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Excitable Signal Transduction Induces Both Spontaneous and Directional
Cell Asymmetries in the Phosphatidylinositol Lipid Signaling System for
Eukaryotic Chemotaxis
Masatoshi Nishikawa,†‡* Marcel Hörning,† Masahiro Ueda,‡§{ and Tatsuo Shibata†‡*
†Laboratory for Physical Biology, RIKEN Center for Developmental Biology, Kobe, Japan; ‡Japan Science and Technology Agency (JST),
CREST, Osaka, Japan; §Laboratory for Cell Signaling Dynamics, RIKENQuantitative Biology Center, Osaka, Japan; and {Laboratory of Single
Molecule Biology, Graduate School of Science, Osaka University, Osaka, Japan
ABSTRACT Intracellular asymmetry in the signaling network works as a compass to navigate eukaryotic chemotaxis in
response to guidance cues. Although the compass variable can be derived from a self-organization dynamics, such as excit-
ability, the responsible mechanism remains to be clarified. Here, we analyzed the spatiotemporal dynamics of the phosphatidy-
linositol 3,4,5-trisphosphate (PtdInsP3) pathway, which is crucial for chemotaxis. We show that spontaneous activation of
PtdInsP3-enriched domains is generated by an intrinsic excitable system. Formation of the same signal domain could be trig-
gered by various perturbations, such as short impulse perturbations that triggered the activation of intrinsic dynamics to form
signal domains. We also observed the refractory behavior exhibited in typical excitable systems. We show that the chemotactic
response of PtdInsP3 involves biasing the spontaneous excitation to orient the activation site toward the chemoattractant. Thus,
this biased excitability embodies the compass variable that is responsible for both random cell migration and biased random
walk. Our finding may explain how cells achieve high sensitivity to and robust coordination of the downstream activation that
allows chemotactic behavior in the noisy environment outside and inside the cells.
INTRODUCTION
Directional cell migration in response to external guidance
cues, chemotaxis, is crucial for various physiological phe-
nomena, including embryonic development such as organ
formation and nerve wiring. Chemotaxis also plays roles
in pathological activities such as allergic inflammation and
cancer metastasis. Studies using Dictyostelium, the organ-
ism best studied for eukaryotic chemotaxis, have shown
that chemotactic cells are extremely sensitive to shallow
chemoattractant gradients, as cell motility can be biased
along spatial gradients by differences in receptor occupancy
across the cell body of as few as 10 molecules (1–4). There-
fore, cells must achieve high sensitivity to extracellular
signals and coordinate their intracellular activity. In
response to a chemical gradient, chemotactic cells generate
a sharp asymmetry in intracellular activity, which directs
cell motility toward or away from the chemical source.
This signaling pathway is highly conserved in species
from human leukocytes to the social amoebae Dictyostelium
discoideum (1,2,5,6). In D. discoideum, several parallel
pathways responsible for chemotaxis have been identified
(7). Among them, the phosphatidylinositol 3,4,5-trisphos-
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phate (PtdInsP3) pathway plays an indispensable role in
gradient sensing under shallow chemoattractant gradients
(8,9), whereas in very steep gradients, other pathways can
aid in chemotaxis in the absence of the PtdInsP3 pathway
(10). There, a chemoattractant gradient induces strong local
accumulation of PtdInsP3 on the anterior region, which
is steeper than the external gradient (11). This gradient-
sensing mechanism works even if cells lack motile activity,
as, for example, in the case of actin polymerization. Thus,
an intracellular signaling process amplifies the extracellular
signal, and this process could be responsible for the high
chemotactic sensitivity.

However, sharp asymmetry in the membrane distribution
of PtdInsP3 can also be established even in the apparent
absence of spatial cues in both Dictyostelium (12–15) and
mammalian cells, such as dendritic cells and fibroblasts
(16,17). Such spontaneous asymmetry may be responsible
for promoting random migration of these cells (12,16).
However, little is known about the cell biophysical
mechanism that gives rise to intracellular polarity, or how
this spontaneous dynamics is related to the gradient-induced
asymmetry formation. If the spontaneous dynamics is
biased by extracellular cues, the spontaneously produced
polarity is strong enough to promote protrusive activity
with high sensitivity in response to the cue, even for the
shallow gradient.

It has been proposed from a mathematical viewpoint that
the sharp response and spontaneous activities of PtdInsP3,
including traveling waves and oscillations (12,18,19),
can be explained by excitability (20–24). On the other
hand, an ultrasensitive amplification mechanism was also
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proposed (25). Therefore, it is necessary to study directly
the PtdInsP3 kinetics that generates the sharp response.

One approach to elucidate intrinsic properties of the sys-
tem is to apply perturbations, which makes it possible to
investigate the transient behavior during the cell’s response
and return to the stationary state, rather than the stationary
behaviors after completion of the transient response, such
as the chemokinetic effect. When the perturbations are suffi-
ciently small in strength or short in duration, such as a step
with small amplitude or impulse stimuli, the transient
behavior is expected to reflect intrinsic properties of the
system itself, which is not disturbed by perturbations. In
particular, idealized impulse responses reflect only the time
constants of processes in the PtdInsP3 signaling system,
not the time constants of the perturbation itself. Therefore,
in this study, we considered step and impulse responses of
PtdInsP3 and primarily focused on the asymptotic behavior
of response statistics approaching spontaneous activity. We
demonstrate that spontaneous activation of the localized
PtdInsP3-enriched domain in Dictyostelium cells is gener-
ated by an excitable system. Once the activation is triggered
by an impulse stimulus of cAMP, it proceeds by its intrinsic
dynamics, no longer requiring stimuli. We further show that
both spontaneous and directional cellular asymmetry forma-
tions in the absence and presence, respectively, of chemoat-
tractant gradients are produced by the same mechanism of
the chemotaxis pathway. Our results demonstrate that the
spontaneous formation of intracellular asymmetry is a basal
dynamics of the chemotaxis signaling pathway, and it serves
as a compass parameter for chemotaxis that can convey
extracellular gradient information (16,26).
MATERIALS AND METHODS

Cell preparations

To observe the spatiotemporal dynamics of PtdInsP3 under a fluorescent

microscope, the green-fluorescent-protein (GFP)-fused pleckstrin homol-

ogy (PH) domain of Akt/protein kinase B was expressed in wild-type

AX-2 cells (12). The cells were grown at 21�C in HL-5 medium and

selected with 20 mg/mL G418 (27). Before fluorescent imaging, the cells

were starved in development buffer (5 mM Na phosphate buffer, 2 mM

MgSO4, and 0.2 mM CaCl2, pH 6.3) for 1 h and pulsed with 10 nM

cAMP at 6 min intervals for up to 3.5 h. This process led to a polarized

cell shape, which indicates chemotactic competency (28). To observe spon-

taneous PH-GFP activity, cells were placed in glass-bottomed dishes

(IWAKI, Tokyo, Japan) 27 mm in diameter. The number of cells was

maintained at <4 � 103 to ensure that neighboring cells were sufficiently

separated (by ~0.4 mm). Cells were treated with 10 mM latrunculin A

(L5163-100UG, Sigma, St. Louis, MO) and incubated in the dishes for

20 min before observation. For cAMP stimulation, cells were placed in

microfluidic chambers in the presence of 10 mM latrunculin A and incu-

bated for 20 min.
Microfluidic chamber

We used microfluidic chambers to achieve a spatially uniform temporal

change in cAMP concentration, with high temporal resolution and repeat-
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ability. Silicon molds were prepared using an SU-8 negative photoresist

(SU-8 100, Microchem, Newton, MA). Two-inch silicon wafers were

spin-coated with SU-8 (200 mm in thickness), exposed to ultraviolet

(UV) light through photomasks, and developed. These were used as the

cast for polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning,

Midland, MI). The molded pieces of PDMS were covalently adhered to a

no. 1 thickness microscope coverglass (NEO 24 � 36 mm, Matsunami,

Kobe, Japan) by activating both surfaces with plasma cleaner (PDC-32G,

Harrick Plasma, Ithaca, NY).

For the sustained-stimulus experiments, cells were placed in a T-shaped

chamber (Fig. S1 A) with two inlets and one outlet. Syringes filled with

development buffer containing 10 mM latrunculin A and the specified

concentrations of cAMP were mounted in the syringe pumps (Legato

210, KD Scientific, Holliston, MA). The syringes were attached to the inlets

to provide a constant influx of the solution. The pumps were controlled by a

personal computer (Metamorph, Molecular Devices, Sunnyvale, CA). The

flow rate was 10 mL/min.

The transient cAMP stimuli were generated by flow photolysis (29),

where 10 nM NPE-caged cAMP (Dojindo, Kumamoto, Japan) was added

to the flow solution. The photochemical release of caged cAMP was local-

ized upstream of the cells. The flow carried the activated cAMP to the cells

and the solution was then washed out. The cAMP was uncaged with a pho-

toactivation system that is based on digital mirror devices (Mosaic, Andor

Technology, Belfast, Northern Ireland) and equipped with a mercury lamp.

The light passing through the interference filter had a wavelength of 360–

372 nm, which is optimal for the photochemical reaction. The flow rate

was 10 mL/min. To demonstrate the temporal change of cAMP concentra-

tion, we obtained the fluorescent images of activated CNMB-caged fluores-

cein (F-7103, Life Technologies, Carlsbad, CA) (Figs. S1 B and S2 B).
Microscopy

The PH-GFP that was expressed in Dictyostelium cells was observed with

an inverted fluorescent microscope (IX-81, Olympus, Tokyo, Japan, or

Ti-E, Nikon, Tokyo, Japan) equipped with a spinning-disk confocal imag-

ing unit (CSU-X1, Yokogawa, Tokyo, Japan), a 40�/1.35 NA oil plan

apochromat objective, and a 488 nm OPS laser for GFP excitation. For

3D time-lapse imaging, we used a piezo-Z stage with a 60�/1.35 NA oil

plan apochromat objective. Fluorescent images were acquired by an elec-

tron-multiplying charge-coupled device camera (iXonþ, Andor Technol-

ogy, or imagEM, Hamamatsu, Hamamatsu City, Japan) at the specified

time intervals. The cAMP gradient was applied using a micropipette

(FemtoTips, Eppendorf, Hamburg, Germany) that was filled with 100 nM

cAMP and 2 mM Alexa 555 and pressurized at 100 hPa using an injector

(FemtoJet, Eppendorf). The formation of the cAMP gradient was confirmed

by the spread of the dye. All experiments were conducted at 21�C. Each cell
was located >200 mm from the micropipette.
Data analysis

The spatiotemporal dynamics of PtdInsP3 were analyzed from the time

course of the fluorescent PH-GFP signal. The fluorescence intensity of

PH-GFP on the membrane was obtained every p=60 radian along the cell

periphery. The fluorescence signals from individual cells were then normal-

ized by the cytosolic fluorescence intensity to exclude the effect of varia-

tions in the PH-GFP expression level of individual cells. The cytosolic

fluorescence intensity was averaged over the cytosolic region, which was

then averaged over time. For the time average, we excluded the time inter-

val during which a PH-GFP-enriched domain was present, as it reduces the

cytosolic PH-GFP signal. The normalized fluorescence intensity obtained in

this way at position q and time t is denoted by bIðq; tÞ.
To quantify the domain orientation of the PH-GFP-enriched domain, we

calculated the center of brightness along the cell periphery, (P(t), 4(t)),

given by
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FIGURE 1 PtdInsP3-enriched domains are spontaneously formed in the

absence of external cues. (A) Sequential images taken at 3 s intervals

showing PH-GFP-expressing Dictyostelium cells in uniform 1 nM

cAMP (Scale bar, 5 mm). The pseudocolor images are shown to aid in

visualizing spontaneous domain formation by PH-GFP. (B) Kymograph

of the spatiotemporal behavior of the PH-GFP fluorescence intensity on

the cell periphery. The images were taken every 3 s. (C) Spatial correlation

of the PH-GFP intensity along the membrane as shown in B. The
0 00 2
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PðtÞeifðtÞ ¼
Z 2p

0

Iðq; tÞeiqdq; (1)

with Iðq; tÞ ¼ bIðq; tÞ= R 2p

0
bIðq; tÞdq, i.e., PðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtÞ2 þ bðtÞ2

q
,

and tan fðtÞ ¼ bðtÞ=aðtÞ, where aðtÞ ¼ R 2p

0
Iðq; tÞcos qdq and bðtÞ ¼R 2p

0
Iðq; tÞsin qdq (Fig. S3 A). If the signal is homogeneous along the cell

periphery without polarity, P(t) is zero in Eq. 1. In most cases, a single

domain is formed. Therefore, a nonzero value of P(t) indicates local accu-

mulation of PtdInsP3 at fðtÞ (Fig. S3 B).

As shown in Fig. S3 B, the value of P(t) increases when a PH-GFP-

enriched domain is formed. We considered the formation of a PH-GFP-

enriched domain as P(t) above the threshold Pc for a given time. In this

study, we set Pc to be 0.1. The domains were detected as the region where

the normalized fluorescence intensity, bIðq; tÞ, is above the threshold inten-

sity, bIc. The size of a domain is the number of successive points in the

domain area. We define the amplitude as the maximum value of the

normalized fluorescence intensity, bIðq; tÞ, in the domain area. In this study,bI c was set to be 1.4. We confirmed that the results presented here were

insensitive to the value of bIc.
To analyze the PH-GFP translocation to the membrane in response to a

temporal change in cAMP concentration, we identified the time to approach

the response peak, tpeak, from the transient increase in the membrane fluo-

rescence intensity for individual cells. We then collected the bIðq; tpeakÞ
values of the cells to characterize the PH-GFP-enriched domains by

thresholding.

correlation function, C(q), was calculated as CðqÞ ¼ dIðq ÞdIðq Þ=dI ,

where IðqÞ is the distribution of PH-GFP along the cell membrane, and

dIðqÞ ¼ IðqÞ � I. The overline indicates the average over space and

time, and q ¼ q0 � q00.
RESULTS

Spontaneous activity of phosphatidylinositol
lipid signaling reaction

To explore the mechanism by which intracellular asym-
metry is spontaneously generated, we monitored the
spatiotemporal dynamics of PtdInsP3 localization in
Dictyostelium cells expressing the GFP-fused pleckstrin
homology domain of Akt/protein kinase B (PH-GFP),
which acts as a PtdInsP3 probe. We treated the cells
with 10 mM latrunculin A (an actin polymerization inhibi-
tor), which made the cell shape spherical and com-
pletely inhibited the cell-shape deformation activity
(30,31). Even in the absence of a cAMP stimulus, treated
cells exhibited an asymmetric distribution of PH-GFP
along the membrane (Fig. 1, A and B), with PH-GFP-
enriched domains transiently appearing randomly. The
peak intensity of PH-GFP in the domains was on
average ~2.3 times larger than the intensity in the cytosol.
The lifetime of the domains averaged ~15 s, and their
size was ~72� (~0.4p rad). The spatial correlation C(q)
between fluorescence intensities at different positions with
an angular distance, q, decreased from positive to nega-
tive values as q increased (Fig. 1 C; see Materials and
Methods), meaning that the observed asymmetric dis-
tribution was not a consequence of stochastic PH-GFP
accumulation, but rather the result of a localization
mechanism.

As shown in Fig. 2, A and B, we observed a variety
of PtdInsP3 behaviors of clonal cells under the same ex-
perimental conditions, such as a resting state and tran-
sient and persistent domain formations. This variability
can be attributed to cell-to-cell variations in the con-
centrations of the molecular components, which is inevi-
table at the scale of a single cell (25,32). When domains
formed transiently, their appearance and disappearance
were accompanied by a decrease and increase in the
cytosol fluorescence intensity, indicating that the transient
appearance of domains was not due to traveling motion
of domains across the focal plane. The 3D observation
also demonstrated that domains showed no persistent
traveling motion in all directions, as shown in Fig. 2 C.
When domains formed persistently, they were not
stationary, but traveled along the membrane, which is
consistent with our earlier finding (12). Furthermore, the
behavior also depends on the extracellular cAMP concen-
tration. The transient formation of a PH-GFP-enriched
domain was more frequently observed in the presence of
a uniform concentration of 1 nM cAMP than in the
absence of external cAMP (Fig. 2, A and B), indicating
that the chemoattractant enhances asymmetry, although
the domain formations have no preferential orientation.
Here, the cell density was sufficiently low (the average
cell-to-cell distance was ~400 mm; see Materials and
Methods), so that the cell-cell interactions via self-secreted
cAMP were negligible, and thus, the domain formations
reflected the basal dynamics of the intracellular signaling
pathway.
Biophysical Journal 106(3) 723–734
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FIGURE 2 Dependence of the spontaneous

PtdInsP3 dynamics on cAMP concentration. (A)

Transient and persistent formation of the

PH-GFP-enriched domain in the absence of

cAMP and at 1 nM extracellular cAMP. Domains

with lifetimes of >5 min were classified as persis-

tent. Kymographs lasted 15 min, and each was

taken from a different cell. We did not observe

persistent formation of PH-GFP-enriched domains

in the absence of extracellular cAMP. (B) Percent-

ages of cells exhibiting spontaneous PH-GFP-

enriched domains (n ¼ 30 and 48 cells for 0 M

and 1 nM cAMP, respectively). (C) Four-dimen-

sional image of transient domain formation in the

absence of cAMP, with x-y sections at the left,

showing regions close to the top, middle, and bot-

tom of a single cell, and x-z and y-z sections at the

right. All domains appeared and disappeared at the

same position without persistent traveling motion.

The membrane region attached to the glass surface

showed the same behavior. To see this figure in co-

lor, go online.
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The same PtdInsP3 peak level in both the
spontaneous activation and responses for
perturbations of different strength

To study the intrinsic properties of the basal dynamics of

spontaneous domain formation more systematically, we

next used a microfluidic chamber to quantify the initial tran-

sient response of the PtdInsP3 pathway to rapid step changes

in cAMP concentration. The cAMP concentrations changed

within 1 s from 0 M to concentrations ranging from 50 pM

to 10 nM (see Fig. S1, A and B). We expected that the tran-

sient responses to the small perturbations with lower cAMP

concentrations would reflect spontaneous pathway activity

in the nonstimulated state. As reported previously (14),

the depletion of cytosolic PH-GFP levels peaked at <15 s

and returned to the basal level in <30 s (Fig. 3, A and B).
Biophysical Journal 106(3) 723–734
The cytosolic responses depended on the stimulus intensity
(Fig. 3 C), with the peak response increasing in a dose-
dependent manner and saturating at 1 nM. At higher
cAMP concentrations (1–10 nM), almost all cells exhibited
the cytosolic response, with the membrane translocation of
PH-GFP occurring on almost the entire plasma membrane
(Fig. 3, D and F, and Fig. S1, C–F). However, when the
cytosolic responses reached the peak at ~15 s, the response
amplitude, which is defined by the maximum PH-GFP in-
tensity on the cell membrane, was not dependent on the con-
centrations, and it was the same as that for spontaneous
activation (Fig. 3 H). As the cAMP concentration was
decreased to 50–200 pM, the translocation of PH-GFP
showed remarkable spatial heterogeneity. PH-GFP tran-
siently accumulated in a spatially localized area to form
an enriched domain (Fig. 3, E and G, and Fig. S1, F–H).
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C FIGURE 3 Transient responses of PtdInsP3 to

temporal cAMP perturbations. (A and B) Time

course of cytosolic responses to step increases in

cAMP applied at 30 s (arrowheads). (A) Responses

of individual cells to 200 pM cAMP (gray lines)

and the ensemble average (red), normalized by

the respective intensity before stimulation. (B)

Average responses to concentration jumps ranging

from 50 pM to 10 nM. (C) Dose dependence of

cytosolic PH-GFP responses. (D and E) Images

of PH-GFP translocations in response to 10 nM

(D) and 200 pM (E) step increases in cAMP (Scale

bar, 5 mm). (F and G) Time courses of fluorescence

intensity on subregions of the membrane at 10 nM

and 200 pM cAMP, respectively. The two time

series indicated by red and green lines were ob-

tained at the positions indicated by green and red

bars, respectively, in D and E. The fluorescence

signals were averaged over p /3 rad. (H and I)

Response amplitude (H) and size (I) of the

PH-GFP-enriched domains at various cAMP con-

centrations. The characteristics of the spontane-

ously formed domain are shown in blue. Error

bars denote the mean 5 SE. The numbers of cells

in each experimental condition were 22 (unstimu-

lated), 47 (50 pM), 38 (100 pM), 29 (200 pM),

37 (1 nM), and 45 (10 nM). The time-lapse images

used in this figure were taken at 1 s intervals. For

the spontaneously formed domains without stim-

ulus, the average amplitude and domain size of in-

dividual cells were obtained by averaging the

values at the times they were formed.
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The domain was positioned randomly on the membrane, in-
dependent of the flow direction in the chamber (Fig. S1 I).
The frequency of cells that exhibited a detectable cyto-
plasmic response depended on the concentrations (58% at
50 pM, 69% at 100 pM, and 83% at 200 pM) (25). These
transient responses show the same properties with the spon-
taneous activation, not only in response amplitude but also
in spatial size. Thus, as expected, responses to small pertur-
bations approach the behavior of spontaneous transient
activation.

From these results, the response amplitude at ~15 s is
almost constant from higher to lower cAMP concentrations,
which is extended to the amplitude of the spontaneous
activation, indicating that it is almost determined by
intrinsic properties of the signaling pathway itself, not by
the properties of perturbations. On the contrary, the spatial
size depends on the cAMP concentration (Fig. 3 I). There-
fore, the dose dependence of the cytosolic response
(Fig. 3 C) is a consequence of the increase in spatial size,
keeping the response amplitude on the membrane insensi-
tive to the stimulus intensity. Because the size at lower
cAMP concentrations from 50 to 200 pM sufficiently ap-
proaches the size in the spontaneous activation, there seems
to also exist a defined size intrinsic to the reaction-diffusion
property of this system.

A possible mechanism that produces both the sponta-
neous excitation and localized response with almost con-
stant amplitude irrespective of the stimulus strength
could be excitability (22–24,33,34). In excitable systems,
a perturbation over a certain threshold can trigger a repro-
ducible response. Once the response is initiated, the time
evolution is mostly determined by the intrinsic mechanism
of the system itself; as a result, it is less sensitive to pertur-
bation strength. The stochastic fluctuations that are present
in the signaling processes produce spatiotemporal varia-
tions in the concentration of signaling molecules, which
can then trigger excitation and make the response hetero-
geneous. If this is the case in the PtdInsP3 pathway,
weak cAMP perturbations induce a transient response
only in a restricted membrane area, which can be observed
as a localized PH-GFP-enriched domain similar to the
spontaneously formed domain. In contrast, when the per-
turbations are sufficiently strong, almost the entire mem-
brane area is above the threshold level, resulting in a
transient response throughout the cell. Thus, the size of
the response area should increase with stimulus intensity,
whereas the amplitude of the response in each area should
be the same across stimulus intensities. These predictions
are consistent with our observations of the PtdInsP3
pathway in Dictyostelium cells, implying that the sponta-
neous dynamics of the PtdInsP3 pathway is consistently
produced by an excitable mechanism. Experimental confir-
mation of the existence of an excitable system is discussed
below.
Biophysical Journal 106(3) 723–734
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FIGURE 4 Fully activated PtdInsP3 response to very short cAMP stim-

uli. (A) Images of PH-GFP-enriched domains induced by transient cAMP

stimulation (Scale bar, 5 mm). (B) Time course for PH-GFP translocation

to the subregions. The two time series indicated by the red and green

lines were obtained at the positions indicated by green and red bars,

respectively, in A. (C and D) Response amplitude (C) and domain size

(D) are shown as functions of UV exposure time for 0.3, 1, and 2 s UV

exposure times (N ¼ 28, 28, and 25 cells, respectively). Blue solid

circles represent the corresponding values for the spontaneously formed

domain. Error bars denote the mean 5 SE. The time-lapse images used

in this figure were taken at 1 s intervals. For the spontaneously formed

domains without stimulus, the average amplitude and domain size of

individual cells were obtained by averaging the values at the times they

were formed. The UV light was directed onto a 10 mm � 100 mm rectan-

gular region, with the rectangle aligned such that the long axis traversed

the flow.
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PtdInsP3 responses are invoked by an excitable
mechanism

If the PtdInsP3 pathway works as an excitable system, then
once the response is initiated at a given region on the mem-
brane, it could be fully activated without sustained stimula-
tion. We expect that an impulse stimulus can induce the
same PtdInsP3-enriched domain that is produced spontane-
ously. To test this hypothesis, we applied a transient cAMP
stimulus that was much shorter than the characteristic
response time (35). Impulse stimuli were generated by the
photochemical release of caged cAMP in a flow chamber
(29). The UV flush for the uncaging reaction was applied
to a region upstream of the cells in a continuous flow, lead-
ing to transient exposure of the cells to cAMP within 1 s
(Fig. S2, A and B). We studied the responses to different
UV exposure times of 300 ms, 1 s, and 2 s. When UV light
was applied for 300 ms, the resulting PH-GFP-enriched
domain persisted for ~10 s, with a rise time of 6 s (Fig. 4,
A and B, and Fig. S2, C–E). Because the rise time is much
longer than the stimulus duration, the subsequent excitation
is produced by its own intrinsic mechanism once activation
is initiated by the transient stimulus, as is expected in excit-
able systems. Consistent with this excitable-mechanism
hypothesis, the response amplitude for all three exposure
times was approximately the same as that of both domains
formed spontaneously and induced by step cAMP stimulus
(Figs. 4 C and 3 H, respectively). The average spatial size
decreased with exposure time, approaching that of the spon-
taneously formed domains (Fig. 4, C and D), which indi-
cates that the longer the cells are exposed to the cAMP
stimulus, the larger is the area of PtdInsP3 activation on
the membrane.

We further hypothesized that if the PtdInsP3 response is
consistent with an excitable system, just after the membrane
PtdInsP3 level is decreased to the basal level, there will be a
refractory period during which the cell cannot elicit
PtdInsP3 activation by a subsequent stimulus (34). We
tested this hypothesis by measuring the cytosolic PH-GFP
depletion in response to repeated cAMP perturbations
with three identical 1 s pulses given at a defined time inter-
val. The cells exhibited almost identical responses for stim-
uli given at 50 s intervals, with a peak response amplitude
equal to that for each of the successive cAMP pulses
(Fig. 5, A and B). As the interpulse intervals decreased,
the first response remained identical, but subsequent re-
sponses were attenuated and finally became hard to detect
at 10 s intervals (Fig. 5, B, C, and E). Notably, although
the cytosolic responses were interval-dependent, the
response amplitude on the membrane was insensitive to
both the number of pulses and the interpulse interval
(Fig. 5 D). On the other hand, the spatial size was dependent
on the cAMP pulse intervals and decreased with the number
of pulses (Fig. 5 E). These characteristics of the membrane
response are consistent with the step and impulse responses,
Biophysical Journal 106(3) 723–734
indicating that the response, once initiated, is produced by
an intrinsic excitable mechanism. Furthermore, the cells
take ~30 s to be ready for a subsequent response. This
refractory behavior demonstrates that the PtdIns lipid
pathway is an excitable system.

We next stimulated a cell with identical paired pulses at
75 s intervals (Fig. 5 F, blue), exceeding the refractory
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FIGURE 5 Refractory behavior of the PtdIns

reaction for repeated perturbations. (A and C)

Cytosolic PH-GFP depletion upon applying triplet

cAMP pulses at given time intervals of 10, 15, 20,

30, and 50 s (N ¼ 34, 24, 34, 19, and 27 cells,

respectively). (B) Normalized peak of the cytosolic

responses. (D and E) Response amplitude (D) and

spatial size (E) of the PtdInsP3-enriched domains

for each of three cAMP pulses at different time in-

tervals. (F) PH-GFP translocations at distinct re-

gions on the membrane in response to 75 s paired

cAMP pulses are shown. (G) Polarity orientations

for the first and second response peaks of individ-

ual cells. The cAMP pulses were generated using

the same method in Fig. 4. For the triple-pulse ex-

periments shown in C-D, the UV light exposure

region was increased to 30 mm � 100 mm to in-

crease the membrane area exhibiting PH-GFP

translocation.
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period. A PH-GFP response was observed in one half of the
membrane in response to the first pulse (Figs. 5 F, red, and
S2, G, I, and J), whereas it was observed in the other half for
the second pulse (Figs. 5 F, green, and S2, H–J). We found
that the positions of the domains excited by the successive
cAMP pulses were statistically uncorrelated with each other
(Fig. 5 G), indicating that the spatially localized response
does not result from any static inhomogeneity in the extra-
cellular environment or any preexisting heterogeneity
within the cells, nor is there a long-term memory of the pre-
vious response. It is likely, then, that the stochastic proper-
ties of molecular processes within the cells dynamically
determine the position of the excitation by chance.
Spontaneous PtdInsP3 responses are biased
toward the chemoattractant gradient

We have so far investigated the transient behavior of
PtdInsP3 membrane localization both in spontaneous acti-
vation and in response to spatially uniform cAMP perturba-
tions, in which a nonlinear excitable dynamics operates.
It is well documented that the presence of a spatial gradient
of cAMP can induce asymmetric translocation of PH-
GFP to the plasma membrane facing the cAMP source
(11,30,36). Because the same signaling system is involved
not only in spontaneous asymmetric formation but also
in the formation of gradient-induced asymmetry, the
question as to whether these two activities are interde-
pendent naturally arises. From a theoretical viewpoint,
when an excitable system is biased by spatial gradients,
it is quite natural that the location of excitation and forma-
tion of the same signaling domains are preferentially ori-
ented in the direction of the gradient. We also expect the
response amplitude to be almost unchanged after applica-
tion of shallow gradients, if the same excitable system
also works for gradient sensing. Therefore, the excitable
system can sense gradients by biasing the probability of
the domain position toward the gradient direction without
Biophysical Journal 106(3) 723–734
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much modulation of the property of the activator domain
itself.

To test the biased-excitation hypothesis, we analyzed the
PH-GFP-enriched domains in response to the spatial
gradient of cAMP. We applied a cAMP gradient to the cell
that showed spontaneous formation of PH-GFP-enriched
domain before the gradient was applied (Fig. 6 A). In the
absence of cAMP gradient, the PH-GFP-enriched domains
formed at random positions (Fig.6, A upper and B). When
the gradient was applied, the PH-GFP domains preferentially
formed at the side facing the higher cAMP concentration
(Fig. 6, A lower, arrowhead, and B). The orientation of the
PH-GFP-enriched domain indicates that the spatial gradient
of cAMP regulates PtdInsP3 localization. The formation of
PH-GFP-enriched domains was more evident when a
cAMP gradient was applied than when cAMP was not pre-
sent. Nevertheless, the amplitudes were maintained in indi-
vidual cells at an almost identical level before and after
gradient stimulation. We found a proportional relationship
between peak amplitude in the spontaneously formed
PH-GFP-enriched domain before the stimulus and the ampli-
tude in response to a gradient in the same cells (Fig. 6C). The
peak amplitudes of the PH-GFP-enriched domain varied
even among the population of clonal cells, probably due to
intrinsic heterogeneity in the molecular components (25).
Thus, as predicted, the spatial gradient of cAMP does not
modulate strongly the property of the PtdInsP3-enriched
domain. Properties of the domain such as peak intensity
are mostly intrinsic to the excitable dynamics. The external
stimulus of a cAMP spatial gradient biases the position of
PtdInsP3 activation. Our experimental result indicates that
the underlyingmechanism in chemotactic signaling is biased
excitation, which generates a digitized signaling domain
directed toward external cues (Fig. 6 D).
FIGURE 6 Effects of cAMP gradients on PtdInsP3-enriched domain

behavior. (A) Kymographs of PH-GFP for the same cell in the absence

(upper) and presence (lower) of a cAMP gradient. cAMP gradients were

applied by a pipette containing 100 nM cAMP that was positioned

>100 mm away from the cells at q ¼ 0 (arrowhead). (B) Correlation be-

tween the amplitudes for the spontaneously formed and cAMP-gradient-

induced domains (N ¼ 65 cells). (C) Distribution of the domain formation

site in both the absence (blue) and presence (red) of the cAMP spatial

gradient. (B and C) Domains were detected by the thresholding described

in Materials and Methods. The values of f were calculated when the do-

mains were formed using Eq. 1. All values of f from each cell (N ¼ 65

cells) were gathered to obtain the distribution. The data in the first minute

were removed to exclude any effects of the transient responses to the

gradient stimuli. (D) Schematic of the biased-excitability model, showing

how the excitable system produces PtdInsP3-enriched domains in the

absence of external cues (left) and how the excitable activity biased by

external cues causes the domains to be oriented (right).
DISCUSSION

In this article, we studied the PtdIns signaling system,
because it is the most well studied pathway in eukaryotic
chemoataxis with respect to both molecular biology and
quantitative measurements. Recently, several parallel path-
ways for chemotaxis have been identified, including the
PtdIns, TorC2, PLA2, and cGMP pathways (37). The PtdIns
pathway contributes to chemotaxis particularly under
shallow gradients, whereas it is dispensable under steep
gradients (7–9). Because we consider that the excitable
behavior discussed in this article can be produced by the
PtdIns signaling system, as has been predicted theoretically
by others (12,22,23,38), the property may be important
particularly for shallow gradients.

In a previous work, Van Haastert and colleagues reported
PtdInsP3-enriched domain formation (which they called
patches) after the completion of the transient response.
They showed that the intensity of the domains was insensi-
tive to cAMP concentration, but that the probability of for-
Biophysical Journal 106(3) 723–734
mation depended on concentration (8,14). The half-maximal
concentration was reported to be 0.5 nM, similar to the
values presented here (Fig. 3, C and I). In agreement with
the results of those studies, we consider that the intrinsic
excitable mechanism, which produces the initial PtdInsP3
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response ~5–20 s after cAMP application, also works for
domain formation at steady-state conditions including
uniform cAMP with a dose-dependent chemokinetic effect.
In fact, we observed that the steady-state behavior depends
statistically on cAMP concentration (Fig. 2, A and B). Theo-
retically, cAMP may reduce the threshold value for excita-
tion, or it may affect the upstream processes that regulate
the PtdInsP3 level by increasing the amplitude of their tem-
poral stochastic variations.

Our results are consistent with the idea that PtdInsP3
plays a role in chemotaxis and spontaneous symmetry
breaking (14,16,26). In this article, we further showed that
intrinsic excitability is a prerequisite for generating the
asymmetric distribution of signaling molecules that gives
rises to the interdependence of intrinsic activity and
response to a gradient. Thus, the PtdInsP3-enriched domain
can be a compass parameter capable of biased random walk
(16,26). The excitability-based mechanism is also capable
of generating spatiotemporal complex signals such as trav-
eling waves and oscillations, as observed in Dictyostelium
and motile immune cells (see below) (12,16,18,19,21,23).
Such excitable mechanisms of chemotaxis may be shared
by other eukaryotic cells, such as leukocytes, dendritic cells,
and fibroblasts (16,19).

We observed qualitatively different PtdInsP3 dynamics: a
resting state, transient PtdInsP3-enriched domains, and
persistently formed domains (Fig. 2, A and B). The persis-
tently formed domains were not stationary but traveled
along the membrane, which is consistent with our earlier
finding (12). Theoretical studies of transient domain forma-
tion in excitable systems have been undertaken by Shibata
et al. (23) and Hecht et al. (24). Previously, we showed
that the traveling wave of PtdInsP3-enriched domains is
produced by a limit-cycle oscillation of the PtdInsP3
pathway, which was prominent in the presence of caffeine
(12,23). Moreover, the frequency of these qualitatively
different behaviors in the population showed a dependence
on the extracellular cAMP concentration (Fig. 2, A and B)
(23), suggesting that the concentration of extracellular
cAMP may be a parameter that controls the behavior of
spontaneous PtdInsP3 activity. The appearance of these
qualitatively different behaviors depending on parameter
values is a characteristic of nonlinear dynamical systems,
including excitable systems. These observed properties of
nonlinear dynamical systems cannot be explained by the
feed-forward type amplification mechanism with ultrasensi-
tivity proposed previously (25).

In the study by Wang et al. mentioned above (25), it was
reported that the peak amplitude in the membrane PtdInsP3
response was almost independent of stimulus intensity, in
agreement with our result. Those authors also reported
that the response to a square-wave stimulus indicates that
a >1 min interval was necessary for response recovery
(25). This result is roughly consistent with our result of
the repeated 1 s impulse perturbations, in which ~50 s was
necessary for response recovery. To explain these behaviors,
Levchenko and colleagues (25) proposed a feed-forward
type adaptation scheme followed by an additional ultrasen-
sitive amplification reaction. Since the defined response
with a constant peak height is not achieved by such feed-for-
ward type adaptation reaction, it requires an amplification
module with a quite high Hill coefficient. The refractory
behavior shown in Fig. 5, B and C, is also difficult to explain
using the model proposed by Wang et al. (25). In contrast,
excitable systems have a refractory phase before the system
returns to the resting state. The decrease in the sensitivity to
stimulus is thus a qualitative characteristic and therefore a
robust property. In the previous report (25), the cell response
showed a bimodal distribution with responder and nonre-
sponder cells. It was concluded that such heterogeneity
results in the dose dependence of the response in the popu-
lation. Consistent with that report, we also found that the
frequency of cells that exhibited a detectable cytoplasmic
response was dependent on cAMP concentration, in partic-
ular for lower cAMP concentrations. In this study, we
excluded from the dose-dependent cytoplasmic response
amplitudes (Fig. 3 C) cells that showed no detectable re-
sponses. Thus, our result (Fig. 3 C) is a consequence of
the dose-dependent change in domain size (Fig. 3 I).

What is the biochemistry that is responsible for the excit-
able mechanism? The upstream activator of phosphoino-
sitide 3-kinase (PI3K), Ras, could be involved in the
excitable behavior, providing a positive feedback effect.
However, evidence from the recent literature suggests that
Ras shows an adaptive response to a sustained cAMP stim-
ulus, which is generated by an incoherent feed-forward cir-
cuit of RasGEF and RasGAP (39). For unstimulated cells,
Ras activation at the membrane is ceased. Upon cAMP stim-
ulation, Ras activation occurs not at a local region of the
plasma membrane, but on the entire plasma membrane
(39). Another, more recent study showed that Ras activation
in response to cAMP gradients was dose-dependent (40).
Those characteristics are clearly distinguishable from the
behaviors shown in this article, which may suggest that
other molecular interactions downstream of Ras need to
be identified to reveal the biochemistry of the excitable
behavior. The molecular mechanism responsible for the re-
fractory behavior is another intriguing question for future
studies. We also note that the combination of the adaptation
kinetics and the amplification based on the excitable mech-
anism could be a design principle of the eukaryotic chemo-
taxis pathway, as has been proposed (7,22).

A feedback loop of PI3K through F-actin has been pro-
posed (15,18,38,41). When cells were treated with reduced
concentrations of latrunculin A, they showed protrusive ac-
tivity, indicating F-actin polymerization (Fig. 7, A–D). In
these cells, the spontaneous formation of PtdInsP3-enriched
domains occurred at the membrane region with deforma-
tion, and the domains were more persistent in lifetime
and/or position, suggesting a feedback effect mediated by
Biophysical Journal 106(3) 723–734
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FIGURE 7 Effect of F-actin on the PtdIns

signaling reaction. The concentration of latruncu-

lin A was reduced to 0.6–1 mM. Cells showed

protrusive activity without locomotion. (A and B)

Sequential images at 6 s intervals showing

PH-GFP-expressing Dictyostelium cells at uniform

1 nM cAMP concentration. (C andD) Kymographs

of the spatiotemporal behavior of the PH-GFP fluo-

rescence intensity on the cell periphery, corre-

sponding to A and B, respectively. Images were

taken every 3 s. latrunculin A concentrations

were 0.8 mM (A and C) and 0.6 mM (B and D).

(E and F) Average peak amplitude (E) and average

lifetime (F) of spontaneously formed domains on

individual cells with 10 mM latrunculin A (left)

and 0.8–1 mM latrunculin A (N ¼ 30 cells) (right).

Error bars denote the mean 5 SE. Average

peak amplitudes were 2.26 and 3.5, respectively,

and average lifetimes were 16.4 and 45.6 s,

respectively.

732 Nishikawa et al.
F-actin (Fig. 7, E and F). Moreover, the domains showed
the characteristic behaviors of excitable systems, such as
propagation, annihilations when they collided, and oscilla-
tory behaviors, which is consistent with previous reports
(18,38). This further supports the presence of underlying
excitable dynamics in the PtdIns signaling. The peak inten-
sity of PtdInsP3 in the domain was intrinsically determined,
and was found not to be dependent on the cAMP stimulus
intensity (Figs. 3 H and 4 C). On the contrary, the peak in-
tensity in the deformed cells was increased, suggesting that
the intrinsic dynamical system of PtdIns signaling is modu-
lated by F-actin-mediated feedback (Fig. 7 E). This is also
indicated by an increase in the lifetime of PtdInsP3-enriched
domains due to the longer characteristic time of the feed-
back. As shown in Fig. 7, A–D, the position of the domain
was stabilized. This suggests that the actin may be respon-
sible for stabilization, which may lead to persistence of
the cell motility, as discussed recently (42). An important
motivation for future study is to reveal the characteristics
of this feedback, which may elucidate the underlying dy-
namics of spontaneous cell migration. Previously, it was re-
ported that the cell morphology dynamics shows wavelike
behaviors (43) (for a theoretical study, see also Meinhardt
(20)). Although it is certainly beyond the scope of this study,
how the self-organization of signaling reaction can give rise
to such cell-shape dynamics is also an intriguing question.

The pulse-like behaviors triggered by a similar mecha-
nism are generally found in a variety of cellular processes,
such as neuronal information processes (44,45), DNA repair
(35), cell fate decisions (46,47), and stress response (48). In
some of these systems, the excitable mechanisms work for
Biophysical Journal 106(3) 723–734
the pulse-like behaviors, which allow cells to convert faint
signals into decisive all-or-none outputs and provide a
way to encode extracellular signals. Therefore, it would
be interesting to see whether or not the strength of the
chemotactic signal is also encoded in the frequency of the
signaling-domain formation.
CONCLUSION

Our study shows that the spontaneous dynamics of the
chemotaxis signaling pathway is driven by an excitability-
based mechanism, which can self-organize signals for
motile activities even in the absence of external guidance
cues. However, these signals occur in random orientations.
A stimulus of 200 pM cAMP was sufficient to induce the
response (Fig. 2) for most of the cell, suggesting that a
very low number of cAMP molecules can induce excitation
of PtdInsP3. The full response can also be induced by short
stimuli of 300 ms, much shorter than the characteristic time
of a PtdInsP3 response. These responses are indistinguish-
able from the spontaneous dynamics of PtdInsP3. The
response is sensitively initiated by such weak signals, and
the emerging response is less sensitive to the perturbation
properties. Therefore, external guidance cues can be suffi-
cient to provide only directional signals that spatially bias
the orientation of the domain formation, without modulating
the domain characteristics (Fig. 6 D). This excitation with
specific response amplitude can induce coordinated activa-
tion of the downstream reactions, irrespective of the input
signal. Thus, biased excitability is the basis for high sensi-
tivity with robust coordination of intracellular activities.
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SUPPORTING MATERIAL

Three figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(13)05815-3
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