
HIV-1 Triggers WAVE2 Phosphorylation in Primary CD4 T
Cells and Macrophages, Mediating Arp2/3-dependent
Nuclear Migration*

Received for publication, June 6, 2013, and in revised form, January 8, 2014 Published, JBC Papers in Press, January 10, 2014, DOI 10.1074/jbc.M113.492132

Mark Spear‡, Jia Guo‡, Amy Turner‡, Dongyang Yu‡, Weifeng Wang‡, Beatrix Meltzer‡, Sijia He§, Xiaohua Hu¶,
Hong Shang§, Jeffrey Kuhn¶, and Yuntao Wu‡1

From the ‡National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason
University, Manassas, Virginia 20110, the §Key Laboratory of Immunology of AIDS, Ministry of Health, the First Affiliated Hospital,
China Medical University, Shenyang, Liaoning province 110001, China, and the ¶Department of Biological Sciences, Virginia Tech,
Blacksburg, Virginia 24060

Background: Arp2/3 and the upstream modulator, WAVE2, regulate actin branching and polymerization.
Results: HIV triggers WAVE2 phosphorylation for Arp2/3 activity, which is essential for nuclear migration.
Conclusion: Arp2/3 and WAVE2 are cellular cofactors hijacked by HIV for intracellular migration.
Significance: HIV-mediated WAVE2-Arp2/3 activity may serve as novel therapeutic targets.

The human immunodeficiency virus type 1 (HIV-1) initiates
receptor signaling and early actin dynamics during viral entry.
This process is required for viral infection of primary targets
such as resting CD4 T cells. WAVE2 is a component of a multi-
protein complex linking receptor signaling to dynamic remod-
eling of the actin cytoskeleton. WAVE2 directly activates
Arp2/3, leading to actin nucleation and filament branching.
Although several bacterial and viral pathogens target Arp2/3 for
intracellular mobility, it remains unknown whether HIV-1
actively modulates the Arp2/3 complex through virus-mediated
receptor signal transduction. Here we report that HIV-1 triggers
WAVE2 phosphorylation at serine 351 through gp120 binding
to the chemokine coreceptor CXCR4 or CCR5 during entry.
This phosphorylation event involves both G�i-dependent and
-independent pathways, and is conserved both in X4 and R5 viral
infection of resting CD4 T cells and primary macrophages. We
further demonstrate that inhibition of WAVE2-mediated
Arp2/3 activity through stable shRNA knockdown of Arp3
dramatically diminished HIV-1 infection of CD4 T cells, pre-
venting viral nuclear migration. Inhibition of Arp2/3 through a
specific inhibitor, CK548, also drastically inhibited HIV-1
nuclear migration and infection of CD4 T cells. Our results sug-
gest that Arp2/3 and the upstream regulator, WAVE2, are
essential co-factors hijacked by HIV for intracellular migration,
and may serve as novel targets to prevent HIV transmission.

The heptameric Arp2/3 complex is a major actin branching
and nucleation factor that regulates the actin cytoskeleton. The
Arp2/3 complex is activated by nucleation-promoting factors

(NPFs)2 such as N-WASP, WASP, and WAVE proteins
through a unique WCA domain (1). During Arp2/3 activation,
the NPF’s WCA domain engages the Arp2/3 complex and
brings Arp2 and Arp3 subunits together to create a nascent
actin filament nucleus suitable for filament growth (1). This
process of actin nucleation and branching is important for cell
motility and receptor trafficking (1, 2). In addition, this Arp2/
3-mediated actin activity is also frequently hijacked by bacterial
and viral pathogens to propel intracellular migration (3– 6). In
this process, bacteria and viruses often encode and utilize the
WCA domain to mimic NPFs for Arp2/3 activation and actin
dynamics (3–5). The Human Immunodeficiency Virus Type 1
(HIV-1) also depends on actin dynamics to infect blood CD4 T
cells (7–11). During viral entry, the virus initiates chemokine
coreceptor signaling and early actin dynamics to facilitate intra-
cellular migration (7). Nevertheless, although targeting actin or
Arp2/3 can inhibit HIV (6, 12, 13), no HIV virion proteins con-
tain a WCA domain, and it is unclear how the virus actively
engages the Arp2/3 complex. We asked whether HIV is capable
of modulating Arp2/3 and upstream NPFs through chemokine
coreceptor binding and signal transduction.

Among NPFs, WAVE2 is a component of a multiprotein
complex linking receptor signaling to dynamic remodeling of
the actin cytoskeleton (14). WAVE2 directly activates Arp2/3,
leading to actin nucleation and filament branching (1). Thus,
we tested possible activation of WAVE2 by HIV during the
infection of blood resting CD4 T cells. Here we report that
HIV-1 triggers WAVE2 phosphorylation at serine 351 through
gp120 binding to the chemokine coreceptor CXCR4 or CCR5
during entry. This phosphorylation event involves both G�i-
dependent and -independent pathways, and is conserved both
in X4 and R5 viral infection of resting CD4 T cells and primary
macrophages. We further demonstrate that inhibition of
WAVE2-mediated Arp2/3 activity through stable shRNA
knockdown of Arp3 dramatically diminished HIV-1 infection
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of CD4 T cells, preventing viral nuclear migration. Inhibition of
Arp2/3 through a specific inhibitor, CK548 (15), also drastically
inhibited HIV-1 nuclear migration and infection of CD4 T cells.
Our results suggest that Arp2/3 and the upstream regulator,
WAVE2, are essential co-factors hijacked by HIV for intracel-
lular migration, and may serve as novel targets to prevent HIV
transmission.

EXPERIMENTAL PROCEDURES

Isolation of Resting CD4 T Cells and Monocytes from Periph-
eral Blood—All protocols involving human subjects were
reviewed and approved by the George Mason University Insti-
tutional Review Board. Resting CD4 T cells were purified from
peripheral blood of HIV-1 negative donors by two rounds of
negative selection as previously described (16). Briefly, for the
first-round depletion, we used monoclonal antibodies against
human CD14, CD56 and HLA-DR, DP, and DQ (BD Biosci-
ences). For the second-round depletion, we used monoclonal
antibodies against human CD8, CD11b, and CD19 (BD Biosci-
ences). Antibody-bound cells were depleted by using Dyna-
beads Pan Mouse IgG (Invitrogen). For further negative selec-
tion of the memory and naïve CD4 T cell subsets, monoclonal
antibody against either CD45RA (0.02 �l per million cells) or
CD45RO (0.1 �l per million cells) (BD Biosciences) was
added during the second round of depletion. Purified cells
were cultured in RPMI 1640 medium supplemented with
10% heat-inactivated fetal bovine serum (Invitrogen), peni-
cillin (50 units/ml) (Invitrogen), and streptomycin (50
�g/ml) (Invitrogen). Cells were rested overnight before
infection or treatment. Macrophages were differentiated
from human monocytes from the peripheral blood of HIV-1
negative donors. Briefly, two million peripheral blood mono-
nuclear cells were plated into each well of six-well plates in
serum-free RPMI 1640 medium for 1 h. Adherent cells were
cultured in RPMI 1640 plus 10% heat-inactivated fetal
bovine serum (FBS) with 10 ng/ml macrophage colony stim-
ulating factor (M-CSF) (R&D System, Minneapolis, MN) for
2 weeks with medium change for every 2 days.

Virus Preparation and Infection—Virus stocks of HIV-
1NL4 –3, HIV-1NL4 –3(AD8), and HIV-1(Yu2) were prepared by
transfection of HeLa cells with cloned proviral DNA as
described (16). Single-cycle virus HIV-1(VSV-G) and HIV-
1(Env) were prepared as previously described (17). Levels of p24
in the viral supernatant were measured in triplicate on the same
ELISA plates using an in-house ELISA Kit. Viral titer (TCID50)
was determined on the Rev-dependent GFP indicator cell Rev-
CEM (18, 19).

For viral infection, unless otherwise specified, 103.5 to 104.5

TCID50 units of HIV-1 were used to infect 106 cells. For infec-
tion, resting CD4 T cells were incubated with the virus for 2 h,
washed once, and then resuspended into fresh medium (106

cells per ml) and incubated for 5 days without stimulation. Cells
were activated with anti-CD3/CD28 magnetic beads at 4 beads
per cell. Culture supernatant (100 �l) was taken every 2 days or
daily after stimulation. Cells were removed by centrifugation,
and supernatant saved for p24 ELISA. Fresh medium was added
when needed. CEM-SS cells, either carrying shRNA knock-
down or not, were similarly infected for 2 h, washed twice, and

then resuspended into fresh medium (2 � 105 cells per ml).
Culture supernatant was taken for p24 ELISA. Rev-CEM cells
were also similarly infected, and viral infection was measured
by flow cytometry (FACSCalibur, BD Biosciences) of GFP-pos-
itive cells. To exclude drug cytotoxicity, propidium iodide (PI)
(2 �g/ml, Fluka) was added into the cell suspension prior to
flow cytometry, and only viable cells (PI negative) were used for
measuring GFP expression.

Surface Staining of CD4 and CXCR4—Cells were stained
with FITC-labeled monoclonal antibody against human CD4
(clone PRA-T4) or CXCR4 (clone 12G5) (BD Biosciences).
Cells were stained on ice in PBS � 0.1% BSA for 30 min, washed
with cold PBS-0.5% BSA, and then analyzed on a FACSCalibur
(BD Biosciences).

Chemotaxis Assay—A half million Jurkat T cells were resus-
pended into 100 �l of RPMI 1640 medium and then added to
the upper chamber of a 24-well transwell plate (Corning). The
lower chamber was filled with 600 �l of medium premixed with
SDF-1 (40 ng/ml). The plate was incubated at 37 °C for 2 h, and
then the upper chamber was removed, and cells in the lower
chamber were counted. Where indicated, CK548 and CK636
(Sigma) were added to the culture supernatant for 2 h prior to
the assay along with a DMSO control.

Viral Entry Assays—The BlaM-Vpr-based viral entry assay
was performed as previously described (7, 20). We also used a
Nef-luciferase-based entry assay as described (21). Briefly, cells
(1 � 106) were infected with 200 ng of Nef-luciferase containing
viruses at 37 °C for 2 h, and then washed three times with
medium. Cells were resuspended in 0.1 ml of luciferase assay
buffer (Promega), and luciferase activity was measured in live
cells using a GloMax-Multi Detection System (Promega).

For measuring the entry of Nef-luciferase tagged HIV-
1(VSV-G), cells (2 � 105) were infected with 500 �l of virus for
2 h at 37 °C. Cells were also pretreated with 20 mM NH4Cl for
1 h at 37 °C, and infected in the presence of 20 mM NH4Cl
for 2 h. Afterward, cells were washed twice with 3 ml of ice-cold,
serum-free RPMI, and once with 1 ml of PBS. Cells were resus-
pended in 0.1 ml of luciferase assay buffer (Promega), and lucif-
erase activity was measured. Data were normalized to within-
experiment NTC averages from three separate experiments,
with five reads from each experiment.

Viral Budding Assays—The viral budding assay was per-
formed as follows: CEM-SS cells were infected with HIV-
1(Env), a single-cycle HIV-1 virus pseudotyped with the NL4 –3
gp160 (17). Cells were infected for 12–18 h, washed for three
times, and then treated with CK548 at different dosages. Viral
budding was monitored by harvesting and measuring viral p24
in the supernatant in the presence of CK548.

shRNA Arp3 Knockdown—Plasmids (pLKO.1-puro) carrying
Arp3 shRNA (clone TRCN0000029382), and a non-targeting
shRNA (NTC) were purchased from Sigma-Aldrich. For tran-
sient Arp3 knockdown, 1 million CEM-SS cells were electropo-
rated with a total of 2 �g of plasmid DNA (shRNA-Arp3,
shRNA-NTC, or a combination of both in various ratios) using
nucleofector and Nucleofector Kit R (Lonza). Electroporation
was carried out following protocols recommended by the man-
ufacturer. Electroporated cells were cultured and infected with
HIV at 72 h post-electroporation. For lentiviral vector-medi-
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ated stable knockdown of Arp3, viral particles were assembled
by transfection of HEK 293T cells along with pCMV�8.2 and
pHCMV-G using Lipofectamine 2000 (Invitrogen). Viral parti-
cles were concentrated 20 – 40-fold using centrifugal concen-
trators (Cole-Parmer). CEM-SS cells were infected for 6 h at
37 °C and 5% CO2 and cultured for an additional 48 h prior to
antibiotic selection using 10 �g/ml puromycin (Invitrogen).
Clones were acquired by limiting dilution, culturing the cells in
50% v/v CEM-SS-conditioned RPMI.

Western Blotting—One million cells were lysed in 100 �l of
NuPAGE LDS Sample Buffer (Invitrogen). Cell lysates were
sonicated and separated in 4 –12% Bis-Tris polyacrylamide gels
(Invitorgen) and transferred to nitrocellulose membranes
(Invitrogen). The membranes were washed in TBST for 3 min
and then blocked for 30 min at room temperature using either
5% skim milk in TBS plus 0.2% Tween 20 or LiCor Blocking
Buffer (LiCor). Membranes were incubated with an anti-Phos-
pho-S351 WAVE2 antibody (Millipore) (1: 1000 dilution in
LiCor Blocking Buffer) or an anti-GAPDH antibody (Abcam)
(1:1000 dilution in 2.5% skim milk) overnight at 4 °C. For stain-
ing with secondary antibodies, IRDye 800CW Goat anti-Rabbit
IgG (LiCor) or Rabbit Anti-Goat IgG DyLight 680-labeled
(KPL) secondary antibodies were used and diluted 1:5000 in
LiCor Blocking Buffer. The blots were incubated for 1 h at 4 °C,
washed three times for 15 min, and scanned with Odyssey
Infrared Imager (Li-cor Biosciences).

WAVE2 was similarly stained with a 1:1000 dilution of rabbit
anti-WAVE2 (Cell Signaling Technology) in Tris-buffered
saline (TBS) with 0.2% Tween-20 (TBS-T) with 2.5% skim milk
(w/v) overnight at 4 °C. After three 15 min washes in TBS-T,
samples were stained for 1 h with DyLight 800-conjugated goat
anti-rabbit (KPL) at a dilution of 1:5000 and at room tempera-
ture. Subsequently, blots were washed 3 times for 15 min each
and imaged on a LiCor Odyssey Infrared Imager. Arp3 was
stained with a 1:1000 dilution of Arp3 monoclonal antibody
(Cell Signaling) in TBS-T with 2.5% skim milk overnight at 4 °C.
For secondary staining, a 1:5000 dilution of HRP-conjugated
Goat anti-rabbit antibodies were used. Chemiluminescent sig-
nal was generated using SuperSignal Femto HRP substrate
(Thermo Scientific). GAPDH was stained with goat anti-
GAPDH (Abcam, ab9483) as a 1:1000 dilution in TBS-T with
2.5% skim milk overnight at 4 °C. Secondary staining was per-
formed using 1:5000 dilution of Rabbit Anti-Goat IgG DyLight
680 (KPL, 072-06-13-06) in TBS-T with 2.5% skim milk for 1 h
at room temperature. IR-dye conjugated stains were imaged on
an ODYSSEY imaging system (Li-Cor Biosciences).

In Vitro Actin Bead Assay—Carboxylated polystyrene 4.5 �m
diameter microsphere (Polysciences, Warrington, PA) were
coated with 8.5 �M GST tagged VCA by incubation for 1 h at
room temperature. Particles were pelleted by low speed centrif-
ugation and resuspended in storage buffer (10 mM HEPES pH
7.8, 0.1 mM KCl, 1 mM MgCl2, 1 mM ATP, 0.1 mM CaCl2, 0.01%
NaN3) containing 1 mg/ml bovine serum albumin (BSA, Sigma-
Aldrich) to block subsequent nonspecific binding. Particles
were stored at 4 °C for up to 1 week. For reconstitution of bead
motility, glass slides and coverslips were cleaned and blocked
overnight in 1% BSA at 4 °C and dried in air before use. We
placed 16 �l of reaction mixture on a BSA coated slide, covered

with a BSA coated coverslip, and sealed the chamber with
VALAP. Labeled and unlabeled Ca-ATP actin were diluted to
the desired labeled fraction, mixed 9:1 with 10� magnesium
exchange buffer (10� ME: 10 mM EGTA, 1 mM MgCl2) and
incubated on ice for 2 min to form 4� final concentrations of
Mg-ATP actin. We placed 8 �l of Mg-ATP actin at the bottom
of a 1.5 ml Eppendorf tube and added 7 �l of motility protein
mixtures with or with no Arp2/3 complex inhibitor and 1 �l of
coated nanofibers or beads on the side of the tube. We washed
both drops together with 16 �l 2� TIRF buffer (2x: 100 mM

KCl, 2 mM MgCl2, 2 mM EGTA, 20 mM imidazole, pH 7.0, 200
mM DTT, 0.4 mM ATP, 30 mM glucose, 0.25% 1500 cP methyl-
cellulose, 40 �g/ml catalase, 200 �g/ml glucose oxidase) and
placed the reaction mixture in slide-coverslip as described
above. For Image acquisition and processing, actin fluorescence
was observed with a 60 � 1.49 NA TIRF objective on an Olym-
pus IX2 inverted microscope. Images were captured with a
Retiga EXi cooled CCD camera (QImaging) using SlideBook
image acquisition software (Intelligent Imaging Innovations,
Inc). All subsequent image-processing steps were performed in
ImageJ, available at http://rsbweb.nih.gov/ij. Epi-fluorescence
microscopy images were unprocessed. Images were cropped for
publication.

Quantitative Real-time PCR—Viral DNA quantification was
carried out using the Bio-Rad iQ5 real-time PCR detection system,
utilizing the forward primer 5�LTR-U5, the reverse primer 3� gag,
and the probe FAM-U5/gag (7). Pre-qualified, full-length proviral
plasmid pNL4–3 was used as the DNA standard. Viral DNA and
2-LTR circles in shRNA lentiviral vector- transduced cells
(shNTC, shArp-12, and shArp-13) were measured as described
previously (8). For measuring 2-LTR-circles (22), the DNA was
amplified by real-time PCR with primers and probe MH536,
MH535, and MH603 (23, 24). For real-time PCR quantification of
the nef transcripts, total cellular RNA was extracted with SV Total
RNA isolation system (Promega), and then reverse transcribed
into cDNA using random decamers and M-MLV reverse tran-
scriptase as previously described (16). Nef cDNA was further
quantified by real time PCR using primers 5� Nef (5�-GGCGGC-
GACTGGAAGAA-3�), 3� Rev (5�-AGGTGGGTTGCTTT-
GATAGAGAAG-3�), and the probe Nef/Rev (5�-FAM-CGGAG-
ACAGCGACGAAGAGCTCATC-TAMRA-3�).

Conjugation of Antibodies to Magnetic Beads—Monoclonal
antibodies against human CD3 (clone UCHT1) and CD28
(clone CD28.2) were from BD Pharmingen (BD Biosciences).
For conjugation, 10 �g of antibodies were conjugated with 4 �
108 Dynabeads Pan Mouse IgG (Invitrogen) for 30 min at room
temperature. Free antibodies were washed away with PBS �
0.5% BSA, and the magnetic beads were resuspended in 1 ml of
PBS � 0.5% BSA.

Confocal Microscopy—Stained cells were imaged using a
Zeiss Laser Scanning Microscope, LSM 510 META, with a 40
NA 1.3 or 60 NA 1.4 oil DIC Plan-Neofluar objective. Samples
were excited with the 488 nm laser line for FITC. Images were
processed and analyzed with LSM 510 META software.

Statistical Analysis—All statistical analyses were performed
by unpaired, two-sample t test assuming a normal distribution.
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RESULTS

HIV-1 Infection Triggers WAVE2 Phosphorylation—To
detect possible WAVE2 activation by HIV-1, we used WAVE2
serine 351 as a convenient marker, as WAVE2 activity is regu-
lated through multiple serine phosphorylations (25, 26). We
observed a rapid phosphorylation of WAVE2 in resting CD4 T
cells following infection with HIV-1 (Fig. 1A). In prior studies,
activation of the actin modulator cofilin was linked to G�i-de-
pendent chemokine coreceptor signaling by HIV gp120 binding
(7, 8). We pretreated resting CD4 T cells with pertussis toxin
(PTX), an inhibitor that uncouples G�i from the chemokine

coreceptor. PTX treatment largely eliminated late signal trans-
duction to WAVE2, but not early signal transduction (Fig. 1B),
suggesting the involvement of an early G�i-independent and
late G�i-dependent pathway. Signaling from both G�i and G�q
has been known to be involved in HIV infection (7, 8, 27, 28).
Given that HIV triggers higher levels of actin activity to pro-
mote latent infection of resting memory CD4 T cells (9) (Fig. 1,
C and D), we treated resting memory CD4 T cells with HIV-1.
Activation of WAVE2 was also observed, and the phosphory-
lation was blocked by a CXCR4 antagonist AMD3100 (Fig. 1E).
Consistent with these data, pseudotyping HIV with the CD4/
CXC4-independent VSV-G (vesicular stomatitis virus G glyco-
protein) caused a decrease in WAVE2 activation (Fig. 1, F and
G). These results demonstrated that HIV actively engages
WAVE2 and the Arp2/3 complex through CXCR4 signaling to
modulate actin activity in resting T cells. Actin dynamics are
also important for HIV infection of macrophages (29), we
therefore treated macrophages with R5 HIV. Both HIV-1YU2
and HIV-1NL4 –3(AD8) induced WAVE2 phosphorylation in
macrophages (Fig. 1, H and I), implying that HIV-1-induced
WAVE2 phosphorylation is conserved in both X4 and R5
infection.

ShRNA Knockdown of Arp3 Inhibits HIV-1 Nuclear Migra-
tion and Infection of CD4 T Cells—WAVE2 activates Arp2/3,
leading to actin nucleation and filament branching. To expli-
cate the role of Arp2/3 in HIV-1 infection, we first performed a
transient knockdown of Arp3 in CEM-SS cells. Cells were elec-
troporated with 3 different dosages of a lentiviral vector,
pLKO.1-Puro, carrying Arp3 shRNA or a non-targeting shRNA
(NTC). Knockdown cells were infected with HIV-1 at 3 days
post electroporation. As shown in Fig. 2A, we observed signifi-
cant inhibition of HIV infection (6). To further confirm these
results, we performed lentiviral vector-mediated stable shRNA
knockdown of Arp3 in CEM-SS T cells, using a similar
approach to the knockdown of LIMK1 (8). Individual cells were
cloned, and we obtained 5 clones carrying stable shRNA against
Arp3 (Fig. 2B). All of these cells showed a decreased capacity to
support HIV-1 infection, and 4 of the 5 clones, including shArp-
09, shArp-10, shArp-12, and shArp-13, showed a strong
impairment in supporting HIV infection (Fig. 2C).

To further delineate the molecular mechanism of how inhib-
iting Arp3 affects HIV early steps, we selected shArp-12 and
shArp-13 for further characterization. Both clones exhibited
diminished Arp3 expression (70 and 80% reduction, respec-
tively) (Fig. 3A). Additionally, shArp-12, but not shArp-13, had
decreased surface expression of CD4, while both shArp-12 and
shArp-13 had slightly decreased surface levels of CXCR4 (Fig.
3B). These data are consistent with a previous finding, in which
actin modulation following LIMK knockdown affected surface
expression of CD4 and CXCR4 by altering receptor cycling (8).
In addition, shArp-13 grew slightly more slowly than the con-
trol shNTC cells (Fig. 3C). Nevertheless, both shArp-12 and
shArp-13 have been grown in the laboratory for over a year, and
the knockdown phenotypes have been stably maintained.

We further tested the ability of shArp-12 and shArp-13 to
support HIV infection. Both cells demonstrated a highly dimin-
ished ability to support HIV-1 infection, as measured by viral
p24 release for �10 days (Fig. 3D). Given that HIV-1 fusion and
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FIGURE 1. HIV-1 triggers WAVE2 serine 351 phosphorylation. A, resting
CD4 T cells were treated with HIV-1NL4 –3 over the indicated time course, and
WAVE2 serine 351 phosphorylation was detected by an IR fluorophore-con-
jugated, anti-phospho-S351 WAVE2 antibody. The same blot was also stained
with an anti-human GAPDH antibody for loading control. WAVE2 was also
stained with an anti-WAVE2 antibody on a blot duplicate. B, resting CD4 T
cells were treated with 50 ng/ml PTX, similarly treated with HIV-1, and ana-
lyzed for WAVE2 S351 phosphorylation. C and D, resting memory CD4 T cells
(CD45RO�/CD45RA�) were treated with HIV-1 for a time course, and F-actin
was stained with FITC-phalloidin and analyzed with flow cytometry (C) or
confocal microscopy (D). Red arrows indicate localized actin polymerization. E,
resting memory CD4 T cells were pre-treated or not with AMD3100 (100 nM),
and then infected with HIV-1 for a time course. WAVE2 serine 351 phosphor-
ylation was similarly analyzed and quantified. F and G, resting CD4 T cells were
treated with HIV-1NL4 –3 or with HIV-1(VSV-G), and WAVE2 serine 351 phos-
phorylation was measured. H and I, blood monocyte-derived macrophages
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serine 351 phosphorylation was similarly analyzed.
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entry are dependent on surface CD4/CXCR4 and the cortical
actin (13), we similarly infected both cells with a VSV-G-pseu-
dotyped HIV-1, which enters cells through endocytosis, a proc-
ess independent of CD4/CXCR4 and having less viral contact
with the cortical actin. HIV-1(VSV-G) infection of shArp-12
and shArp-13 led to a 70% reduction of viral p24 release in
comparison with shNTC at day 4 (Fig. 3E), likely resulting from
the effect of Arp2/3 on endocytosis (30). Indeed, when viral
entry was measured, we observed an �40% decrease of viral
entry in shArp-12 and shArp-13 (Fig. 3F, right panel). These
results suggested that knockdown of Arp3 has much more pro-
found inhibition of wild type (wt) HIV replication; this is likely
related to gp120-mediated entry, which is dependent on CD4,
the chemokine co-receptors, and the cortical actin. Surpris-
ingly, when we measured wt viral entry using a Nef-luciferase-

based fusion assay (21), neither shArp-12 nor shArp-13 exhib-
ited a reduction in entry (Fig. 3F). However, when we measured
viral entry using highly concentrated, �-lactamase-Vpr-tagged
virion particles (20), shArp-13 but not shArp-12 demonstrated
a decrease in entry (Fig. 3G). A similar discrepancy in assay
results has also been reported in our previous study of the
LIMK1 knockdown cells (8). The difference likely resulted from
different levels of reporter viruses used. The �-lactamase-Vpr
assay requires the use of highly concentrated virus, and may
need global actin reorganization for receptor clustering (8),
whereas in the Nef-luciferase assay, low-levels of viral entry
may depend on the natural association of CD4/CXCR4 (31, 32)
without the need of extensive actin reorganization.

We further monitored viral DNA synthesis, and both
shArp-12 and shArp-13 exhibited an enhancement of viral
DNA synthesis from 2 to 48 h compared with the shNTC con-
trol (Fig. 3H). We also measured 2-LTR circles, a correlative of
nuclear entry, and found that 2-LTR circles were significantly
reduced in shArp-12 and shArp-13 by �70 and 95%, respec-
tively, at 48 h post-infection (Fig. 3I). Measurement of the nef
transcripts, a correlative of nuclear entry and transcription cor-
roborated these findings, indicating a marked reduction of the
nef transcription in shArp-12 and shArp-13 cells at 24 and 48 h
(Fig. 3J). Therefore, Arp3 knockdown inhibits viral nuclear
translocation and subsequent viral replication without inhibit-
ing initial viral DNA synthesis.

The Arp2/3 Inhibitor CK548 Inhibits HIV-1 Nuclear Migra-
tion and Infection of CD4 T Cells—Nolen et al. (15) recently
described several novel, small molecule inhibitors of Arp2/3.
We used the Arp2/3 inhibitors CK548 and CK636 to confirm
the Arp3 knockdown results. Firstly, to determine whether
CK548 and CK636 can inhibit actin polymerization mediated
by the Arp2/3 complex independent of any possible role in
endocytosis or receptor recycling, we tested both inhibitors
using an in vitro actin-based motility assay (33, 34). Both CK548
and CK636 reduced the formation of actin comet tails in a dose-
dependent manner, with IC50 values of approximately 10 �M

(Fig. 4, A–E). The in vivo effects of 50 �M CK548 and CK636 on
SDF-1-induced Jurkat T cell chemotaxis were further exam-
ined. We found that CK548, but not CK636, inhibited Jurkat
chemotaxis toward SDF-1 (2) (Fig. 4F).

To determine the effects of these inhibitors on HIV-1 infec-
tion, a highly specific HIV Rev-dependent indicator cell line,
Rev-CEM (19), was pre-treated with each inhibitor and subse-
quently infected with HIVNL4 –3. CK548 inhibited HIV-1 repli-
cation in a dosage-dependent manner (97–100% at 50 –100 �M,
respectively), while CK636 only modestly inhibited HIV-1 rep-
lication (19% at 100 �M) (Fig. 5A). The lower inhibition of HIV
by CK636 is consistent with the lower effectiveness of CK636 in
inhibiting SDF-1-mediated chemotaxis of Jurkat T cells, and
may reflect a difference in intracellular stability or mechanisms
of action between CK548 and CK636 (15) (see discussions
below).

CK548 was further tested in HIV infection of CEM-SS T cells
and drastically diminished HIV replication at 25 to 50 �M, con-
centrations at which drug cytotoxicity was not observed (Fig. 5,
B and C). Further detailed studies revealed that CK548 did not
inhibit HIV-1 DNA synthesis at the lower dosage (12.5 �M), but
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caused a decrease in viral DNA at higher dosages (25 and 50 �M)
early (12 h), likely resulting from lower entry (Fig. 5D). How-
ever, at later time points (48 h), CK548 enhanced viral DNA
synthesis at all dosages (Fig. 5D). Examination of viral nuclear
DNA, the 2-LTR-circles, revealed that 2-LTR-circles were
highly diminished and undetectable at early time points (12 h)
in CK548-treated cells, whereas at later time points (48 h),
2-LTR-circles were decreased (12.5 and 25 �M CK548) and
remained undetectable (50 �M CK548) (Fig. 5E). If normalized
by total viral DNA, the 2-LTR-circles were significantly
reduced at all CK548 dosages (Fig. 5F). These data suggest that
inhibiting Arp2/3 activity enhances viral DNA synthesis; mean-

while, it diminishes viral nuclear migration. This phenotype is
consistent with the Arp3 knockdown results (Fig. 3, H–J) and
strikingly resembles the phenotype observed in the cofilin
knockdown cells (7). In both cases, actin dynamics are inhib-
ited, which may lead to the retention of HIV in the cortical actin
layer. Extended retention of HIV PIC in the cortical actin could
enhance viral reverse transcription (12, 35) but hinder viral
nuclear migration (7).

Recent studies have suggested that actin dynamics may also
be involved in viral late steps such as budding (36 – 41). We
tested the effects of inhibiting Arp2/3 on viral release. CEM-SS
cells were infected with a single-cycle virus, HIV-1(Env) (pseu-
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dotyped with HIV gp160). Infected cells were washed and
treated with 3 dosages of CK548 (12.5 to 50 �M). Viral budding
was monitored by measuring p24 release. As shown in Fig. 5G,
we observed a moderate inhibition of p24 release (a 34% reduc-
tion at 50 �M, 120 h postinfection). This result suggests that
HIV early steps have a higher dependence than late steps on
Arp3 or Arp2/3-mediated acting branching.

We also tested the effect of CK548 on HIV latent infection of
blood resting CD4 T cells. Resting T cells were purified from the
peripheral blood, pre-treated with CK548 for 1 h, and then
infected with HIV-1 for 2 h. Cells were washed, cultured in
medium with CK548, and then activated with anti-CD3/CD28
beads. Viral replication was monitored by p24 release. As
shown in Fig. 6A, CK548 diminished HIV infection of blood
CD4 T cells at all the dosages tested (12.5 to 50 �M). This inhi-
bition was specific to HIV, as CK548 did not inhibit T cell acti-
vation at dosages at or below 25 �M (Fig. 6, B and C).

DISCUSSION

Our study presented the first evidence exhibiting a direct
protein phosphorylation event occurring in the WAVE2-
Arp2/3 actin nucleation and branching pathway, as a result of
HIV-1 binding to the chemokine coreceptors. In conjunction

with prior studies (6, 7, 42), there is sufficient evidence to indi-
cate that HIV-1 signaling may impinge upon actin filaments
from both the barbed and pointed ends: the pointed end is
depolymerized as a result of dynamic signaling to LIMK and
cofilin (7, 8), whereas at the barbed end, actin polymerization is
nucleated by Arp2/3, which is activated by WAVE2. Both
LIMK-cofilin and WAVE2-Arp2/3 signaling occur in HIV
infection of T cells and macrophages. HIV-mediated actin sig-
nals appear to redundantly use multiple pathways, both the
G�i-dependent and -independent, to ensure proper activation
of actin dynamics. These results suggest that these signaling
events are a conserved feature of early HIV-1 infection.

Although the exact mechanisms by which HIV-1 utilizes
actin remain to be elucidated in detail, the inhibition in viral
nuclear migration observed in this study implies a specific and
direct role of Arp2/3 in HIV intracellular mobility. There are
two possible mechanisms (Fig. 7) by which Arp2/3 could
directly affect HIV-1 nuclear migration: one, that HIV-1 asso-
ciates with actin and passively migrates through actin tread-
milling mediated by cofilin and Arp2/3 (7, 13); the other, that
Arp2/3 anchors directly onto PIC, resulting in the formation of
an actin comet tail that drives viral nuclear migration. Notably,
Nef (43), nucleocapsid (44 – 46), integrase (47), and the large
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subunit of the reverse transcriptase (48), components of PIC,
have all been shown to bind actin, lending credence to both
models. Furthermore, Nef has been previously shown to dys-
regulate N-WASP, another Arp2/3-activating NPF, at the

immunological synapse in T cells, which may be consistent with
the latter model (49).

Given that the Arp2/3 complex is a fundamental actin mod-
ulator, inhibiting Arp3 is expected to have pleiotropic effects on
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cells. We observed marked phenotypic variations incurred by
different CK548 dosages, and between the two Arp3 knock-
down cells. However, there is a striking phenotypic consistency
in cellular effects on viral post-entry steps when Arp3 was
inhibited, either by CK548 or by the shRNA knockdown. In all
cases, inhibiting Arp3 enhanced viral DNA synthesis and inhib-
ited viral nuclear migration.

Intriguingly, the Arp2/3 inhibitors, both CK636 and CK548,
inhibit the Arp2/3 complex effectively in vitro, but only CK548
effectively inhibits HIV infection. This divergence may reflect a
difference in intracellular drug stability or mechanisms of
action between CK548 and CK636. Nolen et al. (15) has found
that CK636 binds between Arp2 and Arp3, and appears to block
them from moving into an active conformation, whereas
CK548 inserts into the hydrophobic core of Arp3, blocking its
activity. Perhaps, Arp2/3-mediated actin branching may not be
an absolute requirement for HIV; it has been known that
unbranched actin filaments can still polymerize and treadmill
with decreased Arp2/3 activity (2). However, there is a possibil-
ity that Arp3 may be present around the docking site of the viral
PIC on actin filaments. Thus, CK548 insertion into Arp3 may
interfere with the docking of viral PIC onto actin. On the other

hand, although CK636 inhibits Arp2 and Arp3 association, it
may not impact viral association with actin. Certainly, further
detailed mechanistic studies of these two drugs would shed
light on how exactly Arp2/3 is involved in HIV PIC interaction
with actin.

Actin dynamics have also been suggested to be important for
viral assembly and budding (36 – 41) and HIV cell-cell trans-
mission (50 –53). Active actin treadmilling has been suggested
to drive viral budding (39). In addition, HIV Gag has been found
to bind to actin (44 – 46) and the actin cross-linking protein
filamin A (40), suggesting that these interactions may facilitate
the transport and anchorage of Gag to the plasma membrane
for viral assembly.

In our study, we observed a moderate inhibition on viral
release when Arp3 was inhibited by CK548 (at 50 �M). Interest-
ingly, a recent study has found that depletion of LIMK1 or cofi-
lin impaired HIV-1 particle release (54). In addition, induction
of cofilin activity by the cofilin S3 peptide also promoted accu-
mulation of viral particles on the plasma membrane (54). These
results suggest that dynamic actin polymerization and depo-
lymerization are required for HIV-1 budding. Perhaps, viral
release is more dependent on active actin polymerization and
treadmilling than on Arp2/3-mediated actin branching.

In HIV cell-cell transmission, the formation of virological
synapase (VS) requires both actin and microtubules for polar-
ized viral budding and viral cell-cell transfer (52, 55, 56). Actin
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is particularly involved in the clustering and polarization of
Env-Gag on the effector cells, and in the stabilization of the
CD4/CXCR4 and LFA-1 clusters on target cells (52, 53). In
addition, gp120 is shown to induce signal transduction to create
an F-actin-depleted zone on target cells, possibly facilitating
viral transfer and post transfer events (53). Although the spe-
cific role of Arp2/3 in viral cell-cell transmission was not inves-
tigated in our study, we expect that Arp2/3 may also be involved
in the transmission process. In our study, we mainly focused on
addressing the involvement in Arp2/3 in viral early steps using
an HIV gp160 pseudotyped single-cycle virus. However, in the
multiple round replication of the wild-type HIV-1, Arp2/3-me-
diated effects on viral assembly and cell-cell transmission may
also contribute to the overall levels of viral replication.

The ability of HIV to hijack and modulate the Arp2/3 signal-
ing pathways may also have pathogenic implications. It has
been known that genetic defects of Arp2/3 regulators such as
WASP cause immunodeficiency (57). HIV-mediated abnormal
WAVE2 activity may affect normal T cell function and migra-
tion. Finally, the anti-HIV effect of the Arp2/3 inhibitor, as
demonstrated in our study, suggest that, pharmacologically,
limited targeting of Arp2/3 and upstream regulators could yield
novel approaches to prevent HIV transmission. This may offer
an advantage in combating viral resistance, given the critical
role of these cellular cofactors in the HIV life cycle.
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