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Abstract

Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe
partial volume effect, and the ongoing maturation and myelination process. During the first year of
life, the brain image contrast between white and gray matters undergoes dramatic changes. In
particular, the image contrast inverses around 6-8 months of age, where the white and gray matter
tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue
contrast, posing significant challenges for automated segmentation. In this paper, we propose a
general framework that adopts sparse representation to fuse the multi-modality image information
and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we
first derive an initial segmentation from a library of aligned images with ground-truth
segmentations by using sparse representation in a patch-based fashion for the multi-modality T1,
T2 and FA images. The segmentation result is further iteratively refined by integration of the
anatomical constraint. The proposed method was evaluated on 22 infant brain MR images
acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10
unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the
volume overlap between automated and manual segmentations, i.e., 0.889+0.008 for white matter
and 0.870+0.006 for gray matter.
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1 Introduction

The first year of life is the most dynamic phase of the postnatal human brain development,
with rapid tissue growth and the development of a wide range of cognitive and motor
functions (Fan et al., 2011; Paus et al., 2001; Zilles et al., 1988). Accurate tissue
segmentation of infant brain MR images into white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF) in this stage is of great importance in studying and measuring the
normal and abnormal early brain development (Li et al., 2013a; Li et al., 2013b; Li et al.,
2013c; Nie et al., 2012). It is well-known that the segmentation of infant brain MRI is
considerably more difficult than that of the adult brain, due to the reduced tissue contrast
(Weisenfeld and Warfield, 2009), increased noise, severe partial volume effect (Xue et al.,
2007), and ongoing white matter myelination (Gui et al., 2012; Weisenfeld and Warfield,
2009) in the infant brain images. Three distinct stages exist in the infant brain MR images,
as shown in Fig. 1, with each stage having quite different white matter/gray matter contrast
patterns (in chronological order) (Paus et al., 2001): (1) the infantile stage (< 5 months), in
which the gray matter shows a higher signal intensity than the white matter in T1 images;
(2) the isointense stage (6—12 months), in which the signal intensity of the white matter is
increasing during the development due to the myelination and maturation process; in this
stage, the gray matter has the lowest signal differentiation with the white matter in both T1
and T2 images; (3) the early adult-like stage (>12 months), where the gray matter intensity
is much lower than that of the white matter in T1 images, similar to the pattern of tissue
contrast in the adult MR images. Note that T2 images have the reversed tissue contrast
patterns, in contrast to T1 images. Also, the appearance of exact isointense contrast varies
across different brain regions due to the nonlinear brain development (Paus et al., 2001). The
middle column of Fig. 1 shows examples of T1 and T2 images scanned at around 6 months
of age. It can be observed that the intensities of voxels in gray matter and white matter are in
the similar range (especially in the cortical regions), resulting in the lowest image contrast in
the first year and hence the significant difficulties for tissue segmentation.

As briefed in Table 1, although many methods have been proposed for infant brain MR
image segmentation, most of them focused either on segmentation of the infant brain images
in the infantile stage (< 5 months) or early adult-like stage (>12 months) by using a single
T1 or T2 image or the combination of T1 and T2 images (Cardoso et al., 2013; Gui et al.,
2012; Kim et al., 2013; Leroy et al., 2011; Nishida et al., 2006; Shi et al., 2010a; Song et al.,
2007; Wang et al., 2011; Wang et al., 2013c; Weisenfeld et al., 2006a, b; Weisenfeld and
Warfield, 2009; Xue et al., 2007), where images have the relatively distinguishable contrast
between white matter and gray matter. However, most of the existing methods (Cardoso et
al., 2013; Prastawa et al., 2005; Shi et al., 2010a; Wang et al., 2011; Xue et al., 2007)
typically assume that each tissue class throughout the entire image can be modeled by a
single Gaussian distribution or the mixture of Gaussian distributions. This assumption is
valid for the images acquired from the infantile stage, however, in the isointenste stage, the
distributions of WM and GM are largely overlapped due to the ongoing maturation and
myelination process, as shown in Fig. 1. Therefore, these methods cannot achieve
reasonable segmentation on the isointense infant images. Thus, it is necessary to use more
image modalities, such as fractional anisotropy (FA) images (Liu et al., 2007; Wang et al.,
2012b; Yap et al., 2011), and a general framework for effectively utilizing and fusing multi-
modality information is highly desired.

In (Shi et al., 2011b), infant brain atlases from neonatal to 1- and 2-years old were proposed
for guiding the tissue segmentation. A dynamic 4D probabilistic atlas of the developing
brain has been proposed in (Kuklisova-Murgasova et al., 2011). However, this 4D atlas only
cover the developing brain between 29 and 44 weeks gestational age. Few studies have
addressed the difficulties in segmentation of the isointense infant images. Shi et al. (Shi et
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al., 2010c) first proposed a 4D joint registration and segmentation framework for the
segmentation of infant MR images in the first year of life. In this method, longitudinal
images in both infantile and early adult-like stages were used to guide the segmentation of
images in the isointense stage. A similar strategy was later adapted in (Wang et al., 2012b).
The major limitation of these methods is that they fully depend on the availability of
longitudinal datasets (Kim et al., 2013). Due to the fact that the majority of infant images
have no longitudinal follow-up, a standalone method working for the cross-sectional single-
time-point image is highly desired.

To segment the single-time-point isointense infant brain images, previous pure appearance-
driven segmentation methods are likely to generate topological or anatomical defects in
brain segmentation (e.g., holes and handles in the white matter surface). Although the
defects, such as holes, may be corrected by adding the surface area constraints as in the level
set based methods (Wang et al., 2011; Wang et al., 2013c), these methods intend to penalize
the high curvatures, which may result in under-segmentation in some sharp cortical regions.
On the other hand, there are many topological correction methods (Bazin and Pham, 2005;
Fischl et al., 2001; Han et al., 2004; Segonne et al., 2007; Shattuck and Leahy, 2001), which
can generate accurate topological corrections on cortical surfaces. Although these methods
didn’t tend to smooth out the high curvature areas, their topological correction results are not
always the desired ones (Segonne et al., 2007), e.g., the sharp peaks (usually due to noise)
are topologically correct, but are anatomically incorrect (Yotter et al., 2011). To overcome
these limitations, it is necessary to incorporate brain anatomical information into the
segmentation procedure.

In addition, most of the previous methods perform segmentation in a voxel-by-voxel
fashion. Based on the fact that image patches could capture more anatomical information
than a single voxel, recently, patch-based methods (Bai et al., 2013; Coupé et al., 20123;
Coupé et al., 2012b; Coupé et al., 2011; Eskildsen et al., 2012; Rousseau et al., 2011) have
been proposed for label fusion and segmentation. Their main idea is to allow for integration
of multiple candidates (usually in the neighborhood) from each template based on non-local
means (Buades et al., 2005). Different from multi-atlas based label fusion algorithms
(Asman and Landman, 2013; Langerak et al., 2010; Sabuncu et al., 2010; Wang et al.,
2012a; Warfield et al., 2004), which require accurate non-rigid image registration, these
patch-based methods are less dependent on the accuracy of registration. This technique has
been successfully validated on brain labeling (Rousseau et al., 2011) and hippocampus
segmentation (Coupé et al., 2011) with promising results.

Motivated by the fact that many classes of signals, such as audio and images, have naturally
sparse representations with respect to each other, sparse representation has been widely and
successfully used in many fields (Gao et al., 2012; Liao et al., 2013; Tong et al., 2012;
Wright et al., 2009; Zhang et al., 2011b), such as image denoising (Elad and Aharon, 2006;
Mairal et al., 2008b), image in-painting (Fadili et al., 2009), image recognition (Mairal et al.,
2008a; Winn et al., 2005), and image super-resolution (Yang et al., 2010), achieving the
state-of-the-art performance. In this paper, we propose a general framework that adopts
sparse representation to fuse the multi-modality image information and incorporate the
anatomical constraints for brain segmentation. Specifically, we first construct a library
consisting of a set of multi-modality images from the training subjects and their
corresponding ground-truth segmentations. Multi-modality library consists of T1, T2 and
fractional anisotropy (FA) images (the third column of Fig. 2), which provide rich
information of major WM bundles (Liu et al., 2007), is used to deal with the problem of
insufficient tissue contrast (Paus et al., 2001). To segment a testing brain image, each patch
is sparsely represented by the training library patches. The initial segmentation is thus
obtained based on the derived sparse coefficients. To enforce the anatomical correctness of
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the segmentation, the initial segmentation will be refined with further consideration of the
patch similarities between the segmented testing image and the manual segmentations
(ground-truth) in the library images. By iterative refinement, we can obtain anatomically
more reasonable segmentation. In summary, the major contributions of our work include:

1. We apply the patch-based sparse representation into the segmentation of the
isointense infant MR image in a multi-modality fashion.

2. We integrate the anatomical constraint into the sparse representation to further
improve the segmentation.

Note that partial results in this paper were reported in our recent conference paper (Wang et
al., 2013a). The remainder of this paper is organized as follows. The proposed method is
introduced in Section 2. The experimental results are then presented in Section 3, followed
by the discussion and conclusion in Section 4.

2.1 Subjects and data acquisition

A total of 22 healthy infant subjects (12 males/10 females) were recruited, and scanned at
27+0.9 postnatal weeks. MR images were acquired on a Siemens head-only 3T scanner with
a circular polarized head coil. Infants were scanned unsedated while asleep, fitted with ear
protection and with their heads secured in a vacuum-fixation device. T1-weighted images
were acquired with 144 sagittal slices using parameters: TR/TE=1900/4.38ms, flip angle=7°,
resolution=1x1x1 mm3. T2-weighted images were obtained with 64 axial slices: TR/
TE=7380/119ms, flip angle=150° and resolution=1.25x1.25x1.95 mm3. Diffusion weighted
images consist of 60 axial slices: TR/TE=7680/82ms, resolution=2x2x2 mm3, 42 non-
collinear diffusion gradients, and b=1000s/mm2. Seven non-diffusion-weighted reference
scans were also acquired. The diffusion tensor images were reconstructed and the respective
FA images were computed. Data with motion artifacts was discarded and a rescan was made
when possible. This study has been approved by institute IRB and the written informed
consent forms were obtained from parents.

2.2 Image preprocessing and library construction

T2 and FA images were linearly aligned onto their corresponding T1 images and further
resampled into a 1x1x1 mm3 resolution. Specifically, the T2 image of each subject was first
rigidly aligned to the T1 image, and then the FA image was rigidly aligned to the warped T2
image. The idea is that, since those multi-modality images are from the same subject, they
share the same brain anatomy, and thus allowed to be accurately aligned with rigid
registration. Standard preprocessing steps were performed before segmentation, including
skull stripping (Shi et al., 2012), intensity inhomogeneity correction (Sled et al., 1998), and
removal of the cerebellum and brain stem by using in-house tools. Ideally, one would use
MR images with manual segmentations to create the library, which, however, is heavily
time-consuming. To generate the ground-truth segmentations, we took a practical approach
by first generating an initial reasonable segmentation by using a publicly available software
iBEAT (Dai et al., 2013)(http://www.nitrc.org/projects/ibeat/). Then, manual editing was
performed by an experienced rater to correct segmentation errors and geometric defects by
using ITK-SNAP (Yushkevich et al., 2006) (www.itksnap.org), with the help of surface
rendering. For example, if there is a hole/handle in the surface, the rater will first localize the
related slices, and then check the segmentation on the T1, T2 and FA images to finally
determine whether to fill the hole or cut the handle. The detailed instruction of manual
segmentation can be found http://www.itksnap.org/. It takes around 3 hours to complete the
manual editing for each subject. The intra-rater reliability (4 repeats) for WM, GM and CSF
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is 0.934, 0.925, and 0.920, respectively, in terms of Dice ratio. Fig. 2 shows three randomly
selected subjects, along with their corresponding manual segmentations.

initial segmentation by sparse representation

To segment a testing image | = {I11, IT2, Iea}, N template images sets I'= {IZTI L I;A}
and their corresponding segmentation maps Li(i = 1, ..., N) are first nonlinearly aligned onto
the space of the testing image using Diffeomorphic Demons (Vercauteren et al., 2009),
based on T1 images. There are Then, for each voxel x in each modality image of the testing
image I, its intensity patch (taken from w x w x w neighborhood) can be represented as a w
x w x w dimensional column vector. By taking the T1 image as an example, the T1 intensity
patch can be denoted as my1(X). Furthermore, its patch dictionary can be adaptively built
from all N aligned templates as follows. First, let #*(x) be the neighborhood of voxel x in the

i-th template image I;l, with the neighborhood size as wy x Wy X Wy, Then, for each voxel y
€ ~'(x), we can obtain its corresponding patch from the i-th template, i.e., aw x w x w

dimensional column vector m_, (y). By gathering all these patches from wy x Wy, X W,
neighborhoods of all N aligned templates, we can build a dictionary matrix D1, where each
patch is represented by a column vector and normalized to have the unit £2 norm (Cheng et
al., 2009; Wright et al., 2010). In the same manner, we can also extract T2 intensity patch
m2(X) and FA intensity patch mga(X) from the testing image | and further build the
respective dictionary matrices D, and Dga from the aligned templates. Let M(X) = [m11(X);
mr(X); mea(X)] be the testing multi-modality patch and

M'(y)= [mlT] (y);m., (y);mim(y)} be the i—th template multi-modality patch in the
dictionary. To represent the patch M(x) by the dictionaries D(z) & [D,,;D,,;D,.,] its

T1? T2?
coefficients vector a could be estimated by many coding schemes, such as sparse coding
(Wright et al., 2009; Yang et al., 2009) and locality-constrained linear coding (Wang et al.,
2010). Here, we employ sparse coding scheme (Wright et al., 2009; Yang et al., 2009),
which is robust to the noise and outlier, to estimate the coefficient vector a by minimizing a

non-negative Elastic-Net problem (Zou and Hastie, 2005),

min Y M (z)=D(@)e||3+A]|exl| +Ao a3

o @)
o Z 0 Intensity patch constraint

In the above Elastic-Net problem, the first term is the data fitting term based on the intensity
patch similarity, and the second term is the #1 regularization term which is used to enforce
the sparsity constraint on the reconstruction coefficients a, and the last term is the ¢2
smoothness term to enforce the coefficients to be similar for the similar patches. Eg. (1) is a
convex combination of ¢1 lasso (Tibshirani, 1996) and £2 ridge penalty, which encourages a
grouping effect while keeping a similar sparsity of representation (Zou and Hastie, 2005). In
our implementation, we use the LARS algorithm (Efron et al., 2004), which was
implemented in the SPAMS toolbox (http://spams-devel.gforge.inria.fr), to solve the Elastic-
Net problem. Each element of the sparse coefficient vector q, i.e., @\(y), reflects the
similarity between the target patch M(x) and each patch Mi(y) in the patch dictionary. Based
on the assumption that similar patches should share similar labels, we use the sparse
coefficients a to estimate the probability of the voxel x belonging to the j-th tissue, j €
{WM, GM, CSF}, i.e.,
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Pi@)=Y Y. o' W5 (L'W)

i yeNi(z)

where Li(y) is the segmentation label (WM, GM, or CSF) for voxel y in the i-th template
image, and ¢j(L'(y)) is defined as

5 (Li(y)) ={ (i LL((yy))Z ®)

Finally, Pj(x) is normalized to ensure 5 Pj(x) = 1. The third row of Fig. 3 shows an example
of the estimated probability maps of a testing image, with the original T1, T2 and FA images
shown in the first row. To convert from the soft probability map to the hard segmentation,
the label of the voxel x is determined using the maximum a posteriori (MAP) rule.

To demonstrate the advantage of enforcing the sparsity, we set 11 =0, which means that the
all reference patches in the dictionary could contribute to the tissue probability estimation,
regardless of their similarity to the testing patch. Consequently, the reference patches from
the unrelated tissues may have contribution and thus mislead the estimation of tissue
probability and finally the segmentation. In contrast, with the sparse constraint, most
coefficients are set to be 0, with only a small number of reference patches (which share high
similarity with the testing patch) having non-zero coefficients. In our experiments, we set
the A1 =0.2 and selected typically 30 reference patches. For qualitative examination, we
show the probability maps without the sparsity in the second row of Fig. 3. It can be clearly
seen that, without the sparsity, the probability maps are fuzzy and unclear, especially for the
WM/GM boundaries, as indicated by the green boxes. In contrast, the probability maps
derived with the use of the sparse constraint are much sharper and accurate (see the third
row of Fig. 3) and they can be considered as a subject-specific atlas. The quantitative
comparisons between the results obtained without and with sparse constraint are provided in
the third row of Fig. 5.

2.4 Imposing brain anatomical constraints into the segmentation

The tissue probability maps derived in the Section 2.3 are purely based on the intensity
patch similarity using the sparse representation technique. However, due to the low tissue
contrast, the reliability of the patch similarity could be limited, which may result in
considerable artificial anatomical errors in the tissue probability maps. A typical example is
shown in Fig. 4(a), where we can observe many undesired holes (green rectangles), incorrect
connections (red rectangles), and inaccurate segmentations (blue rectangles).

Motivated by the success of sparse representation in image denoising (Elad and Aharon,
2006; Mairal et al., 2008b), we adopt sparse representation to incorporate the anatomical
constraint into the segmentation. In the image denoising, given a noisy patch, sparse
representation aims to select a small set of “clean” patches in the dictionary to reconstruct it.
The reconstructed patch is used as the denoised patch. Following the similar idea, we can
use sparse representation to correct the anatomical errors introduced in the segmentation. As
the manual ground-truth segmentations of template images in the library are almost free of
the anatomical errors after manual edition, we could expect that the incorporation of these
segmentation results will largely reduce the potential anatomical errors. Specifically, we can
extract the patch mgeg(X) from the tentative segmentation result of the testing image and also
construct the segmentation patch dictionary Deeg(x) from all the segmented images in the
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library. Based on Eq. (1), we further incorporate the anatomical constraint to derive the
refined tissue probability maps:

min 30 |34(2)-D()al+{vlma(o)-Deg(@ols}lal el
(8%

Intensity patch constraint ica, i
« 2 0 y P Anatomical constraint

where v is the weight parameter for controlling the contribution of the anatomical constraint
term. In the same way, we can use Eq. (2) to estimate new tissue probabilities, which will be
iteratively refined by using Eg. (4) until convergence. An example of the probabilities
derived with the anatomical constraint is shown in the fourth row of Fig. 3. Compared with
the probability maps estimated without the anatomical constraint (the third row of Fig. 3),
the new probability maps are more accurate since the discrete labels in the segmentation
results can be less ambiguous than the intensity values in differentiating tissue types (Bai et
al., 2013). Fig. 4(b) shows the WM surface with the anatomical constraint. Compared with
the result obtained without the anatomical constraint (Fig. 4(a)), many geometric errors have
been corrected.

3 Experimental results

In this section, the proposed method will be extensively evaluated on 22 infant subjects
using leave-one-out cross-validation, and also on 10 additional testing subjects. Results of
the proposed method are compared with the manual ground-truth segmentations, as well as
other state-of-the-art methods.

3.1 Evaluation Metrics

In the following, we mainly employ Dice ratio to evaluate the segmentation accuracy, which
is defined as:

DR=2|AN B|/(|A[+|B]) @)

where A and B are two segmentation results of the same image. We also evaluate the
accuracy by measuring the average surface distance error (SDE), which is defined as:

SDE(A, B):% (L dist(a,B)—}—L dist (b, A)> ®)

n, a€surf(A) Ny bEsurf(B)

where surf(A) is the surface of segmentation A, np is the total number of surface points in
surf(A), and dist(a, B) is the nearest Euclidean distance from a surface point a to the surface
B.

3.2 Impact of the parameters

Values for the parameters in our proposed method were determined via cross-validation on
all training templates, according to the parameter settings described in (Bach et al., 2012).
During parameter optimization, when optimizing a certain parameter, the other parameters
were set to their own fixed values. We first study the impact of patch size on segmentation
accuracy. Both the best Dice ratios and average SDE were obtained when using a patch size
of 5x5x5, as shown in the first row of Fig. 5. The optimal patch size is related to the
complexity of the anatomical structure (Coupé et al., 2011; Tong et al., 2013). On the other
hand, the optimal search neighborhood size is related with the anatomical variability after
registration (Coupé et al., 2011; Tong et al., 2013). Similarly, the impact of the sparse
parameter A4 is shown in the third row of Fig. 5. It can be observed that, if there is no sparse
constraint (4, = 0), which means that all reference patches in the dictionary could contribute
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to the estimation of tissue probability, regardless of their similarity to the testing patch, the
Dice ratios are quite low and the surface distance errors are also very large. When 4; > 0, the
accuracy is greatly improved, with the best accuracy obtained with A; = 0.2. All these
demonstrates the importance of using the sparsity in tissue segmentation. On the other hand,
there is no significant difference among 4; = [0.01 0.1 0.2 0.5], which indicates that our
proposed method is robust to the value of A;. Based on (Bach et al., 2012), since we want to
achieve the sparsity on selection of reference patches, we often set 1, as a small positive
value. In our experiments, we test A, =[0.001, 0.01, 0.1], and obtained the optimal one as
0.01. Note that the above range for each parameter was empirically chosen in our
experiments, which could lead to local minimum results.

3.3 Number of the templates

The last important parameter of the proposed method is the number of templates. Fig. 6
shows the Dice ratios as a function of different number of templates. As expected,
increasing the number of templates generally improves the segmentation accuracy, as the
average Dice ratio increases from 0.85 (N =1) to 0.89 (N = 20) for WM, 0.82 (N = 1) t0 0.87
(N = 20) for GM, and 0.75 (N =1) to 0.86 (N = 20) for CSF. Increasing the number of
templates seems to make the segmentations more consistent as reflected by the reduced
standard deviation from 0.02 (N = 1) to 0.008 (N = 20) for WM, 0.02 (N = 1) to 0.006 (N =
20) for GM, and 0.03 (N = 1) to 0.008 (N = 19) for CSF. Though the experiment shows an
increase of accuracy with the increasing number of templates, the segmentation performance
begins to converge after N = 20. Therefore, in this paper, we choose N=20, which is enough
to generate reasonable and accurate results.

3.4 Leave-one-out cross-validation

To evaluate the performance of the proposed method, we adopted the leave-one-out cross-
validation. In each cross-validation step, 21 template images were used as priors and the
remaining template image was used as testing subject to be segmented by the proposed
method. The optimal parameters are set according to the parameter settings described in
(Bach et al., 2012) for each cross-validation. Note that the ground-truth segmentation of test
image is completely excluded from the segmentation library. This process was repeated until
each image was taken as the testing image once.

Fig. 7 demonstrates the segmentation results of different methods for one typical subject.
The original T1, T2 and FA images and the ground-truth segmentation are shown in the first
row of Fig. 7. We first compare the proposed method with the coupled level sets (CLS)
method (Wang et al., 2011), with the results shown in the second row. The CLS utilized T1,
T2 and FA independently and estimated the tissue probabilities in a voxel-wise fashion,
which ignores the joint power of multi-modality information and also the structural
information in the neighborhood. We then make comparison with the majority voting (MV).
Its performance is highly dependent on the accuracy of the registration, which is
unfortunately difficult for the isointense infant images with the extremely low tissue
contrast. In addition, MV uses all the warped atlases equally, which could also affect the
segmentation results. We further make comparison with the conventional patch-based (CPB)
method (Coupé et al., 2011). Note that, to make a fair comparison, we perform a similar
cross-validation as in Section 3.2 to derive the optimal parameters for the CPB, and finally
obtained the patch size of 5x5x5 and the neighborhood size of 5x5x5. The CPB utilizes
nonlocal patch-based label fusion for segmentation of adult hippocampus and ventricle and
has achieved promising results. However, since the CPB uses a simple intensity difference
based similarity measure (Sum of the Squared Difference, SSD), this method is sensitive to
the variance of tissue contrast in the MRI data (Wang et al., 2014). On the other hand, in the
isointense infant images, due to the varied myelination processes in different brain regions,
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T1 and T2 images suffer from the large variance of WM intensities in the whole brain.
Similarly, even FA provides a good WM/GM contrast, however, FA images are still
suffering from the noise, inhomogeneity, and large variation of FA values in the same WM,
e.g., having quite low FA values in the fiber crossing and/or branching regions (Alexander et
al., 2001; Kumazawa et al., 2010). To better compare the results by different methods, the
label differences compared with the ground-truth segmentation are also presented, which
qualitatively demonstrates the advantage of the proposed method. We then quantitatively
evaluate the performance of different methods by employing Dice ratios, as shown in Fig. 8.
Dice ratios are 0.807+0.01 (WM) and 0.842+0.01 (GM) by the coupled level sets method
(Wang et al., 2011), and are 0.858+ 0.01 (WM) and 0.825+0.006 (GM) by the conventional
patch-based (CPB) method (Coupé et al., 2011), respectively. Without the anatomical
constraint, our method achieves the average Dice ratios as 0.872+0.008 (WM) and
0.860+0.006 (GM). With the anatomical constraint, the proposed method achieves the
highest Dice ratios as 0.889+0.008 (WM) and 0.870+0.006 (GM), respectively. Besides the
Dice ratios, we also use average surface distance error for gauging segmentation error. The
average surface distance errors from the generated WM/GM (GM/CSF) surfaces and the
ground-truth surfaces are plotted in Fig. 9, which further demonstrates the accuracy of the
proposed method. It is worth noting that any combination of these different modalities
generally produce more accurate results than any single modality in terms of both Dice
ratios and surface distance errors, which proves that the multi-modality information is useful
for guiding tissue segmentation (Anbeek et al., 2008; He and Parikh, 2013; Prastawa et al.,
2005; Weisenfeld and Warfield, 2009).

3.5 Importance of the anatomical constraint

To further demonstrate the benefit of incorporating the anatomical constraint into the
proposed method, we take the WM/GM surfaces as an example to visually compare the
results by the proposed method without and with the anatomical constraint in Fig. 10. Fig.
10(a) shows the result without the anatomical constraint. It can be observed that there are
many anatomical defects such as handle in the red rectangle, unsmooth boundary in the blue
rectangle, and hole in the green rectangle. The intermediate and final results with the use of
the anatomical constraint are also shown in Fig. 10(b) and (c). It can be observed the above-
mentioned anatomical defects are gradually corrected. Fig. 11 shows the corresponding GM/
CSF surface from the initialization to the final result. By referring to the ground-truth
segmentation shown in Fig. 10(d) and Fig. 11(d), the result with the anatomical constraint is
much more accurate and reasonable than the result without the anatomical constraint, which
can also be demonstrated by the quantitative evaluation results with the Dice ratios and
surface distance errors as shown in Fig. 8 and Fig. 9, respectively.

3.6 Results on 10 additional subjects (with ground truth)

Besides using the leave-one-out cross-validation, we further validated our proposed method
on 10 additional subjects, which were not included in the library. The manual segmentations
by experts are again referred to as our ground truth. Here we randomly show the
segmentation results on three subjects in Fig. 12. As can be observed, the results by the
proposed method demonstrate better segmentation accuracy than those by the coupled level
sets (CLS) method (Wang et al., 2011), majority voting and the conventional patch-based
(CPB) method (Coupé et al., 2011), by referring to the original intensity images. The surface
distance errors on a typical subject are shown in Fig. 13. The upper row of Fig. 13 shows the
surface distances from the automatically surfaces obtained by different methods to the
ground-truth surface. Since the surface distance measure is not symmetrical, the surface
distances from the ground-truth surface to the automatically obtained surfaces are also
shown in the lower row of the figure. It can be seen that our proposed method agrees most
with the ground truth. The Dice ratios and average surface distance errors on 10 subjects by
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different methods are shown in the Fig. 14, which again demonstrates the advantage of our
proposed method.

3.7 Computational time

We implemented the proposed method in MATLAB 7.12.0 using C/MEX code. The
SPAMS toolbox (http://spams-devel.gforge.inria.fr) was used for the sparse coding. The
average total computational time is around 2 hours for the segmentation of a subject using 3
modality images, each with the 256x256x198 voxel size and a spatial resolution of 1x1x1
mm3 (after alignment) on our Linux server with 8 CPUs and 16G memory.

4 Discussion and conclusion

In this paper, we have proposed a novel patch-based method for isointense infant brain MR
image segmentation by utilizing the sparse multi-modality information. The segmentation is
initially obtained based on the intensity patch similarity and then further iteratively refined
with the anatomical constraint. The proposed method has been extensively evaluated on 22
training infant subjects using leave-one-out cross-validation, and also on 10 additional
testing subjects, showing promising results compared with the state-of-the-art methods. It is
worth noting that our framework can also be directly applied to the segmentation of images
in infantile and adult-like stages, as shown in Fig. 15. Fig. 15(a) and (b) show exampler
images in infantile stage and adult-like stage, respectively. With T2 or T1 -weighted image
as an input, the proposed method has already produced reasonable segmentation results. If
multi-modality images are available, it is expected to obtain more accurate results and will
result in more accurate measurements of brain development (Nie et al., 2012; Zhang et al.,
2011a).

In this paper, we have compared the proposed method with the coupled level sets (CLS)
method (Wang et al., 2011), the conventional patch-based (CPB) method(Coupé et al.,
2011), and majority voting. The proposed method achieves best accuracy compared with all
other methods. The success of our method is mainly from the following aspects. First, our
method works on image patches from T1, T2 and FA jointly, which can capture more
information than using single-voxel information as in the CLS (Wang et al., 2011). Second,
all the patches are normalized to have the unit £2-norm to alleviate the intensity scale
problem (Cheng et al., 2009; Wright et al., 2010). Third, the testing patch is well represented
by the over-complete patch dictionary, with sparse constraint. The derived sparse
coefficients are then directly utilized to (1) measure the patch similarity, instead of using the
patch intensity difference as used in the CPB (Coupé et al., 2011), (2) estimate a subject-
specific atlas, instead of a population-based atlas as used in CLS (Wang et al., 2011), (3)
measure the contribution of each atlas in a spatially varying fashion, instead of equally
weighting in the MV.

Current infant segmentation methods using T1/T2 MRI will generally over-estimate the GM
in their segmentations, because the parts of WM near to the GM are mostly unmyelinated
and thus can be easily mis-segmented into GM. In this work, we remedy this problem by
employing FA to alleviate the over-estimation problem. Specially, FA images provide rich
information of major fiber bundles, especially for the cortical regions where GM and WM
are hardly distinguishable in the T1/T2 images. We have employed the method proposed in
(Lietal., 2012) to calculate the cortical thickness. We find that the average cortical
thickness is 2.46+0.06mm by the manual segmentations and 2.51+0.06mm by the proposed
method. The difference is statistically non-significant (p-value > 0.09).

In our previous work (Wang et al., 2012b), we proposed a 4D multi-modality method to
segment isointense images by utilizing the additional knowledge from images of both
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infantile and early adult-like stages. The Dice ratios for WM and GM on isointense infant
images were 0.92+0.015 and 0.92+0.01, respectively. However, this method requires the
availability of longitudinal scans, which limits its usage. Given that most infant subjects do
not have longitudinal scans, the proposed method is standalone and also presents reasonable
results with Dice ratios as 0.889+0.008 (WM) and 0.870+0.006 (GM). In our recent work
(Wang et al., 2014; Wang et al., 2013b), we proposed a patch-driven level sets method for
segmentation of neonatal brain images by taking advantage of sparse representation
techniques. The main differences between our proposed method and this previous method
can be summarized as follows. (1) The previous work focuses only on the segmentation of
the neonatal brain images (< 1 month), while our proposed method focuses on the
segmentation of isointense infant images, which is much more difficult due to its extremely
low tissue contrast. (2) Only a single T2 modality was utilized in the previous work, while
multi-modality T1, T2 and FA images are employed here for more accurate segmentation.
(3) The segmentations by the previous work without considering the anatomical constraint
suffer from anatomical errors, which are largely corrected by our proposed method. Our
strategy is simple and effective by iteratively comparing the tentatively segmented image
with the ground-truth segmentation images in the library. Although the proposed method
cannot guarantee the topological correctness of the final WM/GM (GM/CSF) surface, the
topological errors are largely reduced as reflected by experimental results.

Although our proposed method can produce more accurate results on the isointense infant
images, it still has some limitations. (1) Our proposed method requires a number of
templates, along with their corresponding manual segmentation results. However, it is not a
trivial work to achieve manual segmentations. In this paper, manual segmentations were
performed based upon the automatic segmentations by the iBEAT (Dai et al., 2013) (http://
www.nitrc.org/projects/ibeat/), and thus the ground truth could be systematically biased by
the iBEAT results. (2) In our proposed method, the contributions of different modalities are
equal. In the future, we will further investigate how to determine different weights to
different modalities in different brain regions. (3) Our current library consists of only
healthy subjects, which may limit the performance of our method on the pathological
subjects. This particular limitation could be partially overcome by employing more other
information such as mean diffusivity. All the above-mentioned limitations will be
investigated in our future work.

In our method, we nonlinearly aligned all the template images onto the space of the testing
image using Diffeomorphic Demons (Vercauteren et al., 2009), based on T1 images. In fact,
there are many registration methods (Jia et al., 2010; Shen et al., 1999; Tang et al., 2009;
Wu et al., 2013; Wu et al., 2006; Xue et al., 2006a; Xue et al., 2006b; Yang et al., 2008;
Zacharaki et al., 2008) we can employ. In our future work, we will also investigate the effect
of different registration methods.
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(a) Infantile stage (b) Isointense stage  (c) Early adult-like stage
(< 5 months) (6-12 months) (>12 months)

Fig. 1.

Illustration of three distinct stages in infant brain development, with each stage having quite
different WM/GM contrast patterns in MR images. The corresponding tissue intensity
distributions from T2-weighted MR images are shown in the bottom row, which indicates
high overlap of WM and GM intensities in the isointenste stage.
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Templatel

Template2

Template3

i i T2 FA Manual

Fig. 2.
Three randomly selected subjects, along with their corresponding manual segmentation
results.
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Original images

Probability maps
without sparsity

Probability maps with
sparsity but without
anatomical constraint

Probability maps
with sparsity and
anatomical constraint

Fig. 3.
Tissue probability maps estimated by the proposed method without and with sparse
constraint, without and with the anatomical constraint.
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(a) Without anatomical constraint  (b) With anatomical constraint (c) Ground truth

Fig. 4.

Comparison of WM surfaces reconstructed by the proposed method (a) without and (b) with
the anatomical constraint, with the manual ground-truth segmentation in (c). The zoom-up
view of each rectangular region is also provided.

Neuroimage. Author manuscript; available in PMC 2015 April 01.



Page 22

Wang et al.

+
9'9'9

777

The patch size

P

H

H

H

H

H
—
5'55,

2

e

(ww u1) 3SI/ND PUB WO/WM 20} 30S Jo Wng

H

H

H

H

i

H
—
5'5'5,

o]

9'9'9

—

H

:

H

i

i

H

i

H

i

i

H

H

H
—_
T

The patch size

- TH

3373

2
&

3 8

o~
450 PUR ‘D "WM 10} Soiies 821 jo wing

2.5

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Neuroimage. Author manuscript; available in PMC 2015 April 01.



Page 23

Wang et al.

_
H
.
i
.
|
|
.
.
H
H
i
|
H
.
.
H
|
|
|
H
—_
999
-
P
|
.
05

-t
02

T
i
H
H
H
11
H
i
H
i
H
—r
77'7
The size of neighborhood
—y—
H
H
H
H
—
0.1
The weight for L1 norm
R
H
H
H
H
=t
0.01
The weight for L2 norm

-

f

H

H

H

H

H

H
- I
5'5"5

*

H

H
bics
0.01

M
H
H
H
H
H
H
H
i
—_—
"
0.001

——
H
H
H
H
i
i
H
H
—_
333
+*
ﬁ.
—_
0

T § & ¥ ¢ . z : R R N N
(ww up) 4S/IND PUB WO/IIM 40} 3AS Jo Wng (W ut) 3SI/WD PUB WO/WM 40} 30S Jo wng (ww 1) 4S/ND PUB IWO/IM 10} 3AS JO WnS

T T T T T T T T T T T T T T

-

© 0 - R ~

Influence of each parameter: patch size (15t row), neighborhood size (2" row), weight for

0

S

ES]

S5

£

£

o

N

[

rrd | = 1 1¢ .lH_HT 18 @
- -

N — = =

el

-

HH E g

B s M) I 1 18 2
H 3 B o

¢ HHH 2 | ! 5

B > (-] —_

I s I . i a%
o - -

- .TE._ {3 2

3 e

1k :

i foeedd [ s 118 - 2
i

X

(3]

<

+—

Fig. 5.

¢ 3 8 8 & 3 8 R
o~ ~ ~ ~ o~ o~ o~
45D PUB 'WD "WM 10} SOlje1 8310 Jo Wng

21
265F

2 2 8 2 3 3 28056 2
o~ o~ o~ o~ o~ o~ ~
450 PUB "WD 'WM 10} SOljEs 99iQ jo wng

255F

257

o~ o~ ~ o~ ~
4S0 PUR ‘WO ‘WM 10} SONEI 221() JO WNG

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Neuroimage. Author manuscript; available in PMC 2015 April 01.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Wang et al. Page 24

wm M CsF

———
goss /.z—/lr—’k—’** 20ss Wgues . s _
g os £ os £ os
075 075 075

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of templates Number of templates Number of templates

Fig. 6.

Dice ratio of segmentation vs. the number of templates. Experiment is performed by leave-
one-out cross-validation with a patch size 5x5x5 and a size of neighborhood 5x5x5, which
were optimized by Section 3.2.
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Original images
and manual
segmentation

Coupled level sets
(T1+T2+FA)

Majority voting :
(T14T2+4FA)  ©°

Conventional
Patch-based
(T1+T2+FA)

Sparsity
(T1+T2+FA)

Sparsity
(T1+T2+FA)
with anatomical
constraint

WM difference GM difference CSF difference Segmentation

Fig. 7.

Comparisons between the coupled level sets method (Wang et al., 2011), majority voting,
conventional patch-based method (Coupé et al., 2011) on T1+T2+FA images and the
proposed sparsity based method. In each label-difference map, the dark-red colors indicate
false negatives and the dark-blue colors indicate false positives. The last two rows show the
results by the proposed method without or with the anatomical constraint.
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WM

GM

CSF

0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
Dice ratio

B Coupled level sets (T1+T2+FA)
m Majority Voting (T1+T2+FA)
1 Conventional patch-based (T1+T2+FA)
W Sparsity (T1)
m Sparsity (T2)
W Sparsity (FA)
m Sparsity (T1+T2)
W Sparsity (T1+FA)
m Sparsity (T2+FA)
i Sparsity (T1+T2+FA)
Sparsity (T1+T2+FA) with anatomical constraint

Fig. 8.

Average Dice ratios of different methods on 22 subjects: the coupled level sets method
(Wang et al., 2011), majority voting, conventional patch-based method (Coupé et al., 2011),
the proposed sparse method with different combination of 3 modalities, and the proposed
sparse method without and with the anatomical constraint.
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surface

GM/CSF
surface

=

0 0.2 0.4 0.6 0.8 : 1.2 14 1.6
Surface distance error (mm)
M Coupled level sets (T1+T2+FA)
" Majority Voting (T1+T2+FA)
1= Conventional patch-based (T1+T2+FA)
M Sparsity (T1)
m Sparsity (T2)
M Sparsity (FA)
w Sparsity (T1+T2)
M Sparsity (T1+FA)
W Sparsity (T2+FA)
1 Sparsity (T1+T2+FA)
Sparsity (T1+T2+FA) with anatomical constraint

Fig. 9.
Average surface distances errors between the surfaces obtained by different methods and the
ground-truth surfaces on 22 subjects.
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(a) (b) (c) (d)

Without anatomical With anatomical With anatomical Ground truth
constraint constraint constraint
(Initial result) (Intermediate result) (Final result)
Fig. 10.

Comparisons of the proposed method without and with the anatomical constraint on the
WM/GM surface. The zooming view of each rectangular region is also provided. From (a) to
(c) shows the surface evolution from the initial stage to the final stage with the anatomical
constraint. (d) is the ground truth.
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(a) (b) (c) (d)

Without anatomical With anatomical With anatomical Ground truth
constraint constraint constraint
(Initial result) (Intermediate result) (Final result)

Fig. 11.

Comparisons of the proposed method without and with the anatomical constraint on the GM/
CSF surface. The zooming view of each rectangular region is also provided. From (a) to (c)
shows the surface evolution from the initial stage to the final stage with the anatomical
constraint. (d) is the ground truth.
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m T2 FA Coupled level sets Mv cPB Proposed Manual segmentation

Fig. 12.

Results of 4 different methods, i.e., the coupled level sets method (Wang et al., 2011),
majority voting, conventional patch-based method (Coupé et al., 2011), and the proposed
method, on 3 subjects.
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Surface distance errors
from automatic segmentations S22
to ground-truth i

Surface distance errors
from ground-truth
to automatic segmentations

Coupled level sets Mv CcPB Proposed

Fig. 13.

Page 31

The upper row shows the surface distances in mm from the surfaces obtained by the CLS
(Wang et al., 2011), majority voting, the conventional patch-based method (CPB) (Coupé et
al., 2011), and our proposed method to the ground-truth surface. The lower row shows the
ground-truth surface to the surfaces from 4 different methods. Color bar is shown in the

right-most.
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Fig. 14.

1.6

The Dice ratios and average surface distance errors by 4 different methods on 10 new testing

subjects.
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(a) Infantile stage (T2) (b) Adult-like stage (T1)

Fig. 15.
Results on images acquired in infantile stage (a) and adult-like stage (b).
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