Skip to main content
. 2013 Oct 4;15(2):207–221. doi: 10.1093/biostatistics/kxt043

Table 3.

Comparison of LD and HD models for gene expression data with L2 (top) and L1 (bottom) penalties

Predictors
Model type Overall Selected Log-likelihood c-Statistic Inline graphic
Cox
 LD 5 5 71.13 0.71 26.35
 HD 24 496 24 026 −72.10 0.76 12.75
Exponential
 LD 5 5 −86.26 0.71 16.83
 HD 24 496 24 344 −98.72 0.75 112.69
Weibull
 LD 5 5 −85.64 0.71 12.79
 HD 24 496 22 299 −85.56 0.70 9.34
Log-logistic
 LD 5 5 −85.65 0.70 14.74
 HD 24 496 22 090 −86.14 0.70 5.37
Log-normal
 LD 5 5 −52.10 0.70 16.02
 HD 24 496 24 154 −65.14 0.66 23.61
Cox
 LD 5 4 71.10 0.71 30.19
 HD 24 496 20 −72.64 0.71 7.49
Exponential
 LD 5 5 −86.27 0.71 17.14
 HD 24 496 13 −87.51 0.67 2.74
Weibull
 LD 5 5 −85.63 0.71 12.79
 HD 24 496 13 −86.80 0.66 3.75
Log-logistic
 LD 5 5 −85.65 0.70 14.71
 HD 24 496 9 −86.20 0.68 3.66
Log-normal
 LD 5 5 −52.10 0.70 15.98
 HD 24 496 9 −53.46 0.66 8.57

For L2 penalization, the number of selected predictors refers to the number of significant predictors Inline graphic. In both cases, bold emphases represent superior performance of one type of Cox model over the other. For a more comprehensive comparison, the results obtained using four parametric models (Mittal and others, 2013) are also presented in the lower parts of the table.