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Abstract In this paper, the oscillations and synchroni-

zation status of two different network connectivity patterns

based on Izhikevich model are studied. One of the con-

nectivity patterns is a randomly connected neuronal net-

work, the other one is a small-world neuronal network.

This Izhikevich model is a simple model which can not

only reproduce the rich behaviors of biological neurons but

also has only two equations and one nonlinear term.

Detailed investigations reveal that by varying some key

parameters, such as the connection weights of neurons, the

external current injection, the noise of intensity and the

neuron number, this neuronal network will exhibit various

collective behaviors in randomly coupled neuronal net-

work. In addition, we show that by changing the number of

nearest neighbor and connection probability in small-world

topology can also affect the collective dynamics of neu-

ronal activity. These results may be instructive in under-

standing the collective dynamics of mammalian cortex.
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Introduction

Neuronal synchronization is known to play a crucial role in

many physiological functions such as information binding

and wake-sleep cycles (Haken 2002; Suykens and Osipov

2008; Stephens et al. 2010). Experiments have shown that

synchronization can occur in many special areas of the brain

such as the visual cortex and hippocampus regions (Mehta

et al. 2002; Gray and Singer 1989). The synchronization of

neuronal signal was proposed as one of the mechanisms to

transmit and code information in the human brain (Singer

1994; Pikovsky et al. 2001). Hence, the synchronous firing

of interconnected neurons has been extensively investigated

by means of the theory of nonlinear dynamics (Nomura

et al. 2003; Sato and Shiino 2007; Wang et al. 2011; He

et al. 2003; Kitajo et al. 2007; Liu and Cao 2011; Sun et al.

2010; Qu et al. 2012; Shi et al. 2008; Zhou and Kurths 2005;

Kiss et al. 2003; Liu et al. 2012). Synchronization of fast-

spiking neurons interconnected by GABA-ergic and elec-

trical synapses was investigated by Nomura and his team. It

was observed that a fast-spiking pair connected by electrical

and chemical synapses could achieve both synchronous and

anti-synchronous firing states in a physiologically plausible

range of the conductance ratio between electrical and

chemical synapses (Nomura et al. 2003). Sato and Shiino

investigated effects of the width of an action potential on

synchronization phenomena using an integrate-and-fire

neuron model and a piecewise linear version of the Fitz-

Hugh-Nagumo neuron model. It was shown that the dura-

tion of the impulse had a critical role in assuring

synchronization (Sato and Shiino 2007). Wang et al.

investigated the dependence of synchronization transitions

of bursting oscillations on the information transmission

delay over scale-free neuronal networks with attractive and

repulsive coupling. It is shown that for both types of
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coupling, the delay always plays a subtle role in either

promoting or impairing synchronization (Wang et al. 2011).

Moreover, noise-induced synchronization has also been

reported in realistic neuronal systems. He et al. studied

numerically in two realistic models, the Pikovsky-Rabino-

vich circuit model and the Hindmarsh-Rose neuron model.

It is found that two none-coupled identical systems can been

synchronized by forcing with common Gaussian noise term

(He et al. 2003).

To study the oscillations and synchronization of a brain

system, modeling of network consisting of thousands of

neurons is required (Rulkov et al. 2004; Rulkov, and Ba-

zhenov 2008). In any study of network dynamics, there are

two crucial issues which are: (1) what model describes

spiking dynamics of each neuron and (2) how the neurons

are connected (Izhikevich 2004b). As we develop such a

brain model consisting of spiking neurons, the model for a

single neuron must be computationally simple and capable

of producing rich firing patterns exhibited by real biological

neurons. The widely used models of spiking and bursting

neurons can be expressed in the form of ordinary differen-

tial equations such as Hodgkin-Huxley model (Hodgkin and

Huxley 1952), integrate-and-fire (Stein 1967), spiking

model by Izhikevich (Izhikevich 2003, 2004a), FitzHugh-

Nagumo model (FitzHugh 1961), Hindmarsh-Rose model

(Rose and Hindmarsh 1989), Morris-Lecar model (Morris

and Lecar 1981) and so on. The most realistic approach for

simulation of neuronal behavior is based on Hodgkin-

Huxley model (Hodgkin and Huxley 1952). In general,

scientists refer to all conductance-based models as being of

the Hodgkin-Huxley type. Such models are important

because their parameters are biophysically meaningful and

measurable. However, only a handful of neurons can be

simulated in real time since it is computationally prohibitive

with four differential equations and tens of parameters. In

contrast, using integrate-and-fire model is computationally

effective, but the model is too simple to produce rich

spiking and bursting firings exhibited by cortical neurons

(Stein 1967). So, Izhikevich et. al. proposed a simple

spiking model that is as biologically plausible as the

Hodgkin-Huxley model and as computationally efficient as

integrate-and-fire model (Izhikevich 2003, 2004a).

How the neurons are connected is another important

issue to study network dynamics. Most of the existing work

on synchronization of coupled networks assumes that the

coupling configuration is completely regular (Heagy et al.

1994; Wu and Chua 1995), while a few studies address the

issue of synchronization in randomly coupled networks

(Gade 1996; Manrubia and Mikhailov 1999). However,

many biological, technological and social networks are

neither completely regular nor completely random. To

interpolate between these two extremes, Watts and Strogatz

introduced the interesting concept of small-world networks

(Watts and Strogatz 1998). In this small-world network,

neurons of the brain are coupled mainly locally, but in

addition, are also connected through sparse long-range

connections linking physically distant units. The so-called

small-world networks have intermediate connectivity

properties but exhibit a high degree of clustering as in the

regular networks and a small average distance between

vertices as in the random networks. Convincing evidences

have been presented which support the idea that small-

world networks provide a powerful and versatile tool,

leading us towards understanding the structure and function

of the human brain (Yu et al. 2008; Bassett and Bullmore

2006; Volman et al. 2005). Hence, much attention has been

devoted to studying the dynamics of small-world neuronal

networks (Roxin et al. 2004). Furthermore, Kwon and

Moon (2002) investigated the effects of small-world net-

works on the phenomenon of coherence resonance in

ensembles of Hodgkin-Huxley neurons. It has been repor-

ted that increasing the network randomness may lead to an

enhancement of temporal coherence and spatial synchro-

nization. Spatiotemporal chaos and synchronization on

complex neuronal networks have also been studied (Gong

et al. 2006; Wei and Luo 2007). Both works report that the

synchronization, which is absent in the regular network,

can be greatly enhanced by random shortcuts between

distant neurons. Moreover, Perc et al. have recently

investigated the stochastic resonance and spatial synchro-

nization on excitable (Perc 2007) as well as bitable (Perc

and Gosak 2008) small-world networks, whereby previ-

ously it has also been reported that the synchronization of

small-world networks depends not only on their topology

but also on the type of coupling (Hasegawa 2005).

In the present paper, a network model based on Izhike-

vich simple model is proposed to study the dynamics of

cortical neural networks. This network model will exhibit

different types of collective behavior such as gamma and

alpha rhythm corresponding to that of mammalian cortex.

Both randomly-coupled and small-world network connec-

tivity patterns are studied. In randomly coupled network, it

will exhibit various oscillation and synchronous status by

tuning the key parameters of coupling connection weights,

the external current injection, the noise of intensity and the

neuron number. It is proven that the synchronization status

of neuronal network has relationship with these four key

parameters. Moreover, the external input has more effects

on spiking of inhibitory neurons than that of excitatory

neurons. Moreover, in WS small-world network (Watts and

Strogatz 1998), it is proven that the synchronization has

relationship with two parameters of network. One is the

connection probability and the other is the number of

nearest neighbor of each node of network.

The paper is organized as follows: Section ‘‘Model’’

presents the model equations and network connections,
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including different spiking patterns in a single neuron.

Section ‘‘Result’’ gives the main simulation results of

neuronal networks with different connection patterns, the

randomly-coupled network and the small-world network. It

is shown that this neuronal network will exhibit various

collective behaviors by tuning control parameters. Finally,

a brief conclusion is given in Section ‘‘Conclusion’’.

Model

Single neuron pattern generator

For a single neuron, a Izhikevich simple spiking model is

presented in this paper (Izhikevich 2003), which is as

biologically plausible as the Hodgkin-Huxley model

(Hodgkin and Huxley 1952), yet as computationally effi-

cient as integrate-and fire model (Stein 1967). This model

consists of two ordinary differential equations as below

dv

dt
¼ 0:04v2 þ 5vþ 140� uþ I; ð1Þ

du

dt
¼ aðbv� uÞ; ð2Þ

with the auxiliary after-spike resetting

if v� 30 mV; then
v c;
u uþ d

�
ð3Þ

where v represents the membrane potential of the neuron,

u represents a membrane recovery variable and it provides

negative feedback to v. Synaptic currents or dc-currents are

delivered via the variable I. After the spike reaches its apex

(?30 mV), the membrane voltage and the recovery vari-

able are reset according to the Eq. (3). There are a, b, c,

d four parameters in this simple model. Various setting of

the parameters results in various intrinsic firing patterns

including excitatory and inhibitory cortical cells in intra-

cellular recordings. Neocortical neurons in the mammalian

brain can be classified into several types according to

spiking patterns. All excitatory cortical cells are divided

into RS (regular spiking), CH (chattering) neurons while

FS (fast spiking) is typical behavior of inhibitory neurons.

Figure 1 gives three most typical types of neurons to dif-

ferent values of the parameters.

Network geometry

To study the network geometry, a pulse-coupled neuronal

networks is simulated in this paper. The network is

described as follow equation.

dvi

dt
¼ 0:04v2

i þ 5vi þ 140� ui þ Iext;i þ Isyn;i; ð4Þ

dui

dt
¼ aiðbivi � uiÞ; ð5Þ

Iext;i ¼ I0 þ Dni ð6Þ

Isyn;i ¼
X

j

Wi;jðvj � viÞ ð7Þ

where Iext;i is the external current to the neuron. Each

neuron in the network receives a noisy thalamic input. I0 is

the intensity of the dc current. D is the intensity of the

noise. ni is a random process without time correction and

the random variables are identically and uniformly dis-

tributed in [-1, 1]. Isyn;i accounts for the synaptic current

received by the neuron. The synaptic connection weights

between the neurons are given by Wi;j. The firing of jth

neuron instantaneously changes variable vi by Wi;j.

Figure 2 gives the three typical examples of network

topologies. The parameter p determines the probability of

rewiring a link, whereby p ¼ 0 constitutes a regular graph

(as Fig. 2a), while p ¼ 1 results in a random network (as

Fig. 2c). For 0\p\1, as exemplified in Fig. 2b, the

resulting network may have small-world properties in that

the normalized characteristic path length between distant

units is small comparable with that of a random network,

Fig. 1 Typical types of neurons to different values of the parameters.

RS and CH are typical cortical excitatory neurons. FS is cortical

inhibitory neuron. In this simulation, time step is 1 ms and time

length is 500 ms. a Regular spiking (RS), the parameters are set as

a = 0.02, b = 0.2, c = -65 mV, d = 8. b Chattering (CH), the

parameters are set as a = 0.02, b = 0.2, c = -50 mV, d = 2. c Fast

spiking (FS), the parameters are set as a = 0.1, b = 0.2, c = -

65 mV, d = 2
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while the normalized clustering coefficient is still large

comparable with that of a regular nearest-neighbor graph.

In this paper, both small-world network and randomly-

coupled network connectivity patterns are studied. Regular

network is excluded since it has been investigated in our

previous work (Qu et al. 2012).

For convenience, we construct a neural network con-

sisting of 1,000 neurons. Based on the anatomy of a

mammalian cortex, the ratio of excitatory to inhibitory

neurons is chosen as 4:1. The numbers of excitatory neu-

rons are from 1 to 800 while inhibitory ones are from 801

to 1,000. RS cells are used to model all excitatory neurons

and FS cells to model all inhibitory neurons. In the model,

each excitatory neuron has ðai; biÞ ¼ ð0:02; 0:2Þ. To make

different neurons have different dynamics, the excitatory

neurons are assigned ðci; diÞ ¼ ð�65; 8Þ þ ð15;�6Þr2
i ,

where ri is a random variable uniformly distributed on the

interval [0, 1]. So, ri ¼ 0 corresponds to a regular spiking

(RS) cell and ri ¼ 1 corresponds to a chattering (CH)

cell. We use r2 ¼ 1 to bias the distribution towards RS

cells. Each inhibitory cell has ðai; biÞ ¼ ð0:02; 0:25Þ þ
ð0:08;�0:05Þri and ðci; diÞ ¼ ð�65; 2Þ. During the simu-

lation, all equations are numerically integrated using the

fourth-order Runge–Kutta method. The time step is 0.5 ms.

Results

Dynamics based on randomly connected network

The effects of connection weights are simulated firstly. The

synaptic connection weights between the neurons are given

Fig. 2 Examples of considered network topologies. Only 20 vertices

are displayed in each panel. a Regular ring characterized by p = 0

with periodic boundary conditions. Each vertex is connected to its

k = 4 nearest neighbors. b Realization of WS small-world topology

via random rewiring of a certain fraction p of links, p = 0.1.

c Realization of randomly connected network, p = 1

Fig. 3 Characteristic of a

network of randomly coupled

spiking neurons for different

connection weights Wij. The

connection weight with the

inhibitory neuron is always set

as -1. The connection weights

with excitatory neuron are set as

a 0.25, b 0.5, c 0.75, d mean

field potential (MFP) plot versus

connection weight. Other

system parameters are neuron

number N ¼ 1; 000, the external

input I0 ¼ 0, the noise intensity

for excitatory neuron Dexc ¼ 5

and that of the inhibitory neuron

Dinh ¼ 2
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by the matrix. Figure 3 shows that by changing the relative

strength of synaptic connections, the network will produce

different collective behaviors. In this simulation, the con-

nection weights with inhibitory neurons are always set as

-1 while those with excitatory neurons are tuned from 0 to

1. If the connection weight with excitatory neuron is 0.25,

1,000 neurons randomly spike (Fig. 3a). Figure 3b shows

that as the connection weight are tuned to 0.5, although the

network is connected randomly and there is no synaptic

plasticity, the neurons self-organize into assemblies and

they exhibit collective rhythmic behavior in the frequency

range corresponding to that of mammalian cortex in the

awake state such as alpha and gamma band rhythm (10 and

40 Hz, respectively). As Fig. 3c, the connection weight

continuously increases to 0.75, all the neurons spike with

the same rhythm (time interval is about 250 ms) and reach

the complete synchronization.

Figure 3d provides the mean field potential (MFP) plot

versus connection weight, which will provide more infor-

mation about the effect of connection weight. MFP is

adopted as a global parameter for visualization of the

synchronization of multiple neurons. It is the mean mem-

brane potential of all neurons in the network. Since the

most pronounced voltage changes occur during the action

potentials, significant MFP deflections can only be expec-

ted when a high percentage of the neurons generate action

potentials at the same time. The maximum amplitude will

only be achieved when all neurons fire in exact coincidence

(Postnova et al. 2010). Figure 3d shows that the values of

MFP increase very slowly as the synaptic connection

weights increases from 0 to 0.5, which means the system

are in asynchronous and randomly spiking. With further

increasing the synaptic connection weights from 0.5 to 0.6,

the MFP increases very quickly, reaches the maximum and

remains there, which means that the synchronization is

already complete. In a summary, with increasing the syn-

aptic connection weights, the system becomes more and

more synchronous, from random spiking (from 0 to 0.5) to

almost synchronous(from 0.5 to 0.6), then to complete

synchronization(larger than 0.6).

Secondly, the collective dynamics of network by tuning

the parameter external current I0 is simulated. Figure 4

gives the characteristic of a network of randomly coupled

spiking neurons for different external input I0. When I0 ¼ 0

(Fig. 4a), the situation is as same as that of Fig. 4b. If

I0 ¼ 1, the coupled neurons of network become more

synchronous and keep the rhythm of the spiking. With

increasing the intensity I0 to 3, all the neurons spike at the

same time interval (about 150 mS). However, the excit-

atory neurons (from number 1 to 800) and inhibitory

neurons (from number 801 to 1,000) show obviously dif-

ferent behavior. The spiking frequency of inhibitory neu-

rons is higher than that of excitatory ones. Figure 4d

provides the MFP plot versus connection weight. It is

shown that with increasing the external current I0, the

network will display the behavior from random spiking

(I0� 0:9) to almost synchronous (0:9\I0� 2:2), then to

complete synchronization (I0 [ 2:2).

Thirdly, how the parameter of noise intensity influences

the collective dynamics is discussed. The noise intensities

Fig. 4 Characteristic of a

network of randomly coupled

spiking neurons for different

external input I0. a I0 ¼ 0,

b I0 ¼ 1,c I0 ¼ 3, d MFP plot

versus external input I0. Other

system parameters are: neuron

number N ¼ 1; 000, the

connection weights of

excitatory neuron Wexc ¼ 0:5,

and that of inhibitory neuron

Winh ¼ 1, noise intensities for

excitatory neuron Dexc ¼ 5 and

that for inhibitory neuron

Dinh ¼ 2
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for excitatory and inhibitory neurons are set as Dexc and

Dinh, respectively. Here, for easy discussion, only tune one

parameter Dexc while setting the other parameter Dinh as

constant (Dinh ¼ 2). Neuron spiking results with different

noise intensity of excitatory neurons is shown in Fig. 5. If

the noise intensity of excitatory neurons Dexc ¼ 2, only a

few neurons randomly spike due to the current input is too

small to make neurons spike. As the noise intensity of

excitatory neurons increases to 5 while that of inhibitory

neurons maintain 2, dark vertical lines indicate episodes of

alpha and gamma band rhythm (Fig. 5b). If the noise

intensity of excitatory neurons increases to 10 (Fig. 5c), all

the neurons are in almost synchronous state. However,

neither excitatory nor inhibitory neurons spike during the

time interval from 0 to 150 mS. Figure 5d provides MFP

plot versus noise intensities for excitatory neurons. It is

demonstrated that with increasing the noise intensities for

excitatory neurons Dexc, the network will display the

Fig. 5 Spiking results of

neurons with different noise

intensity D. In our simulation,

noise intensities of excitatory

neuron and inhibitory neuron

are set as Dexc and Dinh,

respectively. a Dexc ¼ 2.

b Dexc ¼ 5. c Dexc ¼ 10. d MFP

plot versus noise intensities of

excitatory neuron. Other system

parameters are: N ¼ 1; 000,

Dinh ¼ 2, Wexc ¼ 0:5,

Winh ¼ �1, I0 ¼ 0

Fig. 6 Spiking results of

neurons with different neuron

number N. a N ¼ 1; 000.

b N ¼ 5; 000. c N ¼ 10; 000.

d MFP plot versus neuron

number. Other system

parameters are: gc ¼ 0:25,

Dexc ¼ 5, Dinh ¼ 2, Wexc ¼ 0:5,

Winh ¼ �1, I0 ¼ 0
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behavior from random spiking (Dexc� 4) to almost syn-

chronous (4\Dexc� 7), then to complete synchronization

(Dexc [ 7).

From Figs. 3, 4, and 5, what happens for large values of

parameters? If noise intensity is set as sufficiently large

value such as Dexc ¼ 100, the simulation result shows that

all the neurons will spike in any time (from 0 to 1,000 m)

in randomly-coupled network. There occurs same phe-

nomenon if the other two parameters of synaptic weights

and external current are set as large values.

Finally, since we think that the MFP may be a kind of

order parameter describing the synchronous transition, the

effect of the number of neurons N should be studied.

Figure 6a shows that if the neuron number is 1,000, the

neurons randomly spike. As neuron number increases to

5,000 (Fig. 6b), the neurons will self-organize into

assemblies. As the neuron number are tuned to 10,000, all

the neurons spike with the same rhythm (time interval is

about 200 ms) and reach the complete synchronization.

Figure 6d provides MFP plot versus neuron number. It is

Fig. 7 Characteristics of a WS

small-world network for

different connection probability

p. The connection probabilities

p are set as a 0.02 and b 0.2.

c MFP plot versus connection

probability p. If two neurons i,

j are connected, Wði; jÞ ¼ 40,

otherwise, Wði; jÞ ¼ 0. Other

system parameters are: k ¼ 2,

I0 ¼ 0, Dexc ¼ 5 and Dinh ¼ 2.

The time length is 1,000 mS

and the neuron number is 1,000
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proven that as the neuron number increases from 1,000 to

8,000, the values of MFP increase at the same speed, with

increasing neuron number, the system becomes more and

more synchronous. With further increasing the neuron

number, the MFP reaches the maximum and remains there,

which means that the synchronization is already complete.

Dynamics based on small-world network

In this section, we will discuss the dynamics based on WS

small-world network (0\p\1) instead of randomly-cou-

pled network (p ¼ 1). The effects of two important

parameters of WS small-world network are investigated,

respectively. One parameter is the connection probability

p and the other one is the number of nearest neighbor of

each node k. Setting various values of p and k will lead to

the change of topology of the network.

Firstly, the effect of connection probability p is simu-

lated. As tuning p, the other parameters are set as constants.

If two neurons i, j are connected, Wði; jÞ ¼ 40, otherwise,

Wði; jÞ ¼ 0. The half of the number of nearest neighbor of

each node k ¼ 2. The external input I0 ¼ 0, the noise

strength for excitatory and inhibitory neurons are set as

Dexc ¼ 5 and Dinh ¼ 2. Figure 7a shows the small-world

topology via random rewiring of a small fraction p ¼ 0:02

(left part) and its corresponding neuron spiking result (right

part). It is demonstrated that if p ¼ 0:02, all the neurons are

in almost synchronous state, neither randomly spiking nor

Fig. 8 Characteristic of a WS

small-world network for the

number of nearest neighbor of

each node k. The number of

nearest neighbor of each node k

are set as a 2, b 4, c 8. If two

neurons i, j are connected,

Wði; jÞ ¼ 20, otherwise,

Wði; jÞ ¼ 0. Other system

parameters are: p ¼ 0:2, I0 ¼ 0,

Dexc ¼ 5 and Dinh ¼ 2. The time

length is 1,000 mS and the

neuron number is 1,000
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completely synchronization. Figure 7b gives the small-

world topology via random rewiring of a bigger fraction

p ¼ 0:2 (left part) and its corresponding neuron spiking

result (right part). It is shown that all the neurons are in

complete synchronization state in case of p ¼ 0:2 and

maintains the interval of spiking. To give a globe view of

the synchronization of neuronal network, Fig. 7c gives

MFP plot versus the connection probability p. It is dem-

onstrated that with increasing the connection probability p,

the network will display the behavior from almost syn-

chronous (0\p� 0:1), then quickly changes into complete

synchronization and maintains it with the range of con-

nection probability p� 0:1.

How the number of nearest neighbor of each node

k effects the synchronization is further discussed. Small-

world topologies and corresponding neuron spiking results

with different values of k are shown in Fig. 8. Other

parameters are set as connection probability p equals 0.2. If

two neurons i, j are connected, Wði; jÞ ¼ 20, otherwise,

Wði; jÞ ¼ 0. The external input I0 ¼ 0, the noise strength

for excitatory and inhibitory neurons are set as Dexc ¼ 5

and Dinh ¼ 2, respectively. If k ¼ 2, 1,000 neurons ran-

domly spike (Fig. 8a). Figure 8b shows that as the number

of nearest neighbor of each node k is increased to 4,

although the network is connected randomly, the neurons

self-organize into assemblies and they exhibit collective

rhythmic behavior. As Fig. 8c, the value of k continuously

increases to 8, all the neurons spike with the same rhythm

(time interval is about 130 ms) and reach the complete

synchronization. So, as the number of nearest neighbor of

each node increases, the network will become more and

more synchronous.

Conclusion

In conclusion, the oscillations and synchronization status of

two different network connectivity patterns based on Iz-

hikevich model have been investigated in this paper. One

of the connectivity patterns is randomly connected neuro-

nal network, the other one is small-world neuronal net-

work. The coupled neurons will exhibit types of collective

behavior by tuning some key parameters such as connec-

tion weights, external current injection, noise intensity,

neuron number, connection probability and the number of

nearest neighbor.

Four major outcomes are found based on this network

model. (1) One of them is the demonstration that the

synchronization status is much related with these four key

parameters in randomly connected neuronal network. By

increasing the synaptic connection weights, external cur-

rent injection, noise intensity and neuron number, respec-

tively, the system becomes more and more synchronous,

from random spiking to almost synchronous, then to

complete synchronization. (2) It can be seen that tuning the

intensity of external input has much effects on spiking of

inhibitory neurons than that of excitatory neurons. (3) In

addition, we show that by changing the connection prob-

ability in small-world topology can also affect the collec-

tive dynamics of neuronal activity. It is demonstrated that

with increasing the connection probability, the network

will display the behavior from almost synchronous to

complete synchronization and maintains it. (4) Moreover, it

is presented that increasing the number of nearest neighbor

in small-world topology can also significantly affect the

collective dynamics of neuronal activity, from randomly

spiking to completely synchronization. These methods and

results provide some guidelines to understand the collec-

tive dynamics of mammalian cortex.
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