver using a cDNA microarray system suggests
that increase in ATP metabolism is associated with rapid
regeneration of liver [185]. Hepatocellular proliferation is
impaired in P2Y2 receptor knockout mice, establishing a

trophic role for ATP in hepatocyte proliferation with implica-
tions for liver regeneration and growth after injury [243].
Regulated catalysis of extracellular nucleotides by vascular
CD39 (NTPDase1) is required for both hepatocyte and endo-
thelial cell proliferation during liver regeneration [16]. Aden-
osine, perhaps via A2B or A3 receptors, has been reported to
accelerate the cell cycle during rat liver regeneration induced
by partial hepatectomy [179]. A selective A2A agonist, ATL-
146e, has been claimed to prevent concanavalin A-induced
acute liver injury in mice [192]. A3 receptor activation de-
creases mortality and hepatic injury in murine septic peritoni-
tis [161]. After a partial hepatectomy adenine nucleotides have
been noted to undergo a rapid decrease in the remnant liver.
The onset of liver regeneration occurs after seconds, possibly
related to this loss of nucleotides [54]. ATP release after partial
hepatectomy regulates liver regeneration in the rat [104].

A recent insight into this process is the modulation of
extracellular ATP on NK cells after partial hepatectomy. Im-
mediately after partial hepatectomy, extracellular ATP is in-
creased and will bind to P2 receptors on NK cells that, in turn,
inhibit their function. Administration of exogenous apy-
rase (CD39/NTPDase1) depletes extracellular ATP and
allows NK cells to regulate the immune response and
improves liver regeneration [105]. Liver regeneration is
enhanced by the ATP-sensitive K+ channel opener,
diazoxide, after partial hepatectomy [186].

Liver transplantation

Accurate, rapid, non-invasive markers of graft viability have
valuable clinical uses. A combination of liver ATP levels and
serum hyaluronic acid has been recommended as a measure of
graft viability [230]. Whilst the human liver has been success-
fully maintained under hypothermic conditions for up to 10 h
using solutions with high concentrations of adenosine, organ
preservation to overcome ischaemic damage is a major obsta-
cle to liver transplantation. Infused ATP preserves sublethally
injured cells by enhancing their recovery after ischaemic
injury; this action is enhanced by the synergistic effect of
superoxide dismutase [95]. Purinergic receptor antagonists
prevent cold preservation-induced cell death [5]. Hepatocyte
viability and ATP content decrease linearly over time during
conventional cold storage of rat liver grafts [21].

With organ transplantation, NTPDase1 activity is lost with
reperfusion or rejection and up-regulation occurs with graft
survival [133]. Administration of soluble NTPDase in the
bloodstream or up-regulation of CD39 post-adenoviral infec-
tion has been shown to prolong transplant graft survival.
Regeneration of the donor liver after transplantation is impor-
tant. ATP activates cell cycle progression and proliferation of
hepatocytes in vitro and in vivo and modulates growth factor
activities probably via P2Y2 receptors [242]. A2A receptor
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activation has been claimed to have a protective effect in
small-for-size liver transplantation [239]. This group have
demonstrated that A2A receptor activation down-regulated
proinflammatory cytokines, adhesion molecules and ultimate-
ly improved liver function in small for size liver transplanta-
tion in rats [240].

Another development from purinergic signalling is the
ability to monitor and predict progression of fibrosis and
rejection in the post-transplant allograft. The ImmuKnow
assay is measure of peripheral blood CD4+ total ATP. After
living donor transplantation, the ImmuKnow assay was stud-
ied as a tool of immune response. Based on the results of the
ImmuKnow assay, there was a correlation between immune
response and required immune suppression with tacrolimus
[184]. It was concluded that it had an excellent ability to
monitor immune response especially in combination with
assessment of the CYP3A5 allele. Blood from patients who
had acute rejection displayed a significantly elevated level of
intracellular ATP in CD4+ lymphocytes compared to those
without acute rejection. This may be developed as a useful
clinical tool to diagnose early rejection [67, 236].

The ImmuKnow assay has also showed potential in areas
other than acute rejection. Recurrence of hepatitis C after
transplant is a difficult to predict problem. In patients with
HCVafter orthotopic liver transplant, low CD4+ T cell ATP
levels based on the ImmuKnow assay were significantly
associated with progression to fibrosis. Thus, the greater
suppression of cellular immunity measured by the
ImmuKnow assay, the greater the risk of development of
fibrosis [3].

In a separate study, in patients with HCV who had been
transplanted, the ImmuKnow assay was assessed to distin-
guish acute cellular rejection from recurrent HCV. Recipients
with recurrent HCV had a significantly lower immune re-
sponse compared to those with acute cellular rejection. Inter-
estingly, those patients with overlap features of both HCVand
acute cellular rejection who had a low immune response were
more often found to have HCV. Thus, the ImmuKnow assay
has potential to serve as a clinical tool to distinguish recurrent
HCV after transplantation or acute cellular rejection [118].
Clinical utility of the ImmuKnow assay, which determines
immunosuppression levels, is limited in children with kidney
transplants, but it is very valuable with serious infections
[248]. The A2A receptor agonist, regadenoson, increases he-
patic artery flow in the recipients of small-for-size liver grafts,
giving some improved outcome [267].

Conclusions and future directions

As reviewed above, there are now substantial data implicating
extracellular nucleotides and nucleosides in a variety of liver
functions in both health and disease. Purinergic signalling is

involved in the vascular and immune responses to liver trans-
plantation and can influence the pathophysiological responses
to ischaemic injury, disordered bile flow and metabolic disor-
ders such as insulin resistance. All of these entities are critical
to optimal clinical outcomes following hepatic allografting.

In terms of other therapeutic non-transplant strategies, the
expectation is for the development and study of non-toxic drugs
that can modulate breakdown of ATP by ectonucleotidases, in
addition to selective agonists and antagonists for purinoceptor
subtypes that are orally bioavailable and stable in vivo. Such
therapies might be employed for several of the more common
liver diseases to not only improve hepatic steatosis but also
ameliorate the progression to scarring, disordered regeneration
and cirrhosis.
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