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SUMMARY

Principal surrogate (PS) endpoints are relatively inexpensive and easy to measure study outcomes that
can be used to reliably predict treatment effects on clinical endpoints of interest. Few statistical methods
for assessing the validity of potential PSs utilize time-to-event clinical endpoint information and to our
knowledge none allow for the characterization of time-varying treatment effects. We introduce the time-
dependent and surrogate-dependent treatment efficacy curve, TE(t |s), and a new augmented trial design
for assessing the quality of a biomarker as a PS. We propose a novel Weibull model and an estimated
maximum likelihood method for estimation of the TE(t |s) curve. We describe the operating characteristics
of our methods via simulations. We analyze data from the Diabetes Control and Complications Trial, in
which we find evidence of a biomarker with value as a PS.

Keywords: Case–control study; Causal inference; Clinical trials; Principal stratification; Survival analysis; Treatment
efficacy curve; Weibull model.

1. INTRODUCTION

A valid principal surrogate (PS) endpoint can be used as a primary outcome for evaluating and com-
paring treatments in phase I–II trials, and for predicting phase III treatment effects without requiring
large efficacy trials to directly assess clinical treatment effects. Frangakis and Rubin (2002) introduced
the principal stratification framework and a definition of a PS. Since then, alternative definitions of and
criteria for assessing a PS have been suggested and several methods for evaluation have been devel-
oped (e.g., Taylor and others, 2005; Follmann, 2006; Gilbert and Hudgens, 2008; Li and others, 2010;
Wolfson and Gilbert, 2010; Huang and Gilbert, 2011; Zigler and Belin, 2012; Huang and others, 2013).

There are two distinct strategies for assessing the value of a biomarker as a PS. Both strategies quantify
the prediction of the treatment effect on the clinical outcome; however, one bases the prediction on the
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treatment effect on the candidate PS and the other on the candidate PS under active treatment. The strength
of either predictive association can be displayed via the causal effect predictiveness (CEP) function, which
is a surface if treatment effect on the surrogate is considered or a marginal curve if the surrogate under
active treatment is considered. An example of a marginal CEP curve is the surrogate-dependent treatment
efficacy curve, TE(s) (Gilbert and Hudgens, 2008). We will focus on the active treatment PS strategy for
our methods, but we will discuss both strategies in detail outlining when they are equivalent.

To our knowledge, only one method of PS evaluation under any strategy allows for time-to-event clinical
endpoints subject to right censoring (Qin and others, 2008); however, time-constancy of treatment effects
was assumed via a proportional hazards model. Time-varying treatment efficacy occurs in many trials, for
example, Duerr and others (2012). We propose to accommodate both the use of time-to-event data and the
potential for time-varying treatment efficacy by introducing the time-dependent and surrogate-dependent
marginal treatment efficacy curve, TE(t |s). We propose an estimated maximum likelihood (EML) method
for estimating the TE(t |s) curve via a novel parameterization of the conditional Weibull distribution.

In Section 2, we outline our notation, introduce the time-dependent risk estimands, and give some
assumptions that are helpful for identifying these estimands. In Section 3, we outline the strategies for
classifying the value of a biomarker as a PS and discuss when they are equivalent. In Section 4, we outline
previously suggested augmented trial designs and introduce a new augmentation to aid in evaluation. In
Section 5, we introduce a Weibull model for the risk estimands and outline our suggested procedure for its
use in evaluating time-varying treatment efficacy. In Section 6, we outline the results of a simulation study
of the methods; in Section 7, we give the results of an analysis of the Diabetes Control and Complications
Trial (DCCT) using our proposed methods. In Section 8, we discuss some potential limitations of our
methods and make suggestions for future research. A table of acronyms can be found in Appendix B of
the supplementary material available at Biostatistics online.

2. NOTATION AND TIME-DEPENDENT RISK ESTIMANDS

2.1 Notation

Let Z be the treatment indicator, 0 for control/placebo and 1 for treatment. Let W be a baseline mea-
surement taken prior to randomization. In the principal stratification framework of Frangakis and Rubin
(2002), we use potential outcomes, where all post-randomization measures are considered under either
treatment arm for each individual. Let Ti (z) be the potential time from randomization to clinical event for
individual i had s/he received treatment z = {0, 1}. Let �(z) be the indicator of T (z) < C(z), where C(z)
is the potential censoring time. Let X (z) = Min(T (z), C(z)). Let S(z) be the candidate surrogate under
treatment arm z = {0, 1}.

The candidate surrogate S is measured at a fixed time point τ after randomization. If X (z) is less
than or equal to τ , S(z) is undefined. Subjects with X � τ are excluded from the analysis cohort.
Let R be the indicator that S(1) is observed. We assume that the observed and potential outcomes
{Zi , Wi , Ri , Si (1), Si (0), Ti (0), Ti (1), Ci (0), Ci (1),�i (0),�i (1)}, i = 1, . . . , n, are independently and
identically distributed. Let FS(1),W and FS(1)|W be the joint cumulative distribution function (CDF) of S(1)

and W and the conditional cdf of S(1) given W , respectively. Let {Si , Xi , Zi ,�i , Ri } denote the observed
variables for subject i .

2.2 Time-dependent risk estimands

In the time-to-event setting there are many ways to define risk. One could define the marginal potential
time-dependent and surrogate-dependent risks using the conditional cdf for T , F(t |s1), by

riskCDF
1 (t |s1) ≡ F1(t |s1) ≡ 1 − P{T (1) > t |S(1) = s1, T (1) > τ, T (0) > τ },
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riskCDF
0 (t |s1) ≡ F0(t |s1) ≡ 1 − P{T (0) > t |S(1) = s1, T (1) > τ, T (0) > τ }, (2.1)

where the subscript of a function indicates the level of z for the potential outcomes. Contrasts in these con-
ditional risks measure a causal effect of treatment assignment on failure time in subgroups defined by S(1).
We define one such contrast TE(t |s1) ≡ 1 − risk1(t |s1)/risk0(t |s1). This form of TE(t |s1) directly extends
the surrogate-dependent treatment efficacy curve of Gilbert and Hudgens (2008), TE(s1), to the time-
dependent setting. One could also define the risks based on the hazard function, riskHZ

z (t |s1) ≡ λz(t |s1) ≡
fz(t |s1)/Qz(t |s1), where fz(t |s1) is the conditional probability density function (pdf) of T , assuming it
exists.

Comparisons of riskHZ
1 (t |s1) and riskHZ

z0 (t |s1) are non-causal, as outlined in Hernán (2010), because the
hazard-based risk estimand in the treatment arm is conditional on a different potential set, {T (1) > t}, than
is the hazard-based risk estimand in the control arm, {T (0) > t}. Comparisons based on the hazards are still
of interest in this setting as they are comparisons over subgroups defined by levels of S(1) (Qin and others,
2008). There are also some settings, such as rare events, when {T (1) > t} and {T (0) > t} do not differ
greatly, making this much less of a concern. We use both the hazard-based TE curve, TEHZ(t |s1), and the
CDF-based TE curve, TECDF(t |s1), to illustrate our purposed methods. The flexible parameterization of
the Weibull model, given in Assumption A8, allows for the characterization of a variety of time-varying
TE when risk is hazard-based; the CDF-based TE curve is always time-dependent and does not illustrate
the nuances of time-dependent risk as well as the hazard-based TE. The CDF-based TE curve is useful for
definitive evaluation of a biomarker as a PS because it is a causal contrast of risks over the treatment arms.
Figure 1 illustrates the difference between the TECDF(t |s1) and TEHZ(t |s1) curves.

Following Qin and others (2008), Assumptions A1–A4 reduce the number of missing potential out-
comes and help identify the risk estimands from the observed data.

• A1: Stable Unit Treatment Value Assumption (SUTVA) and Consistency.

• A2: Ignorable Treatment Assignment.

• A3: Equal individual clinical risk up to time τ : T (1) < τ if and only if T (0) < τ .

• A4: Random censoring: T (z) ⊥ C(z) for z = {0, 1}.
Assumptions A1–A3 have been used and discussed previously in the literature (Gilbert and Hudgens,
2008; Gilbert and others, 2008; Qin and others, 2008). A relaxed version of Assumption A4, indepen-
dence of C(z) and T (z) conditional on S(z), is sufficient for identification of the risk estimands. However,
Assumption A4 as stated is needed to account for censoring in the manner we have prescribed in our
model, given as Assumption A8. Assumption A3 is not fully testable and will be violated in some tri-
als. We continue to make A3 here because it is plausible for our motivating example, in which there are
no failure events prior to τ . Assumptions A1–A4 imply that the conditional distribution of T (z), given
{S(1) = s1, T (1) > τ, T (0) > τ }, equals that for T given {Z = z, S(1) = s1, T > τ } for z = {0, 1}.

3. DEFINITION OF A PS

A PS was first defined in Frangakis and Rubin (2002) as a biomarker S such that causal treatment
effects on the clinical outcome only exist when causal treatment effects exist for S. Building on
Frangakis and Rubin (2002), Joffe and Greene (2009) characterized a PS as an intermediate endpoint such
that treatment effect on the surrogate can be used to reliably predict treatment effect on the clinical end-
point. Joffe and Greene (2009) and Frangakis and Rubin (2002) stated criteria that can be used to assess
biomarkers as PS using the joint risk estimands, riskz(s1, s0) ≡ P(Y (z) = 1|S(0) = s0, S(1) = s1, T (0) >
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Fig. 1. (A) Displays the TEHZ(t |s1) curve which is constant over all time-points t and the TECDF(t |s1) curve for several
time points for a useless surrogate in the time-independent hazard Weibull setting. (B) Displays the TEHZ(s1) curve
for a high-quality surrogate in the time-independent hazard setting and several TECDF(t |s1) curves for different time
points t for this same surrogate scenario. (C) Displays TEHZ(t |s1) curves for given amounts of follow-up time after τ
and over the range of s1 for a high-quality surrogate. These curves illustrate time variation in TE that is both associated
with the candidate surrogate and exists when s1 = 0; the figure depicts a candidate surrogate that declines in value
over time while the average TE is remaining approximately the same over time. (D) Displays TE(t |s1) curves for given
levels of s1 over a range of follow-up times (> τ ) in years for a medium-quality surrogate. These curves illustrate time
variation in TE that is approximately equal over all levels of the candidate surrogate; the figure depicts a candidate
surrogate that retains some value as a PS over time but for declining TE.

τ, T (1) > τ) (Gilbert and Hudgens, 2008), where Y (z) is the clinical event indicator. Frangakis and Rubin
(2002) give the criterion that a biomarker is a PS if risk1(s1, s0) = risk0(s1, s0) for all s1 = s0, which
Gilbert and Hudgens (2008) called average causal necessity (ACN). Subsequent work added a second cri-
terion that a good PS should have a risk contrast over the arms of the trial that varies widely in (s1, s0).
Together these criteria satisfy the Joffe and Greene (2009) definition of a PS.

Gilbert and Hudgens (2008) and Wolfson and Gilbert (2010) note that for a biomarker to be useful as
a surrogate it need only help group subjects by TE levels. This led to a utility-driven alternative strategy
for assessing biomarkers as PS, such that a biomarker has value as a PS if the potential treatment effect on
the biomarker under active treatment assignment can be used to reliably predict the treatment effect on the
clinical endpoint. A biomarker can be assessed under active treatment based on the marginal risks defined
given in Equation (2.1).

To assess a biomarker under the active treatment, only a marginal version of the second criterion is
needed to establish that a biomarker has value as a PS. The marginal risk criterion is that TE(t |s1) varies
widely in s1. Biomarkers satisfying this criterion are useful for evaluating future treatments, with the objec-
tive to move more treatment recipients to the s1 range where treatment is highly effective. As noted in
Gilbert and Hudgens (2008), in the special case where all of the Si (0) equal some constant c, termed con-
stant biomarker (CB), the joint second criterion and the marginal second criterion are equivalent and ACN
can be evaluated based on TE(t |s1). Our methods are based on the marginal risk estimands, and thus can
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be used to assess biomarkers under active treatment in all cases and under both arms when CB holds. For
either evaluation strategy greater variation in the TE function over the range of s1 or {s0, s1}, marginal or
joint, suggests increasing value as a PS.

4. AUGMENTED TRIAL DESIGN

The marginal risk estimands condition on S(1), which is missing for all placebo recipients in a stan-
dard clinical trial. Follmann (2006) outlined two vaccine trial design augmentations for inferring S(1) for
placebo recipients, baseline immunogenicity predictor (BIP), as coined in Gilbert and Hudgens (2008),
and closeout placebo vaccination (CPV). A useful BIP, which we will call W , is highly correlated with
S(1) and is easily measurable at baseline. Under CPV, placebo recipients uninfected and uncensored at the
end of the follow-up period for infection, � = 0, are vaccinated, and their immune response biomarker,
SCO, is measured at time τ after vaccination. BIP and CPV trial augmentation can be used in combination
or separately.

Although the BIP and CPV trial design augmentations were originally proposed in terms of vaccine
trials, they can easily be generalized to the clinical trial setting. The concept of a BIP is easily extended to
be any baseline measurement(s) that are predictive of the candidate PS. A BIP under this definition is not
a priori considered irrelevant to the clinical outcome and therefore should be considered for inclusion in
the model for outcome on a case by case basis. Similarly, the concept of CPV can be extended such that
non-active treatment arm subjects who are not censored and do not have an observed clinical event prior
to closeout, X (0) � closeout, are given treatment and then followed until trial closeout plus τ , when the
candidate surrogate is measured. In order to replace missing S(1) values with the closeout measurement
SCO, we adapt the assumptions made by Qin and others (2008).

• A5: Time constancy of the true immune response at time τ , Strue(1): for placebo recipients with
T (0) > closeout and �i (0) = �CO

i (0) = 0, Si (1) = Strue
i (1) + e1,i , and SCO

i = Strue
i (1) + e2,i , where

e1,i and e2,i are iid random errors with mean zero;

• A6: No infections during the close-out period, P{�CO(0) = 1|T (0) > closeout} = 0,

where �CO(0) is the indicator of the clinical event during the close-out period of duration τ . Assumption
A5 is not fully testable, but may be plausible when the follow-up time is not long relative to the age of the
subjects and when environmental factors are unlikely to change S(1). An obvious testable implication of
A6 is that no subjects undergoing CPV should be observed to have an event before SCO is measured. Some
deviations from A5 and A6 may be acceptable and sensitivity analysis can be performed to evaluate the
influence of such deviations.

We propose an additional trial augmentation; we will refer to this augmentation as the baseline surro-
gate measure (BSM). The BSM augmentation is defined simply as measuring the biomarker of interest
at baseline; this can be useful for multiple purposes. Under Assumption A7, given below, the BSM mea-
surement SB can replace missing S(0) values and the difference biomarker Sdiff = S − SB satisfies Case
CB P(Sdiff (0) = 0) = 1. Even when A7 does not hold, the BSM is useful as a potentially highly correlated
BIP. Assumption A7 is no change in the biomarker from baseline to τ in a non-active treatment arm. This
is stated formally as follows:

• A7: P(SB = S(0)) = 1.

Assumption A7 has testable hypotheses that the distribution of Sdiff in the control arm has point mass
at zero; violations of this assumption are easily observable. When a measurement error is present, the
measurements of Sdiff (0) may differ from zero for many subjects and A7 still holds. If it is believed that a
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measurement error is present and non-systematic, one can test for evidence against A7 by testing the null
E{Sdiff } = 0. Both tests allow for some quantification of the plausibility of A7; however, subject-matter
knowledge is just as important when determining if A7 is plausible. This augmentation is available in
our motivating data set and greater discussion of Assumption A7 and its implications for candidate PS
evaluation can be found in Section 7.

5. WEIBULL STRUCTURAL RISK MODEL

We assume a Weibull model for the conditional pdf g(·|·) of T given Z , S(1), which parameterizes both
the scale, γ = (γ00, γ10, γ01, γ11), and shape, β = (β00, β10, β01, β11), components of the Weibull model
with treatment Z and potential surrogate S(1). Specifically, our Weibull assumption A8 states that

• A8: g(t |γ, β, z, s1, δ) = λz(t |γ, β, s1)
δ Qz(t |γ, β, s1),

where Qz(t |γ, β, s1) is the parameterized conditional Weibull survivor function for the treatment arm
Z = z, and the conditional hazard function is given by

λz(t |γ, β, s1) = exp(βz0 + βz1s1)

exp(γz0 + γz1s1)

{
t

exp(γz0 + γz1s1)

}{exp(βz0+βz1s1)−1}
(5.1)

for z = {0, 1}. Given A8, the conditional likelihood of the observed data can be written as

L(β, γ, ν) ≡
n∏
i

{g(Xi |γ, β, Zi , Si (1),�i )}Ri

{∫
g(Xi |γ, β, Zi , s1,�i ) dFS(1)|W (s|Wi )

}(1−Ri )

. (5.2)

We use a parametric form for the joint cdf of S(1) and W in our simulations, FS(1),W , which implies a
form for FS(1)|W , and we estimate FS(1)|W using maximum likelihood. The choice of the estimated form
of FS(1)|W should be based on the trial data and can be tailored to the particular type of S(1) and W
data observed. The FS(1)|W model can be of any form which integration is feasible. Huang and Gilbert
(2011) use a semiparametric model for FS(1)|W and this can also be used with the Weibull model, as we
demonstrate in the DCCT example. Regardless of the choice of model for FS(1)|W , Monte-Carlo integration
is suggested over numerical integration to reduce computational burden. Once an estimate for ν̂(w) =
F̂S(1)|W (·|w) is obtained, we can use it in the likelihood above to obtain an estimated likelihood L(β, γ, ν̂)

over γ, β. We can then maximize for estimates of {β, γ }. This general approach of EML was introduced
by Pepe and Fleming (1991) and used by Follmann (2006) and Gilbert and Hudgens (2008) among others.

We state a result for the identifiability of g(·|·) in Appendix A of the supplementary material
available at Biostatistics online. Using the identifiability result for g(·|·) and following the proof in
Gilbert and Hudgens (2008), it can be shown that the observed estimated likelihood L(γ, β, ν̂) has a unique
maximum given the data from a BIP-augmented trial, provided that there are observed failures. This result
also holds in a CPV augmented trial design, following the proof of Proposition 3 in Wolfson (2009). Given
that the appropriate assumptions hold, A1–A4 and A8 for BIP and A1–A6 and A8 for CPV, as well as
implicit conditioning on {T (1) > τ, T (0) > τ }, the unique solutions to the EML imply identification of
the causal estimands of interest. Given the identifiability of g(·|·) and data augmentations, the EML esti-
mators are also consistent for {γ, β} for consistent ν̂ (Pepe and Fleming, 1991). However, the asymptotic
distributional results of Pepe and Fleming (1991) for general EML estimators do not carry over to our
setting, due to the zero probability of observing S(1) in infected placebo recipients. We suggest using the
bootstrap for variance estimation and inference.

We refer to model A8 as the time-dependent hazard TE Weibull model. The conditional risks, riskz(t |s1),
can be expressed as functions of the coefficients {β, γ } for any of the conditional risk forms of interest
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(i.e. based on a hazard, cumulative hazard or cdf). Although the model is depicted without the inclusion of
additional baseline that variables, baseline variables such as the BIP, W , can be included in the scale term if
it is believed they may be associated with outcome. Figure 1 depicts some example TEHZ(s1), TEHZ(t |s1),
and TECDF(t |s1) curves.

5.1 Evaluating surrogate value under the Weibull model

We propose a three-step process for evaluating a potential PS using the above estimation method.

• Step 1: Fit the time-dependent-hazard TE Weibull model via EML; determine the EML estimates
by maximizing L(β, γ, ν̂), where L(β, γ, ν) is defined in Equation (5.2).

• Step 2: Test for time-varying conditional hazard-based treatment efficacy, H01: TEHZ(t |s1) =
TEHZ(s1), by testing (β11 − β01) = (β10 − β00) = 0.

• Step 3: If the data support H01, fit the time-independent hazard TE Weibull model, outlined below
and in Appendix A of supplementary material available at Biostatistics online. Use estimates from
this model for figures and inference on surrogate quality. If the data support rejection of H01, use
the time-dependent-hazard TE model estimates for figures and inference on surrogate quality.

The testable null hypotheses of interest are as follows:

• H01: TEHZ(t |s1) = TEHZ(s1), Null equivalent (β11 − β01) = (β10 − β00) = 0;

• H0∗
2: TEHZ(s1) = TEHZ, Null equivalent β∗

1 = γ ∗
11 − γ ∗

01 = 0;

• H02: TEHZ(t |s1) = TEHZ(t), Null equivalent β11 = β01 = {γ01 exp(β00) − γ11 exp(β10)} = 0;

• H0∗
3: TECDF(t |s1) = TECDF(t), Null equivalent β∗

1 = γ ∗
11 = γ ∗

01 = 0;

• H03: TECDF(t |s1) = TECDF(t), Null equivalent β11 = β01 = γ01 = γ11 = 0.

We suggest Wald tests for all nulls. If we fail to reject H01, we use a simpler model for inference that
fully characterizes the scale component γ ∗ and only allows for terms in the shape component β∗ that will
affect hazard-based risk equally for the two treatment groups (parameterization outlined in Appendix A of
supplementary material available at Biostatistics online). We refer to this model as the time-independent
hazard TE Weibull model and place stars on the {β, γ } model coefficients to distinguish them from their
time-dependent hazard TE counterparts. This model can again be fit via EML and can also accommodate
the inclusion of baseline variables in the scale parameter.

The justifications for the coefficient equivalents of H02 and H0∗
2 are not conceptually difficult but

require some algebra and are given in Appendix A of supplementary material available at Biostatistics
online. The CDF-based TE is always time-dependent and nulls based on it are always a subset of the null
space of the hazard-based TE tests for the same model. For this reason, we suggested testing both the
hazard-based TE null and the CDF-based TE null, accounting for multiple testing, to evaluate a biomarker
as having any value as a PS. Sequential testing is also suggested; if the data do not support rejection of H01,
the appropriate tests for any surrogate value are H0∗

2 and H0∗
3. Similarly, when data do support rejection of

H01, the appropriate tests for any surrogate value are H02 and H03.
If case CB holds for S or Sdiff , via BSM and Assumption A7, then assessment of ACN can be made

using the marginal risk estimands as parameterized by the Weibull models; tight confidence intervals
about TECDF(t |c) that include c for all t of interest are support for ACN. Further discussion of the different
strategies of PS evaluation can be found in the discussion section and above in Section 3.



258 E. E. GABRIEL AND P. B. GILBERT

The time-dependent hazard model allows for time variation of TEHZ in many forms, as illustrated in
Figure 1. If the data support rejection of the null hypothesis H01, the most comprehensive way to evaluate
the time variation is to plot the estimated TEHZ(t |s1) for a range of s1 values for several different time points
of interest. In addition, one can plot the estimated TEHZ(t |s1) for a range of time points t > τ and less than
the longest follow-up time, for several different s1 values. These plots provide a clear visual indication of
the surrogate value of S as well as the meaning of any significant time variation; an example of this type of
plot can be seen Figure S1 in Appendix B of the supplementary material available at Biostatistics online.
Hypothesis tests can be used to provide inference about the nature of the time dependence depicted by
the TEHZ(t |s1) curve. Some suggested coefficient-based hypothesis tests are outlined in Appendix A of
supplementary material available at Biostatistics online.

6. SIMULATION

Simulated data follow a 1:1 randomized, two-arm trial with 2000 subjects per treatment arm using the
various case–control sampling designs for CPV and BIP. Suppose that the conditional cdf of T , given S(1)

and Z , follows a Weibull model and that {S(1), W } follows a bivariate normal model with correlation ρW S .
Information lost to drop-out occurs completely at random, and occurs at a rate of 5% per year. Event times
are censored at 3 years post τ , at which time the trials have 50% TE on average, with an average of 104
treatment group infections and 208 placebo group infections over the 1000 simulated trials. This follows
the HIV vaccine trial design proposed in Gilbert and others (2011).

We investigate Weibull models for T given S(1) and Z under 7 different scenarios. We investigate three
different PS quality levels which characterize time-independent hazard-based TE curves: a high quality
surrogate, a marginal quality surrogate, and a useless surrogate. We call these the time independent sce-
narios. We also consider four scenarios with differing amounts of time dependence in TEHZ(t |s1). We
investigate a high-quality surrogate and a marginal-quality surrogate with time dependence in TEHZ(t |0)

alone and a high-quality surrogate and a marginal-quality surrogate under time-dependence that is both
associated with the surrogate quality and with TEHZ(t |0). We refer to this as the multiple time-dependent
scenario, labeled as “Multi Time-dep” in Tables 1, 2 and 3, and all four settings with time-dependence as
the time-dependent scenarios.

We also consider six different types of case–control sampling of S(1)/SCO all for ρW S = 0.8. The six
case–control sampling scenarios considered are broken into two groups of three to consider the issues
of case–control sampling of S(1) and SCO separately. First, we consider case–control sampling of SCO,
measuring S(1) for all treated subjects. Case–control sampling of SCO refers to obtaining SCO measure-
ments from a random sample of non-active treatment subjects for whom Xi (0) � closeout. We consider 1:5
case–control sampling of SCO, no sampling of SCO, and sampling of all non-active treatment subjects with
Xi (0) � closeout. We then investigate the effects of subsampling of S(1), by holding case–control sampling
of S(1) at 1:5 and again varying sampling of SCO between 1:5 case–control, no sampling, and all non-active
treatment subjects with δ = 0. Case–control sampling of S(1) is the same as that for SCO, with the addition
of obtaining S(1) measurements for all treated subjects with observed events at closeout, �i = 1.

Table 1 displays the percent bias for various points on the TEHZ(t |s1) and TECDF(t |s1) curves for
each of the seven surrogate types and 6 sampling scenarios. We find that the Weibull EML estimation
method has satisfactory performance in terms of minimal percent bias for points on both the TEHZ(t |s1)

and TECDF(t |s1) curves and with average bias less than one Monte Carlo standard error in all cases. In
addition, all model coefficient estimates have minimal bias, with all estimates of mean bias well within
one Monte Carlo standard error (results not shown).

We display in Tables 2 and 3 the results from Wald tests of H01–H03 and H0∗
2–H0∗

3 for each of the
seven surrogate scenarios and 6 sampling scenarios; Monte Carlo standard errors are used in the Wald
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Table 1. Percent Bias: two-arm trial for given sampling of SCO and S(1); for W and S(1) correlation (0.8)

Time Indep. TEHZ(t |0) Time-dep. Multi Time-dep. Time Indep. TEHZ(t |0) Time-dep. Multi Time-dep.

Estimand No Val. Some Val. High Val. Some High Some High No Some High Some High Some High

Full sampling SCO and S(1) 1:5 SCO and full S(1)

TEHZ(1|2) −0.50 −1.10 −0.90 0.20 0.00 0.20 0.70 −0.40 −1.10 −0.80 0.10 0.20 0.10 0.60
TEHZ(3|4) 0.10 −0.40 −0.10 −1.50 −0.10 −1.40 0.10 0.10 −0.40 −0.10 −1.60 0.00 −1.70 0.10
TECDF(1|2) −0.50 −1.10 −0.90 0.40 0.30 0.40 0.40 −0.50 −1.10 −0.80 0.20 −0.00 0.80 0.60
TECDF(3|4) −0.40 −0.40 −0.10 −1.40 0.00 0.00 0.20 0.10 −0.40 −0.10 −1.50 −0.30 −0.40 −0.00

No SCO and full S(1) full SCO and 1:5 S(1)

TEHZ(1|2) −0.70 −1.20 −0.70 −0.20 0.40 0.50 0.70 −0.70 −1.20 −0.70 −0.20 0.40 0.50 0.70
TEHZ(3|4) 1.00 −0.50 0.10 −1.90 −0.30 −1.20 −0.10 1.00 −0.50 0.10 −1.90 −0.30 −1.20 −0.10
TECDF(1|2) −0.60 −1.10 −0.70 0.30 0.50 0.40 0.30 −0.60 −1.10 −0.70 0.30 0.50 0.40 0.30
TECDF(3|4) 0.80 −0.40 0.00 −0.80 0.40 −0.10 0.20 0.80 −0.40 0.00 −0.80 0.40 −0.10 0.20

1:5 SCO and S(1) no SCO and 1:5 S(1)

TEHZ(1|2) −0.70 −1.10 −0.70 −0.10 0.30 0.50 0.70 −0.50 −1.10 −0.60 0.00 0.10 0.30 0.60
TEHZ(3|4) 0.10 −0.50 0.00 −1.60 −0.20 −1.60 −0.10 0.10 −0.30 −0.10 −1.40 −0.20 −1.30 −0.10
TECDF(1|2) −0.60 −1.10 −0.70 0.30 0.50 0.40 0.30 −0.60 −1.10 −0.60 0.40 0.50 0.30 0.30
TECDF(3|4) 0.00 −0.50 0.00 −1.30 0.20 −0.40 0.10 0.00 −0.30 −0.10 −1.20 0.00 −0.30 0.10

Average bias over the 1000 simulations less than 1 Monte Carlo standard error in all cases.
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Table 2. Proportion of Rejections: two-arm trial when S(1) is measured on all treated sub-
jects and given sampling of SCO; W ,S(1) correlation (0.8)

Time indep. TEHZ(t |0) Time-dep. Multi time-dep. TEHZ(t |s1)

Null No val. Some val. High val. Some High Some High

Full sampling SCO

PH† 0.05 0.04 0.05 0.37 0.42 0.59 0.53
H01

‡ 0.04 0.05 0.09 0.41 0.50 0.84 0.74
H0∗

2
§ 0.05 0.45 1.00 0.34 0.90 0.43 0.92

H02
¶ 0.06 0.30 1.00 0.26 0.88 0.48 0.94

H0∗
3
‖ 0.06 0.90 1.00 1.00 1.00 1.00 1.00

H03
# 0.05 0.86 1.00 1.00 1.00 1.00 1.00

1:5 case:control sampling SCO

H01
‡ 0.08 0.05 0.10 0.40 0.48 0.83 0.73

H02
§¶ 0.06 0.43 1.00 0.25 0.81 0.43 0.90

H03
‖# 0.07 0.90 1.00 1.00 1.00 1.00 1.00

No sampling SCO

H01
‡ 0.08 0.08 0.09 0.40 0.49 0.84 0.75

H02
§¶ 0.06 0.45 1.00 0.26 0.86 0.45 0.90

H03
‖# 0.06 0.90 1.00 1.00 1.00 1.00 1.00

†Proportional hazards test based on the Cox model.
‡Test of TEHZ(t |s1) = TEHZ(s1) based on a joint Wald test of (β11 − β01) = (β10 − β00) = 0.
§ Test of TEHZ(s1) = TE based on a Wald test of β∗

1 = (γ ∗
11 − γ ∗

01) = 0.
¶Test of TEHZ(t |s1) = TEHZ(t) based on a Wald test β11 = β01 = (γ01 exp(β00) − γ11 exp(β10)) = 0.
§¶The model-specific test of surrogate value based on the hazard, test § in the time-independent case and test ¶ in
the time-dependent.
‖Test TECDF(t |s1) = TE(t) based on a Wald test of β∗

1 = γ ∗
11 = γ ∗

01 = 0.
#Test TECDF(t |s1) = TE(t) based on a Wald test of β11 = β01 = γ11 = γ01 = 0.
‖#The model-specific test of surrogate value based on the CDF, test ‖ in the time-independent case and test # in the
time-dependent.

tests due to the computational burden of the bootstrap. We also display the power of a test of proportional
hazards (PH), TE(t) = TE, using a Cox model containing treatment alone based on the Schoenfeld resid-
uals (Grambsch and Therneau, 1994). We find that with full sampling the Cox-based PH test has lower
power to reject H01 than the Weibull model-based test. We find that the test of H01 has power ranging
from 0.37 to 0.84 and nearly correct type 1 error.

We also display in Table 2 the results for the tests of the nulls H02 and H03, for all of the surrogate
scenarios and two of the sampling scenarios based on the time-dependent hazard Weibull model. We find
that both tests have adequate power and correct size in the time-independent hazard scenarios. Tests of the
nulls H02 and H03 have noticeably less power than the tests of H0∗

2 and H0∗
3 in the truly time-independent

hazards scenarios; this justifies reverting to the simpler model when there is no evidence of time-dependent
hazards. In the time-dependent hazard setting, the tests of H02 and H03 have power ranging from (0.21–
1.00). The CDF-based TE test of any surrogate value, testing null H03, has markedly better power than
H02 is all cases. This is also true in the time-independent hazard scenarios, where H0∗

3 has markedly better
power than H0∗

2 is all cases.
The non-hierarchical power and type 1 error rate of testing H02 and H0∗

2 over the various sampling
scenarios can be seen in Tables 2 and 3. To evaluate type 1 error and power, the entire suggested hierarchical
testing procedure for assessing surrogate value was followed for all full sample simulations. Under this
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Table 3. Proportion of Rejections: two-arm trial for 1 : 5 case–control subsampling S(1) and
given sampling of SCO ; W ,S(1) correlation (0.8)

Time indep. TEHZ(t |0) Time-dep. Multi time-dep. TEHZ(t |s1)

Null No val. Some val. High val. Some High Some High

Full sampling SCO

H01
‡ 0.08 0.05 0.09 0.39 0.47 0.82 0.73

H02
§¶ 0.05 0.39 0.99 0.21 0.78 0.35 0.88

H03
‖# 0.06 0.87 1.00 1.00 1.00 1.00 1.00

1:5 case:control sampling SCO

H01
‡ 0.07 0.05 0.08 0.38 0.46 0.82 0.72

H02
§¶ 0.05 0.42 1.00 0.22 0.79 0.37 0.86

H03
‖# 0.06 0.86 1.00 1.00 1.00 1.00 1.00

No sampling SCO

H01
‡ 0.08 0.05 0.09 0.39 0.47 0.83 0.72

H02
§¶ 0.05 0.43 1.00 0.21 0.78 0.36 0.85

H03
‖# 0.06 0.87 1.00 1.00 1.00 1.00 1.00

‡Test of TEHZ(t |s1) = TEHZ(s1) based on a joint Wald test of (β11 − β01)=(β10 − β00) = 0.
§ Test of TEHZ(s1) = TE based on a Wald test of β∗

1 = (γ ∗
11 − γ ∗

01) = 0.
¶Test of TEHZ(t |s1) = TEHZ(t) based on a Wald test β11 = β01 = (γ01 exp(β00) − γ11 exp(β10)) = 0.
§¶The model-specific test of surrogate value based on the hazard, test § in the time-independent case and test ¶ in
the time-dependent.
‖Test TECDF(t |s1) = TE(t) based on a Wald test of β∗

1 = γ ∗
11 = γ ∗

01 = 0.
#Test TECDF(t |s1) = TE(t) based on a Wald test of β11 = β01 = γ11 = γ01 = 0.
‖#The model-specific test of surrogate value based on the CDF, test ‖ in the time-independent case and test # in the
time-dependent.

procedure we found that correct type 1 error and power was approximately the same as a power-of-H01-
weighted average of H02 and H0∗

2. For example, the power for the hierarchical procedure for the high-
quality surrogate with multiple types of time dependence is 0.935, which is almost exactly Power[H01] ∗
Power[H02] + 1 − Power[H01] ∗ Power H0∗

2 for that scenario. This was similarly found for null hypotheses
H03 and H0∗

3, suggesting that the hierarchical procedure maintains the correct size in all scenarios.
Power to reject all nulls declines from full sampling to case–control sampling of S(1)/SCO. This decline

is much more noticeable in the tests of surrogate quality; this is not surprising given that the coefficients
involved in testing are associated with s1. It is clear from a comparison of Tables 2 and 3 that subsampling
of S(1) has a greater impact on power than subsampling of SCO. In some of our simulation scenarios there
exists a paradox of reduced power with increased sampling of SCO for a fixed level of S(1) sampling;
this paradox was first observed in Gilbert and others (2011). The paradox is a characteristic of the EML
estimator as explained in Huang and others (2013). For weaker BIP, adding SCO has been shown in previous
works to improve power compared with BIP alone (Gilbert and others, 2011).

The simulations for full sampling were repeated for lower-quality BIPs with ρWS = {0.5, 0.25} (Table S1
in Appendix B of supplementary material available at Biostatistics online). As expected, power decreases
rapidly and bias increases slowly as ρWS decreases. Hence, highly predictive BIPs are essential for accurate
and reasonably precise PS evaluation for EML-based methods; this was also found to be true in previous
works (Follmann, 2006; Gilbert and Hudgens, 2008; Huang and Gilbert, 2011). Based on our simulation
results, the 0.701 correlation in our motivating example is adequate for unbiased and reasonably precise
estimation via the Weibull EML method.
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7. DCCT EXAMPLE

The DCCT enrolled 1441 persons with type 1 diabetes from 1983 to 1989 to determine the effects of
intensive diabetes therapy on long-term complications of diabetes. Participants in DCCT were randomly
assigned to intensive diabetes therapy aimed at lowering glucose concentrations as close as safely possible
to the normal range or to conventional therapy aimed at preventing hyperglycemic symptoms. One of the
outcomes of the DCCT, nephropathy (damage to the kidneys), is the leading cause of death and dialysis
in the young with type 1 diabetes, particularly those with poorly controlled glucose levels. Nephropathy is
often defined by a high albumin excretion rate, as micro-albuminuria (defined as an albumin excretion rate
> 30 mg/24 h) is the best non-invasive indicator of kidney damage. The trial ended early in 1993 due to
overwhelming evidence of treatment efficacy, with an average of 6.5 years of follow-up; the estimated
adjusted mean risk of micro-albuminuria was reduced by 56%, P-value 0.01 (DCCT/EDIC Research,
2011).

The current study includes all participants who were free from micro-albuminuria at baseline (n =
1035); baseline micro-albuminuria was balanced over the arms of the trial. The difference in log-
transformed hemoglobin A1C (HBA1C) measurements from baseline to year 1 is the candidate PS. The
event of interest is the onset of persistent micro-albuminuria, which is defined as having two consecu-
tive albumin excretion rate measurements > 30 mg/ g. Right censoring occurs due to drop-out or due to
the end of the trial in 1993. No subject had an event prior to τ = 1 year post-randomization. All subjects
had the BIP measured, which was defined as a linear combination of the BSM measurement, age, BMI
and smoking status fit via linear regression to change in HBA1C using the Akaike information criterion.
The estimated Spearman correlation between the BIP and the candidate PS is (0.7). We use a linear com-
bination of baseline variables here to demonstrate that a set of weaker BIPs can be combined to form a
higher-quality BIP; when fitting a linear combination, care should be taken to only include variables that
truly improve predictive power and to avoid overfitting.

We fit the time-dependent hazard Weibull model to these data assuming a semiparametric location-
scale model for S(1)|W and assuming a parametric normal model. We found that the results were nearly
identical, but the parametric model was more efficient. We found only marginal evidence of time depen-
dence (P-values > 0.14), and for parsimony we use the time-independent hazard model as the main model
for analysis. Figure S1 in Appendix B of the supplementary material (available at Biostatistics online)
depicts the time-dependent hazard model for the parametric analysis. Under the time-independent haz-
ard Weibull model we find evidence to support that 1-year change in HBA1C is a high-quality sur-
rogate as the P-values for testing both H0∗

3 and H0∗
2 are < 0.001 for both the semiparametric and the

parametric analysis. Figure 2 illustrates the estimated TEHZ(s1) and TECDF(t |s1) curves for the time-
independent hazard model, assuming a location-scale model for S(1)|W . Figure 2 in Appendix B of
the supplementary material (available at Biostatistics online) depicts these same results for the paramet-
ric analysis. We also ran the analysis adjusting for the BIP. The adjusted models were very similar to
the unadjusted, with all P-values within the same range as the unadjusted analysis and very similar TE
curves.

There is evidence to suggest that Assumption A7 does not hold if there is no measurement error. As
there is information to suggest the presence of measurement error in these measurements of HBA1C, we
also test the null E{S(0)} = 0 and find that this suggests no evidence against A7; (P-value 0.863). Figure 3
in Appendix B of the supplementary material (available at Biostatistics online) depicts the observed asso-
ciation between one year change in HBA1C and the clinical outcome separately by treatment arm. The
estimated TE(0) is 0.13 (95% CI −1.27, 0.458) for the semiparametric analysis; the P-value for TE(0) = 0
is 0.228. This is consistent with but not supportive of ACN. This is not surprising as treatment continued
for 9 years after the candidate surrogate was measured. However, 1-year change in HBA1C under active
treatment still strongly modifies the TEHZ(s1) and TECDF(t |s1) curves. Therefore, HBA1C reduction at
year 1 is a good target for treatments in this setting.
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Fig. 2. Time-independent hazard Weibull EML analysis assuming a location-scale model S(1)|W using the DCCT trial
data with the difference of log baseline and log 1 year hemoglobin A1C as the candidate PS. The left panel depicts
the estimated TEHZ(s1) for the DCCT data and illustrates a highly variable curve over the range of the difference
of log baseline and log 1 year hemoglobin A1C, suggesting a biomarker that is valuable as a target in future trials.
The right panel depicts the estimated TECDF(t |s1) for the DCCT data and again suggests a highly variable curve. The
TECDF(t |s1) curves are displayed for time points t = {1, 3, 6.5, 9} to illustrate differences over a range of follow-up
times observed in the trial; little to no difference can be seen in the CDF-based curves over time.

8. DISCUSSION

PSs are important endpoints for Phase I and II trials. Few PS evaluation methods allow for a time-to-event
clinical endpoint with right-censoring and, to our knowledge, none allow for or characterize the time-
dependent effects of the treatment. There is evidence of time-varying treatment effects in many treatment
and vaccine efficacy trials. Methods of PS evaluation that do not allow for or characterize time-varying
effects may classify potential PS as high-quality ignoring their lack of durability or dismiss high-quality
surrogates in trials that have rapidly waning TE.

The time-dependent hazard TE Weibull model allows for the characterization of the time-varying treat-
ment effects in the time-to-event setting. The EML method is an adequate means to estimate the parameters
of the time-dependent hazard TE Weibull model, allowing for flexible modeling of the PS given BIP dis-
tribution. The EML estimators perform well when there is a highly predictive BIP, but the need for a highly
correlated BIP is a limitation of EML estimation. When a highly correlated BIP is available, EML is con-
sistent and relatively efficient without requiring Y (0) ⊥ S(1) as was recently suggested by Zigler and Belin
(2012).

The CPV argumentation does not seem to materially improve power with EML estimation. This suggests
that full likelihood should be considered as an alternative to EML when CPV is available, (Follmann, 2006).
Huang and others (2013) develop a pseudoscore method for PS evaluation that improves efficiency over
EML methods when CPV is available. However, in cases where CPV is not available, EML methods and
pseudoscore methods perform similarly and an extension of the pseudoscore method to time-to-event has
yet to be developed.
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There are two concepts of what makes a biomarker useful as a PS. For one, the quality of a biomarker
as a PS can be measured by the degree of variation in the marginal treatment efficacy curve TE(t |s1)

over the biomarker under the active treatment and for the other evaluation of the biomarker under both
trial arms is required. When the CB holds, these concepts are equivalent. We have proposed a BSM trial
augmentation plus assumption, A7, that increases the number of trials where CB is likely to hold for some
candidate PS. The suggested BSM augmentation is likely feasible when the candidate surrogate of interest
is not difficult to measure at baseline. In trials with adequate augmentation, our methods can be useful for
evaluating biomarkers under active treatment as surrogates for time-to-event clinical endpoints regardless
of the validity of assumption CB and under both concepts of principal surrogacy when the CB holds.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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