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ABSTRACT Confocal Raman microspectroscopy and fluorescence imaging are two well-established methods providing
functional insight into the extracellular matrix and into living cells and tissues, respectively, down to single molecule detection.
In living tissues, however, cells and extracellular matrix coexist and interact. To acquire information on this cell-matrix inter-
action, we developed a technique for colocalized, correlative multispectral tissue analysis by implementing high-sensitivity,
wide-field fluorescence imaging on a confocal Raman microscope. As a proof of principle, we study early stages of bone forma-
tion in the zebrafish (Danio rerio) larvae because the zebrafish has emerged as a model organism to study vertebrate develop-
ment. The newly formed bones were stained using a calcium fluorescent marker and the maturation process was imaged and
chemically characterized in vivo. Results obtained from early stages of mineral deposition in the zebrafish fin bone unequivocally
show the presence of hydrogen phosphate containing mineral phases in addition to the carbonated apatite mineral. The
approach developed here opens significant opportunities in molecular imaging of metabolic activities, intracellular sensing,
and trafficking as well as in vivo exploration of cell-tissue interfaces under (patho-)physiological conditions.
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Understanding fundamental biological processes relies on
probing intra- and extracellular environments, targeted de-
livery inside living cells and tissues, and real-time detection
and imaging of chemical markers and biomolecules (1,2).
Typically, information about molecules in cellular environ-
ments is obtained by fluorescence microscopy (3). This is a
powerful imaging tool for localizing and imaging samples
but requires fluorescent labels and markers and lacks capa-
bilities for quantitative mapping of the chemical composi-
tion in complex systems. In this regard, confocal Raman
spectroscopic imaging is becoming increasingly popular
for label-free chemical detection, due to the inherent scat-
tering nature of all biomolecules (4,5). However, confocal
Raman imaging alone does not allow live, high-resolution
imaging of larger regions of interest in complex biological
tissues. Transcutaneous Raman spectroscopy has the poten-
tial as a tool for in vivo bone quality assessment (6), whereas
the time- and space-resolved Raman spectroscopy allows
the visualization in vivo of the distributions of molecular
species in human and yeast cells (4,5,7). Here we developed
a correlative Raman and fluorescence imaging method that
combines the strengths and compensates for the shortcom-
ings of each of these imaging modalities and allows study-
ing in vivo processes in complex animal models such as
zebrafish larvae. There are two main advantages of this
approach over previous studies (8,9): low light intensity
and high acquisition rate, making it well suited for real-
time investigation of live samples.

Fig. 1, a and b, shows a schematic representation of the
experimental setup and of the optical path, respectively.
The two techniques are implemented on a commercially
available Raman microscope body to perform simulta-
neously confocal Raman spectroscopy and wide-field fluo-
rescence imaging (see the Supporting Material for details
of components). Briefly, the multimodality of the setup is
provided by a combination of dichroic mirrors (DM 1–3)
and filters that at turns reflect or transmit the excitation
and emission signals. This combination of optics allows
simultaneous collection of fluorescence images (2560 �
2160 pixels at 30 fps) with excitation at 400 and 490 nm
and spatially resolved Raman spectra with excitation at
633 nm.

As a proof of principle, we have studied the different
mineral phases involved in bone formation of the zebrafish
larvae. The bone development process involves the transport
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FIGURE 1 Fluorescence imaging of zebrafish larvae. (a)

Cartoon of the experimental setup showing how the different

modules are assembled onto the microscope for the simulta-

neous use of confocal Raman spectroscopy and fluorescence

imaging. (b) Schematic representation of the optical path. (c)

Fluorescence image of calcium-containing tissues, and fluids

stained with calcein blue and excited at 400 nm (top). Endo-

thelial cells of transgenic tg(fli1:EGFP)y1 zebrafish excited at

490 nm (bottom).
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of ions to specific cells (osteoblasts) that are responsible for
the subsequent mineral formation and deposition. The min-
eral phase in these cells is a poorly characterized disordered
calcium phosphate (10–12). The mineral-bearing intra-
cellular vesicles release their content into the extracellular
collagen fibrils, where the mineral subsequently crystallizes
as carbonated hydroxyapatite (13). Very little is known
about the phase transformations the mineral undergoes after
the deposition into the collagen matrix in vivo. Raman spec-
troscopy studies of bone tissue in organ cultures evidenced
that the inorganic mineral deposition proceeds through tran-
sient intermediates including octacalcium phosphate-like
(OCP) minerals (14).

To assess the feasibility of imaging a vertebrate organism,
fluorescence images of an entire zebrafish larva (Fig. 1 c)
were acquired with the correlative fluorescence-Raman
setup. The two images in Fig. 1 c were composed by merg-
ing several low-magnification (10�) fluorescence images.
Larvae of transgenic zebrafish Tg(fli:EGFP); nac mutants
(albino fish) expressing EGFP in the cytoplasm of endothe-
lial cells was used. The newly formed bones were stained
by soaking the live embryo noninvasively in the calcium
markers calcein blue 0.2% wt or calcein green 0.2% wt.

The calcein blue marker is excited at 400 nm. It is label-
ing bones and can be also detected as a fluorescent marker
not associated with formed bones (e.g., stomach) (Fig. 1 c,
top). At 490 nm, calcein green and endothelial cells within
blood vessels expressing EGFP are excited (Fig. 1 c,
bottom). Because EGFP and calcein blue have significantly
different excitation and emissions spectra, dual staining
with calcein blue (as a mineral marker) and EGFP allows
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fast-switching dual-wavelength fluorescence imaging.
Furthermore, because the spectra of the calcium markers
and EGFP do not extend beyond the Raman laser, these
fluorophores are appropriate candidates for experiments
requiring Raman and fluorescence imaging. The dual-exci-
tation offers the capability of mapping several tissues in a
single experiment at the video rate. This, in principle, could
be used to probe different parameters of the microenviron-
ment (e.g., pH (15), temperature (16), viscosity (17), and
calcium concentration (18)) using wavelength-ratiometric
fluorescence imaging which, in correlation with confocal
Raman spectroscopy, could open new strategies in studies
of the microenvironmental properties in living tissues.

The fin rays of zebrafish are a simple, growing bone-
model system, in which the fins are gradually mineralized
within spatially resolved regions (19). Raman spectroscopy
revealed details of the calcein green-stained fin where new
bone is deposited (Fig. 2). In Fig. 2 a, a fluorescence image
of a zebrafish larva analogous to the top image in Fig. 1 c is
shown. The right inset in Fig. 3 b shows higher-magnifica-
tion (60� water-immersion objective) details of the calcein
green-stained fin typical of newly deposited bone. Raman
spectra of progressively mineralized bone tissue were ac-
quired within representative regions (Fig. 2 b; numbered
1–4). The spectra exhibit characteristic bands that can be as-
signed to the organic protein extracellular matrix (amide I,
amide III, Phe, C-H, etc.) and the inorganic mineral content
(v1, v2, v4 of PO4

3�).
The analyses of the orientation-independent v2 phosphate

band revealed a clear drop in themineral content based on the
intensity integral (left inset in Fig. 2 b). Assuming that the
spectrum collected in region 4 contains only organic matrix
(very small phosphate-related peaks) and by subtracting it
from the spectrum of mineral-rich bone region (spectrum 1,
proximal part of the tail bone), spectral features of only the
mineral phase can be plotted (black line). In addition to the
phosphate (PO4

3�) and carbonate (CO3
2�) bands assignable

to the carbonated apatite phase characteristic of the more
mature bone mineral, several peaks related to the hydrogen
phosphate (HPO4

2�) species can be clearly distinguished.
The HPO4

2� peaks are characteristic of the OCP mineral
phase that has been postulated, together with amorphous
calcium phosphate, as an intermediate mineral phase in
the process of bone maturation (10,13,14,20), but never
observed directly in living animals. Our findings show
in vivo potential of the correlative setup envisioned by
Crane et al. (14) and confirm that the mineral maturation
indeed proceeds through an OCP-like mineral phase.
Further analysis of the mineral spectrum in Fig. 2 b reveals
an extremely broad band in the region 800–1100 cm�1. This
envelope can be related to hydrogenated phosphate species
typical of amorphous calcium phosphate precipitated in an
acidic environment (see Fig. S1 in the Supporting Material),
suggesting that this phase is also contributing to the matura-
tion process.



FIGURE 2 Correlative fluorescence-Raman imaging of zebra-

fish fin bone maturation. (a) Low-resolution (10�) fluorescence

image of zebrafish stained with calcein green, with high-resolu-

tion (60�) details (right inset in panel b) of a representative fin

ray region where Raman spectra (b) of progressively mineral-

ized bone tissue were acquired (numbered 1–4). (Left inset in

panel b) Integral of the orientation independent mineral band

(v2) where a clear drop of the mineral content can be observed.
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In conclusion, the methodology developed here allows
for unprecedented chemical characterization of fluores-
cently-labeled biological tissues in vivo. The approach is
suitable for long-term in vivo characterization of zebrafish
bone mineralization under (patho-)physiological conditions.
Furthermore, the setup can be upgraded to host other
advance fluorescence imaging techniques such as super-
resolution microscopy (e.g., photoactivated localization
microscopy), two-photon excitation, and Forster resonance
energy transfer or fluorescence lifetime imaging micro-
scopy, and be applied on both in vivo and in vitro specimens.
This opens significant opportunities in molecular imaging
of metabolic activities, intracellular sensing, and trafficking
as well as in vivo exploration of cell-tissue interfaces.
SUPPORTING MATERIAL
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5. Matthäus, C., T. Chernenko, ., M. Diem. 2007. Label-free detection
of mitochondrial distribution in cells by nonresonant Raman micro-
spectroscopy. Biophys. J. 93:668–673.

6. Schulmerich, M. V., K. A. Dooley, ., S. A. Goldstein. 2006. Transcu-
taneous fiber optic Raman spectroscopy of bone using annular illumina-
tion and a circular array of collection fibers. J. Biomed. Opt. 11:060502.

7. Huang, Y. S., T. Karashima, ., H. O. Hamaguchi. 2005. Molecular-
level investigation of the structure, transformation, and bioactivity of
single living fission yeast cells by time- and space-resolved Raman
spectroscopy. Biochemistry. 44:10009–10019.

8. Uzunbajakava, N., and C. Otto. 2003. Combined Raman and contin-
uous-wave-excited two-photon fluorescence cell imaging. Opt. Lett.
28:2073–2075.

9. Engel, S. R., P. Koch, ., A. Leipertz. 2009. Simultaneous laser-
induced fluorescence and Raman imaging inside a hydrogen engine.
Appl. Opt. 48:6643–6650.

10. Mahamid, J., B. Aichmayer,., L. Addadi. 2010. Mapping amorphous
calcium phosphate transformation into crystalline mineral from the cell
to the bone in zebrafish fin rays. Proc. Natl. Acad. Sci. USA. 107:6316–
6321.

11. Weiner, S. 2006. Transient precursor strategy in mineral formation of
bone. Bone. 39:431–433.

12. Olszta, M. J., X. G. Cheng, ., L. B. Gower. 2007. Bone structure and
formation: a new perspective. Mater. Sci. Eng. Rep. 58:77–116.

13. Mahamid, J., A. Sharir, ., S. Weiner. 2011. Bone mineralization
proceeds through intracellular calcium phosphate loaded vesicles: a
cryo-electron microscopy study. J. Struct. Biol. 174:527–535.

14. Crane, N. J., V. Popescu, ., M. A. Ignelzi, Jr. 2006. Raman spectro-
scopic evidence for octacalcium phosphate and other transient mineral
species deposited during intramembranous mineralization. Bone. 39:
434–442.

15. Rodo, A. P., L. Vachova, and Z. Palkova. 2012. In vivo determination of
organellar pH using a universal wavelength-based confocal microscopy
approach. PLoS One. http://dx.doi.org/10.1371/journal.pone.0033229.

16. Barilero, T., T. Le Saux,., L. Jullien. 2009. Fluorescent thermometers
for dual-emission-wavelength measurements: molecular engineering
and application to thermal imaging in a microsystem. Anal. Chem.
81:7988–8000.

17. Luby-Phelps, K., S. Mujumdar, ., A. S. Waggoner. 1993. A novel
fluorescence ratiometric method confirms the low solvent viscosity of
the cytoplasm. Biophys. J. 65:236–242.

18. Neher, E., and G. J. Augustine. 1992. Calcium gradients and buffers in
bovine chromaffin cells. J. Physiol. 450:273–301.

19. Becerra, J., G. S. Montes, ., L. C. Junqueira. 1983. Structure of the
tail fin in teleosts. Cell Tissue Res. 230:127–137.

20. Popescu, V., N. J. Crane, ., P. Steenhuis. 2005. Octacalcium phos-
phate (OCP) and other transient mineral species are observed in mouse
sutures during normal development and craniosynostosis. J. Bone
Miner. Res. 20:S106.
Biophysical Journal 106(4) L17–L19

http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00058-7
http://dx.doi.org/10.1371/journal.pone.0033229

	Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae
	Supporting Material
	Acknowledgments
	References and Footnotes


