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Abstract In this paper a new learning rule for the cou-

pling weights tuning of Hopfield like chaotic neural net-

works is developed in such a way that all neurons behave in

a synchronous manner, while the desirable structure of the

network is preserved during the learning process. The

proposed learning rule is based on sufficient synchroniza-

tion criteria, on the eigenvalues of the weight matrix

belonging to the neural network and the idea of Structured

Inverse Eigenvalue Problem. Our developed learning rule

not only synchronizes all neuron’s outputs with each other

in a desirable topology, but also enables us to enhance the

synchronizability of the networks by choosing the appro-

priate set of weight matrix eigenvalues. Specifically, this

method is evaluated by performing simulations on the

scale-free topology.

Keywords Synchrony based learning � Chaotic neural

networks � Structure inverse eigenvalue problem �
Scale-free networks

Introduction

Oscillations and chaos have been the subject of extensive

studies in many physical, chemical and biological systems.

Oscillatory phenomena frequently occur in the living sys-

tems as a result of rhythmic excitations of the corre-

sponding neural systems (Wang et al. 1990). Chaos can

occur in a neural system due to the properties of a single

neuron and the properties of synaptic connectivities among

neurons (Wang and Ross 1990). Some parts of the brain,

for example, the cerebral cortex, have well-defined layers

structures with specific interconnections between different

layers (Churchland and Sejnowski 1989). (Babloyantz and

Lourenco 1994) have studied an Artificial Neural Network

with a similar architecture which has chaotic dynamics and

performs pattern discrimination and motion detection.

These studies have shown that interactions of neural net-

works are not only useful, but also important, in deter-

mining the cognitive capabilities of a neural system (Wang

2007).

In usual neural networks, there are not different kinds of

dynamics. The idea of chaotic neural networks is proposed

by Aihara from neurophysiologic aspects of real neurons

(Aihara et al. 1990). In (Wang et al. 2007), it has been shown

that by adding only a negative self-feedback to the cellular

neural network, a transiently chaotic behavior can be gen-

erated. Moreover, Ma and Wu (2006) have proved that the

bifurcation phenomenon appears only by applying a non-

monotonic activation function. They have used this fact to

increase the networks capacity for the memory storage.

However, many different types of chaotic neural networks

have been appeared (Nakano and Saito 2004; Lee 2004).

On the other hand, one of the interesting and significant

phenomena in dynamical networks is the synchronization

of all dynamical nodes in the network. In fact, synchroni-

zation is a kind of typical collective behaviors in nature

(Watts and Strogatz 1998). Synchrony can be good or bad

depending on the circumstances, and it is important to

know what factors contribute to the synchrony and how to

control it. For example, partial synchrony in cortical net-

works is believed to generate various brain oscillations,

such as the alpha and gamma EEG rhythms. Increased
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synchrony may result in the pathological types of activity,

such as epilepsy (Izhikevich 2007). Furthermore, some

synchronization phenomena of coupled chaotic systems are

very useful in our daily life and have received a great deal

of attention (Lü et al. 2004; Li and Chen 2006).

In the aforementioned papers, some sufficient conditions

on the coupling strengths have been derived to ensure the

synchronization of the whole network without specifying

how to find the appropriate weights. Therefore, a learning

rule to completely synchronize the whole network is still

needed, whereas only a few papers have addressed this

matter (Li et al. 2008; Liu et al. 2010; Xu et al. 2009).

Moreover, none of them discussed about the issue of syn-

chronizability and as far as we know, there is not any

learning rule for the tuning of the coupling strengths so

that, finally, the whole network is synchronized in a

desirable structure while the synchronizability is also

enhanced. The synchronizability can be usually assessed by

the eigenratio R ¼ kN=k2, in the continuous case. If this

value is small enough, then the synchronization is easier to

achieve (Comellas and Gago 2007; Ponce et al. 2009;

Wang et al. 2009). Current researches show that the value

of R in the weighted networks has a great reduction with

respect to the unweighted networks (Zhou and Kurths

2006). However, the value of R for the weighted networks

could be calculated after the adaptation and therefore, we

have no idea about its value until the completion of

adaptation (Zhou and Kurths 2006; Wang et al. 2009).

Motivated by the above comments, this paper further

investigates the issue of synchronization in the dynamical

neural networks with a neuron of logistic map type and

self-coupling connections. By utilizing the idea of Struc-

tured Inverse Eigenvalue Problems (Moody and Golub

2005) and expanding our previous results about the syn-

chronization criteria on the coupling weights of a network

(Mahdavi and Menhaj 2011), we propose a learning rule

which brings about synchronization in a desired topologi-

cal structure and also enhance the synchronizability of the

network. Specifically, by assigning the scale-free structure

to the network, one can reach to the benefits of this

topology. For example, the number of tunable coupling

weights is much less than the complete regular neural

network and hence, it would be easier for implementation.

Problem formulation and preliminaries

As is well known, a variety of complex behavior, including

chaos, is exhibited by some nonlinear mappings when

iterated. A coupled map chain is the simplest possible

collection of coupled mappings which can be looked upon

as a neural network with several layers, each containing

only one element, with the elements being both self-

coupled and executing a non-monotonic function. A cou-

pled map chain consists of N cells, in which the state of ith

cell at time t, denoted by xi(t), can be written as:

xiðtÞ ¼ f ðniðtÞÞ; ð1Þ

where the net input for ith cell is a weighted sum of the

state of this cell at previous time step, and the state of other

cells at a former time step, say t � s. Then we have

niðtÞ ¼ wiixiðt � 1Þ þ
XN

j¼1
j 6¼i

wijxjðt � sÞ; i ¼ 1; . . .;N; s� 0

ð2Þ

Generally, there are various possible values for swhich

could be different for each cell. However, if f in (1) is a sign

function, f(.) = sgn(.), and the parameters in (2) are set to:

wii = 0, wij = wji, and s ¼ 1; this leads to the binary

Hopfield Neural Network. In fact, connections between cells

are symmetric and there are no self coupling connections. In

this study, the Hopfield like neural network consists of

N neurons of logistic map type is considered as follows

niðtÞ ¼
XN

j¼1

cwijxjðt � 1Þ; i ¼ 1; 2; . . .;N; ð3Þ

xiðtÞ ¼ riniðtÞð1� niðtÞÞ; ð4Þ

where ni(t) is the net input, xi(t) is the output, 3:6\ri� 4 is

the controlling parameter of each neuron that ensure its

chaotic behavior and the initial condition xið0Þ 2 ½0; 1�.
0\c� 1 is a constant for the whole network. The coupling

matrix W ¼ ðwijÞN�N which will be found by our proposed

learning rule, represents the coupling strength and the

coupling configuration of the network, in which wij is

defined in such a way that if there is a connection from

neuron j to neuron i, then wij [ 0; otherwise wij = 0.

Moreover, the sum of all elements in each row of the

matrix W should be equal to one, that is,

XN

j¼1

wij ¼ 1; i ¼ 1; 2; . . .;N : ð5Þ

Remark 1 The above row one sum assumption, Eq. (5), is

a sufficient condition for the synchronization of a network

described by the discrete chaotic maps (3)–(4) (Mahdavi

and Menhaj 2011). This assumption is equivalent to the

diffusive couplings for the continuous case which

described by the row zero sum assumption. Based on

these assumptions and the irreducibility of the coupling

matrix W, it can be verified that one is an eigenvalue with

multiplicity 1, denoted as k1, of the coupling matrix W in

the discrete maps (3)–(4) (Moody and Golub 2005).

Similarly, zero is an eigenvalue with multiplicity 1 for

the continuous case (Lü et al. 2004). h
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It is assumed that when synchronization happens in the

neural network (3) and (4) with identical neurons, all states

become equal, i.e., x1(t) = x2(t) = … = xN(t) = s(t) as

t goes to infinity, where s is an emergent synchronous

solution of the network and will be created collaboratively

by all neurons. In fact, we have no idea about s(t) in

advance. For the main result of the next section, the fol-

lowing definitions and theorems are required.

Definition 1 (Moody and Golub 2005): A matrix W is

called nonnegative if all of its entries are nonnegative.

Definition 2 (Moody and Golub 2005): An n� n non-

negative matrix W is a Stochastic (Markov) Matrix if all its

row sums are 1. Then, it is possible to show that every

eigenvalue of a Markov Matrix satisfies jkj � 1.

The Stochastic Inverse Eigenvalue Problem (StIEP) con-

cerns whether a Markov chain can be built with the desirable

spectral property. This problem is stated in the following.

StIEP (Moody and Golub 2005): Given a set of numbers

fkkgn
k¼1 that is closed under the complex conjugation and

k1 ¼ 1, construct a stochastic matrix W so that

rðWÞ ¼ fkkgn
k¼1; ð6Þ

where r represents the spectrum of a matrix. Therefore, this

problem is sometimes called an inverse spectrum problem.

Theorem 1 (Moody and Golub 2005): (Exsistence) Any n

given real numbers 1, k1,…, kn-1 with jkjj\1 are the

spectrum of some n� n positive stochastic matrix if the

sum of all jkjj over those kj\0 is less than 1. If the k;js are

all negative the condition is also necessary.

Theorem 2 (Mahdavi and Menhaj 2011): All outputs of

the network (3), (4) with identical neurons, i.e., ri = r,

i = 1,2,…,N, c = 1 and nonnegative coupling strength wij

become synchronous, if the coupling matrix W is a sto-

chastic matrix and its eigenvalues satisfy the following

condition.

k1 ¼ 1; jkjj\1=r; j ¼ 1; 2; . . .;N � 1: ð7Þ

Corollary 1: if the eigenvalues of the coupling matrix W

rewritten in the form of jkN j � . . .� jk2j � k1 ¼ 1, then the

sufficient synchronization criterion of theorem 2 could be

replaced with jk2j\1=r.

It can be seen from theorem 2 that the sufficient condition for

the network synchronization is obtained but there is no sys-

tematic way for finding the coupling strengths. Moreover, the

structure is usually considered as a fully connected topology

which is far from any practical implementation. In the next

section, both of these problems will be solved simultaneously.

Synchrony based learning

Theorem 2 only discusses about the case of c = 1, while

the general case of 0 \ c \ 1 could be formulated as

follows.

Corollary 2: All outputs of the network (3), (4) with

identical neurons, i.e., ri = r, i = 1,2,…,N, 0\c\1 and

nonnegative coupling strength wij become synchronous,

if the second greatest eigenvalue of the stochastic

coupling matrix W satisfies c\
1

rjk2j
.

Proof It could be easily obtained by merging the

parameters r and c to a single parameter and following the

same procedure which has been done by Mahdavi and

Menhaj (2011). h

Corollary 3: According to the corollary 2, the following

two cases could be easily deduced. (1) if jk2j � 1=r, then

for any 0\c\1 the network is synchronized, (2) if

1=r\jk2j\1, then for 0\c\
1

rjk2j
the network is

synchronized.

Remark 2 By increasing the value of jk2j to 1 (closer the

second largest eigenvalue to the unit circle), the interval of

the synchronizable constant reduced to 0\c\1=r. h

Remark 3 For this kind of discrete chaotic maps, the

value of R ¼ 1=jk2j could be considered as a measure of

synchronizability. Therefore, the greater the value of jk2j,
the stronger the synchronizability of the network, which

means that the whole network could be synchronized with

the smaller value of the constant c. h

The diagonal matrix diagðk1; . . .; knÞ of the prescribed

eigenvalues can be transformed similarly, if necessary, into

a diagonal block matrix K with 2 9 2 real blocks if some

of the given values appear in complex conjugate pairs. The

set MðKÞ ¼ fPKP�1 2 R
n�njP 2 R

n�n is nonsingularg
denotes isospectral matrices parameterized by nonsingular

matrices P. The cone of nonnegative matrices pðRn
þÞ :¼

fB: BjB 2 R
n�ng is characterized by the element-wise prod-

uct of general square matrices. If a solution exists, it must be

at the intersection of MðKÞ and pðRn
þÞ. Therefore, the

following constrained optimization problem is introduced

minimize FðP;RÞ :¼ 1

2
PKP�1 � R:R
�� ��2

subject to P 2 GlðnÞ;R 2 R
n�n;

where GlðnÞ denotes the general linear group of invertible

matrices in R
n�n.

Let us recall that M;N½ � ¼ MN � NM is the Lie bracket

and we abbreviate
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CðPÞ :¼ PKP�1;

DðP;RÞ :¼ CðPÞ � R:R
:

Then, the differential system

dP

dt
¼ CðPÞT ;DðP;RÞ
� �

P�T

dR

dt
¼ 2DðP;RÞ:R

ð8Þ

provides a steepest descent flow on the feasible set GlðnÞ �
R

n�n for the objective function F(P,R). This method has an

advantage that deserves notice. Observe that the zero struc-

ture, if there is any, in the original matrix R(0) is preserved

throughout the integration due to the element wise product.

In other words, if it is desirable that node i is not connected

into node j, we simply assign rij ¼ 0 in the initial value R(0).

Then that zero is maintained throughout the evolution

Learning rule

Now, we are in the position to state the coupling strengths

tuning mechanism such that synchronization is achieved by

maintaining a desirable structure for the network and

enhancing the synchronizability. To reach the above

mentioned goals, the following steps are required.

Step 1: Choose the proper, in the sense of synchroniz-

ability, real eigenvalues k1 = 1, k2,…, kN, such that the

theorem 1 and corollary 1 are satisfied.

Step 2: Assign rij ¼ 0 in the initial value R(0) according

to the desirable network structure and P(0) should be an

invertible matrix.

Step 3: Numerically solve the differential system (8) and

stop the iterations when the value of cost function

becomes lower than a predefined threshold. If step 1 is

done in a proper way, then the convergent solution of (8)

always exists and could be considered as a coupling

matrix W, i.e., W ¼ CðPÞ ¼ R:R.

Step 4: Due to the numerical calculations, there is

always a little amount of errors between the spectrum of

the founded weight matrix and the desired spectrum in

the step 1. Moreover, because of the stopping criterion,

the cost function never reaches to zero exactly. There-

fore, we have to employ a synchronizable constant

0\c\1 according to the corollary 3.

Simulation results

In this section, the effectiveness of the proposed synchrony

based learning rule is verified by an illustrative example. In

this example, the network structure obeys the scale-free

topology. Here, the numerical simulation is done in

MATLAB environment.

Consider the neural network (3), (4) with N = 30,

ri = 3.9, i = 1,2,…,N, and initial random coupling matrix

W. According to the step 1, the desired eigenvalues are

chosen as k1 = 1, k2 = -0.1, k3 = -0.15, and the others

are generated by a uniform random number between 0 and

0.2 which satisfy both theorem 1 and 2. The initial value

R(0) is generated by the BA scale-free method with

m = m0 = 5 (Barabasi and Albert 1999) and P(0) is a

random matrix. Afterwards, the differential system (8) is

solved numerically which finally converges to the coupling

matrix W ¼ CðPÞ ¼ R:R. The objective function

F(P,R) for this simulation is represented in Fig. 1. That

shows the rapid decay in the beginning but a heavy tail in

the end. Therefore, the speed of the convergence in this

method is not enough and one should think about this

important issue in the future. The final weights of the

networks are shown in Fig. 2. It is interesting to note that

the network structure is assumed to be symmetric; how-

ever, there is no necessity to have the symmetric weights,

which is obvious from this figure. Although the coupling

weights are asymmetric, the increasing or decreasing of the

coupling weights behave symmetrically, which is inter-

esting because the learning rule is completely offline and

only based on the desired set of eigenvalues.

Afterwards, one can use the above founded weight matrix

in the network and be sure that the synchronization hap-

pened. Here, we assumed the value of c = 0.25. As shown in

Fig. 3, as the system evolves, the synchronization errors

between the output of the last node and the other nodes

converge to zero. This phenomenon also occurs if we select

any other nodes as a master node, which means that all of the

neurons reach to a synchronous state evolutionary.

Fig. 1 Objective function decays to reach the true coupling strength

required for synchronization of all neurons in scale-free structure
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Conclusions

In brain anatomy, the cerebral cortex is the outermost layer

of the cerebrum and the part of the brain that is the center

of unsupervised learning and the seat of higher level brain

functions including perception, cognition, and learning of

both static and dynamic sensory information. The cortex is

composed of a sequence of discernable interconnected

cortical networks (patches). Each concerned network has a

specific functionality and is an ensemble of a large number

of asymmetrically connected complex processing elements

(CPEs) whose state–space orbits exhibit periodic orbits, as

well as bifurcations and chaos (Mpitsos et al. 1988a).

These networks of interconnected CPEs are responsible for

the generation of sparse representations and efficient codes

that are utilized during perception and recognition pro-

cesses. Implementation of a microscopic model of the

cortex that incorporates small details of neurons, synapses,

dendrites, axons, nonlinear dynamics of membrane pat-

ches, and ionic channels is prohibitively difficult even with

the computational resources and the nanofabrication tech-

nologies available today or predicted for the future. Con-

sequently, a realizable model should emulate such

neurobiological computational mechanisms at an aggregate

level.

The computational units of the cortex are named netlets,

which are composed of discrete populations of randomly

interconnected neurons (Harth et al. 1970; Anninos et al.

1970). The similarity between the netlet’s return map and

that of logistic map has been noted by Harth (1983). The

fascinating conjecture is that the cortical networks can be

modeled in an efficient way by means of populations of

logistic processing elements that emulate the cortical

computational mechanisms at an aggregate level. In addi-

tion, the idea of parametric coupling has been previously

adapted to transmit the chaotic signals originating in one

part of the nervous system to another part (Mpitsos et al.

1988b) and to improve the performance of the associative

memories such as Hopfield model (Lee and Farhat 2001;

Tanaka and Aihara 2005) and biomorphic dynamical net-

works that are used for cognition and control purposes

(Farhat 1998, 2000).

In other words, the cortical networks could be modeled

with networks of parametrically coupled nonlinear iterative

logistic maps each having complex dynamics that repre-

sents populations of randomly interconnected neurons

possessing collective emergent properties (Pashaie and

Farhat 2009). Moreover, symmetrically coupled logistic

equations are proposed to mimic the competitive interac-

tion between species (Lopez-Ruiz and Fournier-Prunaret

2009).

In conclusion, in this paper, an effective tuning mech-

anism of coupling strengths in a Hopfield like chaotic

neural networks with logistic map activation functions has

been studied which not only synchronizes the whole neu-

rons’ output in any desirable topology, but also enhances

the synchronizability of the network. Our proposed method

is obtained by utilizing the Stochastic Inverse Eigenvalue

Problem and some sufficient conditions on the network

couplings strength which guarantees that all neurons col-

laboratively reach to a synchronous state eventually. Syn-

chronous behavior of neural assemblies is a central topic in

neuroscience. It is known to be correlated with cognitive

activities (Singer 1999) during the normal functioning of

the brain, while abnormal synchronization is linked to

important brain disorders, such as epilepsy, Parkinson’s

disease, Alzheimer’s disease, schizophrenia and autism

(Uhlhaas and Singer 2006). An illustrative example has

been considered, taking the scale-free matrix as initial

weight matrix of an asynchronous neural network. The
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numerical simulations showed that the proposed method

can synchronize this network effectively with less tuning

weights as well as more robustness.

As an interesting topic for the future works, one should

think about possible extension of this method to other types

of recurrent or feed forward neural networks and take the

advantages of a desirable structure like scale-free topology.

Moreover, the speed of convergence should be increased

for the practical use of this method in the large networks.
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