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Abstract

Androgen receptor (AR) signaling is critical in the development and progression of prostate 

cancer, leading to intensive efforts to elucidate all potential points of inflection for therapeutic 

intervention. These efforts have revealed new mechanisms of resistance and raise the possibility 

that known mechanisms may become even more relevant in the context of effective AR 

suppression. These mechanisms include tumoral appropriation of alternative androgen sources, 

alterations in AR expression, AR mutations, truncated AR variants, alterations and cross-talk in 

recruitment of co-factors to AR binding sites in the genome, and AR-driven oncogenic gene 

fusions. New agents such as enzalutamide, EPI-001, AR-specific peptidomimetics, novel HSP90 

inhibitors and PARP inhibitors, as well as new approaches to co-targeting the AR pathway point 

to the potential for more complete and durable control of AR mediated growth.
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Background

Androgen Receptor Structure and Function in Prostate Cancer

Prostate cancer is the most common solid tumor and the second most common cause of 

cancer death in men in the United States, with over 29,000 men anticipated to die of 

metastatic disease in 2013(1). The androgen receptor (AR) is the critical driver of neoplastic 

prostate progression. Prostate cancer which has spread beyond the reach of definitive local 

therapy is treated with androgen deprivation therapy (ADT) to suppress AR activation.

The human AR, located on chromosome Xq11-12, is a nuclear receptor transcription factor 

structurally similar to other steroid hormone receptors. The AR is divided into distinct 

functional regions including the amino-terminal domain (NTD), DNA-binding domain 
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(DBD), hinge-region (HR), and the carboxy-terminal ligand-binding domain (LBD). (Figure 

1).

AR is activated by multiple steroid hormones, primarily testosterone (T) and 

dihydrotesterone (DHT) but also (at lower affinity) by adrenal androgens. Ligand binding 

releases receptor chaperones such as HSP90 and leads to nuclear translocation and receptor 

binding to androgen response elements (ARE). DNA binding induces formation of a 

signaling complex composed of coactivators and suppressors which then regulate cell type 

specific signaling

AR signaling normally promotes epithelial differentiation, but in prostate cancer AR 

modulates a broad array of genes regulating cell cycle, survival and proliferation driving 

tumor progression(2-5). Advanced prostate cancer is treated with androgen deprivation 

therapy (ADT), either as castration monotherapy or as combined therapy with AR 

antagonists. ADT induces nearly universal clinical responses; however, currently available 

agents do not achieve definitive tumor ablation and the majority of cancers become resistant 

to ADT. This phase of disease represents the lethal phenotype and carries significant 

morbidity and mortality within months to years. Despite anorchid testosterone blood levels, 

recapitulation of the intra-tumoral AR signaling pathway continues to drive progression and 

while previously considered ‘hormone refractory’, this phase is more appropriately 

considered “castration resistant” prostate cancer (CRPC).

Clinical-Translational Advances

Mechanisms of Resistance to AR Pathway Inhibition

Adaptive responses to ADT include tumoral appropriation of alternative androgen sources, 

alterations in AR expression, structural alterations in the AR including mutation and 

truncated AR variants, alterations in co-factor recruitment, and AR activation via cross-talk 

with signal transduction pathways(6). These ligand and AR-related alterations have been 

validated as important targets in CRPC based on the clinical efficacy of new agents designed 

to target them.

Tumor androgen levels in metastases from castrate patients exceed tissue androgen levels in 

primary prostate tumors from untreated patients(7). Potential non-gonadal sources of intra-

tumor androgens include circulating adrenal androgens, as well as de novo or intracrine 

synthesis of androgens within prostate cancer cells(7-9). Abiraterone is a selective 

irreversible inhibitor of the steroidogenic enzyme CYP17 and suppresses serum and tissue 

androgen levels more effectively than standard ADT(10-12). Abiraterone in chemotherapy 

naïve and post-docetaxel treated CRPC provided survival and quality of life benefits, 

leading to FDA approval in both settings(13, 14), and supporting the importance of 

inhibiting non-gonadal androgen sources in CRPC.

CRPC tumors also respond to ADT by upregulating AR expression. While 20-30% of CRPC 

tumors demonstrate amplification of the AR locus, other means include increased 

transcription rates or stabilization of mRNA or protein(15). Increased AR expression 

contributes to prostate cancer growth by compensating for castrate androgen levels, and in 
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PCa models was both necessary and sufficient to induce tumor growth(16). Novel AR 

antagonists have, accordingly, demonstrated encouraging clinical efficacy in CRPC. 

Enzalutamide (formerly MDV3100) is a competitive AR antagonist which binds AR with 

5-8 fold greater affinity than other anti-androgens, decreases AR nuclear translocation, and 

reduces chromatin occupancy at canonical ARE’s(17). Unlike bicalutamide, enzalutamide 

did not demonstrate agonist potential in vitro, and retained activity against AR mutations 

associated with bicalutamide resistance (W741C). In a phase III randomized (AFFIRM) 

study enzalutamide improved overall survival by 37% compared to placebo in men with 

CRPC previously treated with docetaxel(18), confirming that therapy directly targeting AR 

provided clinical benefit and confirming the relevance of this mechanism of resistance in 

CRPC(19). A phase III study of enzalutamide (PREVAIL, NCT01212991) in Docetaxel-

naive men has completed accrual with interim results pending.

Insights into mechanisms of resistance mediated by AR signaling led to rapid completion of 

phase III studies culminating with FDA approval of abiraterone and enzalutamide. These 

observations fundamentally changed the landscape of CRPC, credentialing the AR signaling 

axis as the most relevant target in CRPC, and emphasizing that novel approaches to co-

targeting AR and the networks on which it depends is an important focus moving forward.

AR Adaptations in CRPC – Novel Insights and Biology

AR Mutations—Under the pressure of androgen deprivation and AR antagonism the AR is 

susceptible to both somatic mutation and aberrant transcription. Specific mechanisms of 

resistance have been associated with mutations in specific regions of the receptor, including 

broadening of ligand specificity and conversion of antagonists to agonists (Figure 1)(20, 21). 

In vitro selection with enzalutamide has revealed a new mutation (F876L) which mediates 

conversion of enzalutamide to an AR agonist(22-24), while maintaining sensitivity to first 

generation agents (e.g. bicalutamide). The frequency of AR mutation in CRPC tumors 

treated with LHRH agonist and first generation AR antagonists is low (8-25%)(25). 

However the frequency of these mutations may become a more significant mechanism of 

resistance in context of more complete suppression of AR signaling.

AR Splice Variants—An alternative response to ADT is induction of AR variants (ARVs) 

with deletion of the LBD resulting in ligand-independent constitutive activity(26-31) (Figure 

1). ARVs homo- and heterodimerize with full length AR, promoting nuclear localization and 

increasing AR signaling in absence of ligand(30). Variants most commonly identified in 

CRPC tumors, ARV7 and ARV567, have both unique and overlapping transcriptional 

programs compared to wild-type AR(32). While ARVs lacking the LBD clearly drive 

ligand-independent growth when evaluated in prostate cancer models, the specific role of 

ARVs in prostate cancer development and progression is still under debate. That ARV7 is 

found in normal prostate epithelium and associates with a shorter time to recurrence after 

prostatectomy, suggests variants play a role in prostate cancer pathogenesis(28, 29). 

Transgenic expression of ARV567 in prostate epithelium leads to adenocarcinoma by 50 

weeks, also consistent with a potential role for ARVs in mediating prostate carcinogenesis 

(S. Plymate, in preparation). High levels of ARV7 and ARV567 were associated with 

shorter survival in patients with CRPC and bone metastases, consistent with a role in tumor 
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progression(26, 28, 29). Notably, a subgroup of bone metastases demonstrated nearly 

equivalent protein levels of full-length and truncated AR variants by western blot. Rapid 

induction of ARVs following castration may itself facilitate prostate tumor survival, or may 

serve a bridging role until induction of additional tumor growth mechanisms(33). 

Alternatively, castration may promote outgrowth of ligand-independent tumor cell clones in 

which ARV expression is mediated by genomic rearrangement of AR(34).

AR Nuclear Transport—AR Nuclear localization occurs via binding to the microtubule-

based dynein motor (via a binding site in exon 4 of the canonical NLS)(35). While the 

primary mechanism of taxane activity in CRPC is microtubule stabilization and disruption 

of cellular division, taxanes also inhibit microtubule-mediated nuclear AR transit, and 

cytoplasmic sequestration of AR in circulating tumor cells (CTC’s) correlated with clinical 

response to taxane therapy(36). Importantly, LBD-deleted ARVs may demonstrate 

differential sensitivity to taxane-mediated nuclear exclusion. While the nuclear transit of 

ARV567 (which retains exon 4) is taxane sensitive, the NLS of AR-V7 is located in the 

cryptic exon and is unique from that of full length AR(37). Accordingly, ARV7 is not 

susceptible to taxane-mediated nuclear exclusion(38). Thus, AR antagonists targeting the 

NTD may enhance taxane-efficacy in ARV expressing tumors. This may be of particular 

relevance in abiraterone and enzalutamide-resistant tumors, as pre-clinical data demonstrate 

that AR variants may contribute to resistance to these agents, and emerging clinical data 

suggests these patients have diminished sensitivity to docetaxel(39).

Nuclear Receptor Superfamily Participation in AR Signaling—Under selection 

pressure the AR can broaden ligand specificity to include ligands of the closely related 

steroid receptor superfamily (e.g. progesterone, cortisol). Conversely, members of the 

nuclear receptor super-family may be able to maintain AR signaling in androgen-deprived 

environments by inducing a cistrome (the genome-wide locations of a transcription factor’s 

binding-sites) which closely resembles the AR cistrome. The glucocorticoid receptor (GR), 

has been shown to share response elements with AR in multiple gene targets, and activates a 

transcriptional program which largely overlaps with that induced by AR(40). The pioneering 

transcription factor FOXA1 regulates differential binding of GR or AR to these targets, 

potentially functioning as a critical regulator of GR function in prostate cancer(40). 

Preliminary studies suggest GR may play an important role in resistance to second 

generation AR antagonists, as in vitro selection of enzalutamide-resistant cells revealed 

dramatically upregulated GR levels, and GR knockdown partially abrogated resistance to 

enzalutamide in these cells grown as xenografts(41). An analysis of AFFIRM, the phase III 

study of enzalutamide in post-docetaxel patients, suggested use of glucocorticoids was 

associated with inferior survival (independent of other known prognostic factors) and may 

be driving an adverse biology(42). A similar analysis in COU-301, a phase III study of 

abiraterone in the same patient population, suggested that glucocorticoids were used in 

patients with greater comorbidity and worse prognosis disease, potentially explaining the 

inferior outcomes(43). Whether GR biology drives progression in CRPC will require 

additional analysis of clinical samples and the impact of glucocorticoid use in patients with 

CRPC.
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AR-Driven ETS Fusion Genes—The most common mutation in prostate cancer is 

fusion of the AR regulated protease TMPRSS2 with members of ETS family of transcription 

factors(44). The most common AR-driven fusion, TMPRSS2:ERG, induces high level 

expression of ERG which associates endogenously with PARP1 (which ribosylates proteins 

involved in DNA mismatch repair)(45), and both ERG mediated transcriptional activity and 

cell invasion require PARP1 activity(46). Targeting of PARP in tumors deficient in other 

components of DNA repair such as BRCA1/BRCA2 induces significant clinical responses, a 

result of presumed “synthetic lethality” resulting from complete abrogation of DNA 

repair(47). Notably, ETS transcription factors including ERG drive DNA double-strand 

break formation, and concurrent inhibition of PARP in ERG overexpressing cells further 

increases DNA damage. This finding raises the potential that co-targeting the AR pathway 

with inhibitors of PARP in ERG fusion positive prostate tumors may reconstitute synthetic 

lethality, even in tumors which are BRCA1/2 mutation negative(46).

Clinical Implications

Clinically, resistance to first and second generation AR targeting agents is universally 

associated with reactivation of AR signaling, as manifested by a rising PSA. Induction of 

resistance to abiraterone and enzalutamide in preclinical models also remains largely 

dependent on AR signaling, either via induction of steroidogenesis, or upregulated 

expression of AR and truncated ARVs, and complete abrogation of AR function has yet to 

be realized(48-50). Leveraging previously unexplored biology, exploring rational 

combinations earlier in the course of disease, and improving efficacy of steroidogenesis 

inhibitors and AR antagonists all have potential to improve outcomes(51). One example of 

novel targeting includes inhibiting the AR NTD which has resisted drug targeting because of 

difficulty crystallizing its highly disordered structure. Targeting the NTD with novel agents 

carries the potential to address constitutively active AR (driven by mutation or splice 

variants affecting the LBD), as well as AR amplification. Screens of libraries for NTD 

binding agents identified EPI-001, a nonsteroidal compound which binds the NTD and 

inhibits the growth of castration sensitive cell lines(52, 53). Multiple analogs of EPI-001 

have been developed with greater anti-tumor efficacy in both sensitive and castration 

resistant xenograft models, including those driven by ARV expression(52).

Alternative approaches include concurrent targeting of AR and steroidogenesis production. 

Drawing from experience in treating infectious diseases such as HIV and tuberculosis, 

combining effective agents with complementary mechanisms of action may provide more 

durable disease control through rapid diminution of the cellular pool available to undergo 

mutation in response to treatment stress(54). This provides rationale for testing 

combinations of abiraterone and second generation AR antagonists such as enzalutamide 

and ARN-509 in multiple stages of prostate cancer, from metastatic CRPC to treatment 

naïve, high risk localized disease (Table 1). ARN-509 is structurally similar to 

enzalutamide, with similar mechanism of action and activity in vitro, but superior activity in 

xenograft experiments(55). Phase I/II studies of ARN-509 as a single agent have been 

recently completed with results pending.
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The same rationale underlies testing of single agents with activity against multiple sites of 

the AR signaling axis. Galeterone (TOK-001/VN-124-1) was identified through library 

screening for combination inhibitors of CYP17 and AR(56). In vitro it suppresses AR levels, 

providing a separate potential avenue for inhibiting ARV or mutant AR driven tumors(57, 

58). A phase I study in chemotherapy-naïve CRPC demonstrated 50% PSA reduction in 

22% of patients, with a 50% decline at the highest dose level. The maximally tolerated dose 

was not reached, with the most common side effects being fatigue, liver function test (LFT) 

abnormalities, pruritus, nausea, and diarrhea. A phase II study (ARMOR2) is currently 

ongoing in multiple cohorts of patients with CRPC (Table 1). Interestingly, abiraterone has 

also been found to exhibit weak antagonism against both wild type and various mutant 

androgen receptors, including those activated by exogenous glucocorticoids (T877A) and 

bicalutamide (W741C)(59), providing a potential rationale for dose escalation.

Another strategy is targeting AR-coregulator interactions. A recent study reports a 

peptidomimetic (small organic molecules without a peptide backbone) that mimics the 

LXXLL motif found in AR co-regulators. The compound, D2, disrupted binding of AR to 

proteins such as PELP1 (which plays a scaffolding role for assembly of the AR 

transcriptional complex), prevented androgen-induced nuclear translocation comparable to 

that obtained with enzalutamide, and inhibited growth of AR positive PCa cells in vitro and 

in vivo(60).

Agents targeting suppression of the AR protein, such as inhibitors of the AR chaperone 

HSP90, carry potential to completely abrogate AR signaling, independent of tissue ligand 

levels, AR mutation or ARV structure(61, 62). Next generation HSP90 inhibitors show 

activity in preclinical models and have significant advantages over agents such as 

geldenamycin, including improved potency and lack of requirement for activation by 

enzymes such as diaphorase, which are not highly expressed in prostate tissue(63). Phase I 

studies with newer agents show promising activity against heavily pretreated CPRC, and 

phase II studies as monotherapy and in combination with abiraterone in patients with 

abiraterone-refractory CRPC are ongoing (Table 1).

Conclusions

Perhaps the most significant challenge to defining optimal sequencing and combinations of 

next generation of agents is the heterogeneity of CRPC. At inception of CRPC, molecular 

profiling of the AR-axis reveals specific patterns of AR pathway components. Some tumors 

are positive for steroidogenic machinery in conjunction with upregulated AR suggesting 

modulation by ligand, others show no evidence for steroidogenic potential but only 

upregulation of AR, suggesting modulation by AR itself, and a smaller number lack any 

signature for upregulation of ligand or receptor(64, 65). Efforts to characterize molecular 

phenotype of metastatic prostate cancers, such as the SU2C/AACR/PCF sequencing project 

(66)will be critical to defining which pathways are relevant for targeting in abiraterone and 

enzalutamide refractory cancers. In addition, correlating tissue biopsy with a common 

platform for analyzing circulating tumor cells and cell free DNA, as means of noninvasively 

sampling relevant biology, will await adoption of an assay which simultaneously detects and 

efficiently collects samples for analysis(67). Using tumor biopsy to enrich patient 
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populations, as is being utilized in the study of PARP inhibition in TMPRSS2:ERG positive 

and negative tumors (NCT01576172 – Table 1), will be critical to moving novel 

combination therapies to the patients who need them as rapidly as possible(54).
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Figure 1. 
Figure A - Schematic of the full-length androgen receptor (a) and exon structure of major 

splice variants (ARV7 (b) and ARV567 (c)). Domains of AR include the amino (N) terminal 

domain, the DNA binding domain (DBD), the hinge region (HR), and the carboxy (C) 

terminal ligand-binding domain (LBD). Mutations which occur in specific regions are 

indicated. Adapted from Green and colleagues (68) with permission from Elsevier.

Figure 1B - ADVANCES: Inhibition of AR ligand production: Inhibition of CYP17A by 

Abiraterone, Orteronel, Galeterone, VT474, or CFG920 suppresses testicular, adrenal and 

tumoral androgen synthesis. Galeterone can suppress CYP17A, antagonize androgens and 
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reduce AR levels. Abiraterone at high doses can inhibit AR and HSD3B. AR degradation: 

AR can be destabilized through inhibition of HSP90 binding. AR-cofactor association: 

Peptidomimetics (e.g. D2) can disrupt AR interaction with cofactors, decreasing AR driven 

gene transcription. AR antagonism: Enzalutamide and ARN509 block ligand/receptor 

interactions at the LBD, reduce AR-DNA association and AR nuclear accumulation. 

EPI-001 blocks AR NTD-coactivator association and nuclear accumulation, and is active 

against truncated AR variants lacking the C terminal domain (CTD). Adapted from Knudsen 

K, et al (69)
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Table 1

Actively recruiting clinical trials with AR targeting and co-targeting in CRPC (clinicaltrials.gov)

Target Drugs Design NCT#

AR and CYP17 Enzalutamide and abiraterone Phase I/II NCT01650194

AR and CYP17 Galeterone Phase II NCT01709734

AR and CYP17 ARN−509 and Abiraterone Phase Ib NCT01792687

HSP90 and CYP17 AT13387 and Abiraterone Phase I/II NCT01685268

AR and VEGFR Enzalutamide and Tivozanib Phase II single arm NCT01885949

AR and CYP17 CFG920 Phase I/II NCT01647789

AR and PARP Velaparib and abiraterone Phase II NCT01576172
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