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Abstract. Lyme disease (Borrelia burgdorferi infection) is the most common vector-transmitted disease in the United
States. The majority of human Lyme disease (LD) cases occur in the summer months, but the timing of the peak
occurrence varies geographically and from year to year. We calculated the beginning, peak, end, and duration of the
main LD season in 12 highly endemic states from 1992 to 2007 and then examined the association between the timing of
these seasonal variables and several meteorological variables. An earlier beginning to the LD season was positively
associated with higher cumulative growing degree days through Week 20, lower cumulative precipitation, a lower
saturation deficit, and proximity to the Atlantic coast. The timing of the peak and duration of the LD season were also
associated with cumulative growing degree days, saturation deficit, and cumulative precipitation, but no meteorological
predictors adequately explained the timing of the end of the LD season.

INTRODUCTION

Lyme disease is a tick-borne zoonotic disease caused by the
bacterial spirochete Borrelia burgdorferi.1 Since its initial
description in 1977,2 Lyme disease has been increasing in both
incidence and geographic distribution, and it is now the most
common vector-transmitted infectious disease in the United
States.3 The occurrence of Lyme disease in the United States
is concentrated in the northeast from Maine south to Virginia
and in the Midwestern states of Wisconsin and Minnesota.
Like many vector-transmitted diseases in temperate regions,
the occurrence of Lyme disease is highly seasonal. Approxi-
mately two-thirds of the cases from 1992 to 2006 had a
reported onset date in June, July, or August.3 The seasonality
of case occurrence varies geographically with the beginning of
the main transmission season (and the peak) occurring earlier
in southern endemic states (Virginia and Maryland) and later
in the northern endemic states (Maine, New Hampshire, and
Minnesota). Seasonality might also vary from year to year,
with the timing of the beginning and peak of the period
when the majority of infections occur differing depending on
environmental factors.
The seasonality of Lyme disease case occurrence is driven

in part by the life cycle of Ixodes scapularis, the main vector of
Lyme disease spirochetes in the eastern United States. Ixodid
ticks have four life stages (egg, larva, nymph, and adult), and
only require one blood meal per host-seeking life stage.4

The life cycle of I. scapularis typically takes 2 years to com-
plete in the northern United States latitudes where Lyme
disease occurrence is most common. Nymphal ticks typically
emerge and quest (seek hosts) in the late spring and early
summer, although the majority of adults seek a blood meal in
late summer and early autumn.4 The majority of human Lyme
disease cases are believed to be transmitted by nymphal ticks
because of their small size, which prevents timely detection,
and the strong overlap in the timing of nymphal activity and
Lyme disease occurrence.5 The timing of peak nymphal activ-
ity depends on both temperature and moisture. Ixodid tick
development rates increase with temperature,6–9 and temper-
ature also influences nymphal questing activity.10–12 Nymphal

questing activity may also be reduced when relative humidity
is low or saturation deficit is high,11–13 or when precipitation
is heavy.
Although influenced by meteorological conditions, tick

activity is not the sole determinant of human illness. Human
infection requires contact between infectious ticks and sus-
ceptible humans, and patterns of human activity can poten-
tially augment or decrease the risk of disease transmission.
Late spring through early fall is also the time period when
humans are most active outdoors, which increases the contact
rates between questing ticks and humans. Nevertheless, it is
essential to recognize that human behavior may be indepen-
dently influenced by temperature and precipitation in ways
that also affect disease.
Strategies for preventing Lyme disease include reducing the

abundance of ticks in the environment and modifying human
behavior to reduce tick exposure and pathogen transmis-
sion.14–16 One common control method in the northeast is the
area-wide application of acaricides in the peridomestic setting
to reduce the number of host-seeking nymphal ticks.17,18

A single springtime application of synthetic acaricide timed
to coincide with nymphal emergence can significantly reduce
the number of questing ticks for several months.19 Natural,
plant-based acaricides, which may be more acceptable to
some homeowners17,20,21 can also reduce the abundance of
I. scapularis nymphs; however, their efficacy begins to wane
after several weeks.19,22,23 Knowledge regarding the time
period when humans have a high risk of acquiring infection
could therefore be used to target the timing of application
of conventional or natural acaricides. Public awareness cam-
paigns emphasize the avoidance of high-risk habitat for tick
exposure, the use of clothing and repellents to avoid tick bites,
and tick checks and bathing after outdoor activity to prevent
pathogen transmission.15,24 A better understanding of the sea-
sonality of Lyme disease could be used to target when these
awareness campaigns would be most effective, and also pro-
vide the public with a better sense of when risk levels are
highest. The timely transfer of information regarding the level
of risk to the medical community is also important because
early diagnosis and treatment with antibiotics reduces compli-
cations and improves clinical outcome.25,26 The goal of our
study was to identify the meteorological factors associated
with the timing of the primary Lyme disease season, with the
goal of using this knowledge to improve the timing of control
and prevention efforts.
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The first objective of this study was to develop a measure
of the seasonality of Lyme disease occurrence in humans by
identifying the period or season when the majority of Lyme
disease cases occur. This was accomplished using novel
methods to calculate the beginning, peak, end, and duration
of the season when the majority of cases occur. Next, we
identified which meteorological variables are associated with
seasonal patterns of Lyme disease, particularly the beginning
of the period when the majority of cases occur, across all
states where Lyme disease is highly endemic. Other studies
of vector-borne diseases have linked seasonal variation in
incidence or occurrence to climate and meteorology in gen-
eral,27–31 but have not tried to predict or explain temporal
variation in the timing of the seasonal onset and peak, or the
length of the season when the majority of cases occur. In
addition to examining the association between meteorological
factors and seasonality across a broad region of 12 highly
endemic states, we also tested whether these associations
held for 4, multi-state sub-regions. The meteorological vari-
ables connected to the variability in the timing of the Lyme
disease season both geographically and annually in different
regions of the United States could then be used to help fore-
cast the annual timing of the Lyme disease season in highly
endemic areas.

MATERIALS AND METHODS

Epidemiological data. Human Lyme disease cases have
been voluntarily reported to the Centers for Disease Control
and Prevention (CDC) by state and territorial health depart-
ments as part of the National Notifiable Disease Surveillance
System (NNDSS) since 1991. A total of 275,518 human cases
of Lyme disease were reported between 1992 and 2007.3,32

During this period, a case of Lyme disease was defined
as either 1) a physician-diagnosed erythema migrans rash
of ³ 5 cm in diameter or 2) at least one objective late manifes-
tation (i.e., muscoskeletal, cardiovascular, or neurologic) with
laboratory evidence of infection with B. burgdorferi.33 The
national surveillance case definition was revised in 2008
to include probable cases, so we limited our analysis to 1992–
2007. However, we did use the confirmed case data from 2008
to 2010 to evaluate our model results. State or local health
departments are responsible for ensuring that cases reported
to CDC meet the case definition, and during the time period
of our study state health officials used various methods to
ascertain cases including provider-initiated passive surveil-
lance, laboratory-based surveillance, and enhanced or active
surveillance.3 These differences affect the completeness of
case ascertainment but should not influence the seasonal
trends among cases that are reported. Because we were inter-
ested in the seasonality of Lyme disease occurrence we
excluded all cases where the suspected county of exposure
was not reported or where the date of illness onset was either
not reported or was more than a year before the case report
date. We performed all analyses using either all confirmed
cases that met our criteria or only confirmed cases with an
erythema migrans diagnosis. Both analyses identified the
same meteorological variables as statistically significant.
Therefore, we present only the results of the analysis with all
confirmed cases, which draws upon a much larger sample size
(195,765 versus 112,501 cases).

Over 95% of Lyme diseases cases in the United States
occurred in 13 states during our study period, primarily in the
Northeast and Upper Midwest (Connecticut, Delaware, Maine,
Maryland, Massachusetts, Minnesota, New Hampshire, New
Jersey, New York, Pennsylvania, Rhode Island, Virginia, and
Wisconsin). During the time period of our study, reports
from Delaware did not include an illness onset date and were
therefore excluded from our analysis. In the remaining
12 states, Lyme disease cases for each state were aggregated
on a weekly timescale for each year based on the reported
date of illness onset. We analyzed every year with ³ 100 cases
in a state (Table 1; total number of cases = 195,765). Years
with fewer than 100 cases in a particular state were excluded
because we could not accurately calculate seasonal statistics
for that year.
Seasonal response variables. To examine seasonal variabil-

ity in Lyme disease occurrence we calculated the beginning
week of the primary Lyme disease season, the peak week of
occurrence, and the week ending the primary Lyme disease
season. In addition, we calculated the percentage of cases
that occurred before, within, and after the primary season.
The beginning of the primary Lyme disease season was
defined as the week when the number of Lyme disease cases
increased (accelerated) at its most rapid pace (i.e., not the
week with the largest increase in the number of cases, which
occurs a few weeks later in the season, but the week with the
maximum percent increase in number of cases over the previ-
ous week). This variable is calculated by maximizing the
second derivative of the weekly case curve (or the third deriv-
ative of the cumulative weekly case curve). The number of
cases recorded in a given week is subject to stochastic factors
independent of any meteorological drivers, which can inflate
the change in the number of cases from one week to the next
and lead to errors in calculating the beginning week of
the Lyme disease season. To minimize the influence of this
stochasticity on our assessment of seasonal variables, a fifth-
order polynomial regression function was fit to the cumulative
weekly case curve for each year for each state. A fifth-order
polynomial was necessary to represent the non-normality in

Table 1

Seasonal mean values, measured in weeks, for the 12 states (grouped
into four regions) included in our analysis*
State (Region) Years Start (SD) Peak (SD) End (SD) Duration (SD)

North 21 22.1 (1.1) 27.6 (0.8) 35.5 (1.1) 13.4 (1.5)
Maine 6 22.0 (1.8) 27.8 (1.2) 36.5 (1.0) 14.5 (2.1)
Massachusetts 13 22.2 (0.7) 27.5 (0.7) 35.1 (1.0) 12.9 (1.0)
New Hampshire 2 22.0 (1.4) 27.5 (0.7) 35.5 (0.7) 13.5 (2.1)
East 66 21.3 (1.2) 27.1 (0.7) 35.1 (0.9) 13.8 (1.7)
Connecticut 16 21.9 (1.0) 27.2 (0.4) 34.6 (0.7) 12.7 (1.4)
Rhode Island 14 22.1 (1.1) 27.6 (0.9) 35.1 (0.8) 13.1 (1.2)
New Jersey 7 20.7 (1.4) 27.0 (0.6) 35.9 (1.3) 15.1 (2.6)
New York 15 21.1 (0.9) 27.2 (0.4) 35.5 (0.7) 14.3 (1.4)
Pennsylvania 14 20.2 (0.9) 26.4 (0.5) 34.9 (0.9) 14.6 (1.3)
South 26 18.6 (1.3) 25.4 (0.6) 35.5 (2.9) 16.9 (3.4)
Maryland 16 19.2 (0.9) 25.6 (0.5) 34.9 (1.9) 15.8 (2.4)
Virginia 10 17.7 (1.3) 25.1 (0.7) 36.4 (4.0) 18.7 (4.0)
Midwest 32 22.3 (1.6) 27.6 (1.5) 34.8 (1.8) 12.4 (2.0)
Minnesota 16 23.1 (1.5) 27.7 (1.2) 34.3 (1.2) 11.2 (1.6)
Wisconsin 16 21.6 (1.4) 27.4 (1.7) 35.3 (2.1) 13.7 (1.4)
Mean (SD) 145 21.2 (1.8) 27.0 (1.2) 35.2 (1.7) 14.0 (2.6)

*Years are the number of years between 1992 and 2007 where > 100 Lyme disease cases
occurred in a state and included in analysis. Start, peak, and end are the week when the
Lyme disease season starts, reaches its peak, and ends, respectively; duration is the length
of the Lyme disease season in weeks. Numbers in parentheses are standard deviations
(in weeks) for each variable.
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both tails of the annual case curve (R2 > 0.994 for each year;
Figure 1). The beginning week was then calculated by maxi-
mizing the second-order weekly difference in case counts,
which approximates the second-order derivative, from this
fifth-order polynomial function (Figure 1C).
The week with the most cases (peak) was also calculated

from the fifth-order polynomial function. The end week of the
primary Lyme disease season was calculated using the same
method as the beginning week calculation, except we identi-
fied the week when the maximum deceleration in cases
occurred following the annual peak. The seasonal duration
(in weeks) was calculated by subtracting the beginning week
from the end week.
Meteorological variables. All meteorological variables were

obtained from primary forcing data for Phase 2 of the North
American Land Data Assimilation System (NLDAS-2).34

The primary forcing data were originally developed to pro-
vide a high-quality, long-term dataset to drive a suite of
research-grade land-surface models,35,36 but have subsequently
been used for a variety of climate research applications over
central North America. The non-precipitation NLDAS-2
forcing data were interpolated to 1/8th degree spatial resolu-
tion and disaggregated to hourly temporal resolution from

the 32-km, 3-hourly North American Regional Reanalysis
(NARR), which has been shown to represent near-surface
climatic fields with high fidelity.37 Precipitation fields in the
NLDAS-2 forcing data are not from NARR, but rather
directly from gauge data augmented with satellite- and radar-
derived precipitation estimates. Hourly meteorological fields
from the NLDAS-2 forcing data were used to calculate the
weekly minimum, mean, and maximum temperatures, satu-
ration deficit, relative humidity, weekly precipitation, and
cumulative precipitation from the beginning of the year for
each grid cell (Table 2). Temperature data were used to calcu-
late the weekly growing degree days (GDD) above a particu-
lar temperature threshold, and the cumulative growing degree
days above that temperature threshold from the beginning of
the year. Because several aspects of tick biology and human
behavior may respond to different temperature thresholds we
examined potential GDD thresholds of 5, 6, 10, 14, and 18°C
by using the model selection techniques described below to
determine which threshold value provided the best estimate
of Lyme disease seasonality. The beginning of the Lyme
disease season was strongly correlated with GDD at each
threshold value, but model fit was maximized using a GDD
threshold of 10°C. A threshold of 10°C has also been used in

Figure 1. Weekly Lyme disease cases (A) and cumulative percentage of annual cases (B) for Maryland and Minnesota in 2001. Solid lines in
(A) represent actual number of weekly cases for each state and dashed lines represent the smoothed number of cases using a fifth-order
polynomial. (C) The second-order finite difference of the weekly case count for each state was used to calculate the beginning and end of the
Lyme disease season for each state and year. The dotted lines in (A–C) represent the beginning week for each state.
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several studies of ixodid tickpopulations38,39; therefore,weuseda
GDD threshold of 10°C for all of our analyses. A county-level
mean value for each weekly meteorological variable was calcu-
lated using the Zonal Statistics tool in ArcGIS 9.3 (Environ-
mental SystemsResource Institute, 2010; ESRI, Redlands, CA).
A statewide average was then derived by calculating a
weighted average of the county-level values within each state.
Each county-level statistic was weighted by the percentage of
1992–2007 Lyme diseases cases from a state occurring in that
county, so that meteorological variables from the counties
with the most cases within a state had the highest weights
(Figure 2). The latitude and distance from the Atlantic coast-
line were calculated in a similar fashion for each state by
weighting the mean latitude and coastline distance of each
county by its percentage of statewide cases.
Statistical analysis. Analysis of variance was conducted to

determine whether there was a significant difference in each
of the seasonal statistics among states or among years. Indi-
vidual states were compared using pairwise t tests with a
Bonferroni correction to adjust for multiple comparisons.
Linear multiple regression models were constructed to iden-
tify meteorological predictors of the beginning, peak, end,
and duration of the Lyme disease season. The leaps package
version 2.9 in R.40 was used to perform an exhaustive search
of the best fit models using Akaike’s information criterion
(AIC) as the model selection criterion. The mean beginning
of the Lyme disease season across all states was 21.2 weeks.
Therefore, we considered weekly values of saturation deficit,
relative humidity, GDD, and precipitation from Weeks 1 to
20 as potential explanatory variables for the beginning of the
Lyme disease season. Cumulative precipitation and cumula-
tive GDD through Weeks 1 to 20, latitude, and distance to
coastline were also included as potential explanatory vari-
ables. In addition to weekly meteorological variables, we
calculated the saturation deficit, relative humidity, GDD, pre-
cipitation, cumulative precipitation, and cumulative precipita-

tion after Week 8 (because the amount of precipitation that
occurs as rain versus snow in the first few months of the year
varies significantly) in the 5 weeks before the beginning of the
Lyme disease season. We also calculated the week at which a
cumulative threshold of 100 to 500 GDD was reached (in incre-
ments of 50). For the analysis of the duration and end of
the Lyme disease season, we also included all weekly meteoro-
logical variables through Week 40 as potential explanatory
variables. Several of the meteorological variables were highly
correlated, so the predictors in the model were tested for
multicollinearity by comparing variance inflation factors
(VIF). All models with a VIF > 5 were excluded from analysis.
Because of the relatively high correlation between relative
humidity and saturation deficit, models including both variables
from the same week were also excluded. All statistical analyses
were performed in R 2.11 (R Development Core Team 2010).
Regional analysis. The 12 states were grouped into different

regions based on the similarity of their climate using k-means
cluster analysis. K-means cluster analysis partitions observa-
tions from each state into k clusters, where k is a pre-
determined value, by placing each observation in the cluster
with the nearest mean. The means for each cluster were cal-
culated using the annual GDD, annual precipitation, and
mean weekly saturation deficit for each observation. Because
several states had a few years with > 100 Lyme disease cases
between 1992 and 2007, we included every year from 1992 to
2007 from each state for clustering purposes (N = 192). The
number of clusters was varied from three to six, with the
appropriate number of clusters determined by which grouping
had the best combination of precision and percent of variance
explained by the cluster groupings. Precision was determined
by the percent of annual observations from each state that
were included in the same cluster. An optimum grouping
of four clusters (regions) was chosen because only k = 3 and
k = 4 had at least 50% of observations from each state (except
MA) in one cluster, and the percentage of variance explained
(ratio of between-group variance to total variance) was higher
for k = 4 than k = 3 (75.8% versus 69.0%). The four regions
roughly correspond to the upper midwest (MN and WI),
northern New England (MA, NH, and ME), southern New
England and the northern mid-Atlantic (RI, CT, NY, NJ, and
PA), and the southern mid-Atlantic (MD and VA) (Table 3).
The beginning week of the Lyme disease season was ana-

lyzed using a generalized linear mixed-effects regression
model (GLMM) with region, state, and year as nested random
effects to provide an estimate of the variance associated with
each factor after accounting for variance at the other hierar-
chical levels (variance components analysis) using the lme4
package in R.41 The best fitting linear regression model(s) for
all states were then fit separately for each region to determine
whether the overall relationship between Lyme disease sea-
sonality and climate held within the different regions. An
exhaustive search of the best fit models of the beginning of
the Lyme disease season for each region was also conducted
using the same approach outlined for the overall model.

RESULTS

Seasonal statistics.Across all states and all years, the begin-
ning of the season when a majority of Lyme disease cases
occur varied from Week 16 to Week 26 (mean = 21.2 weeks,
SD = 1.8 weeks; Figure 3 ; Table 1). The mean duration of the

Table 2

Description of meteorological variables used in the analysis of Lyme
disease seasonality. All variables were obtained from primary
forcing data for Phase 2 of the North American Land Data
Assimilation System (NLDAS-2)34

Variable Description

Weekly minimum
temperature

Minimum temperature during the week

Weekly maximum
temperature

Maximum temperature during the week

Weekly mean
temperature

Mean temperature for the week

Weekly precipitation Total precipitation for the week
Cumulative
precipitation

Total cumulative precipitation from the
beginning of the year

Growing degree days
(GDD)

Total degrees above 10 °C for the week
calculated using daily mean
temperatures

Cumulative growing
degree days (GDD)

Total degrees above 10 °C since the
beginning of the year calculated
using daily mean temperatures

Saturation deficit Index of humidity that measures how far
the amount of water vapor is below
saturation for a given temperature
and pressure

Relative humidity Weekly mean of the ratio of the measured
water vapor pressure to the saturation
vapor pressure
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season was 14.0 weeks (SD = 2.6 weeks). An average of 71.6%
of cases occurred within the main Lyme disease season (12%
occurred before, 16.4% after). The mean seasonal peak
occurred at week 27.0 (SD = 1.2 weeks). The average timing
of the beginning of the Lyme disease season varied signifi-
cantly across states (F11,132 = 19.8; P < 0.0001). The beginning
of the Lyme disease season occurred significantly earlier in
Virginia (mean = 17.7 weeks) than in any other state (expect
Maryland which had amean of 19.2 weeks; P = 0.12).Minnesota
had the latest beginning to the Lyme disease season (mean =
23.1 weeks). The peak of the Lyme disease season also varied
significantly among states (F11,132 = 11.3; P < 0.0001), as
did the duration (F11,132 = 12.0; P < 0.0001). The end of the

Lyme disease season also varied among states (F11,132 = 1.8;
P = 0.052), but differences among the states only explained
13.1% of the variance in the end week. The duration of
the Lyme disease season in Virginia was significantly longer
than in all of the other states (mean = 18.7 weeks), whereas
Minnesota had the shortest season at 11.2 weeks. No state had
a significantly earlier or later end week compared with the
mean of week 35.2.
Beginning of the Lyme disease season. The strongest uni-

variate predictor of the beginning of the Lyme disease season
was the cumulative GDD through Week 20 (r2 = 0.54), with
higher cumulative GDD associated with an earlier start week
(Figure 4). Cumulative GDD through Weeks 10 to 19 were

Figure 2. Percentage of statewide Lyme disease cases from 1992 to 2007 occurring in each county for the 12 highly endemic Lyme disease
states included in our analysis. Dots represent the center of each state weighted by the county case percentages. State latitude and distance to the
Atlantic coastline were calculated from these weighted centers.

490 MOORE AND OTHERS



all highly significant as well (R2 = 0.41 to 0.53), as were the
100–400 GDD threshold weeks (R2 = 0.47 to 0.51). The best
fit model included four variables in addition to the intercept:
the cumulative GDD through Week 20, the mean saturation
deficit in the 5 weeks before the beginning of the Lyme dis-
ease season, the cumulative precipitation fromWeek 8 through
the beginning of the Lyme disease season, and the distance to
the Atlantic coastline (adj-R2 = 0.79; Table 4). The only other
model with a DAIC < 2 included longitude instead of the
distance to the Atlantic coastline. All of the models with
DAIC < 10 included the mean saturation deficit in the 5 weeks
before the beginning of the Lyme disease season, the cumula-
tive precipitation from Week 8 through the beginning of
the Lyme disease season, and either the cumulative GDD
through Week 20 or the number of weeks to 150 GDD as
explanatory variables. An increase in the cumulative GDD
through Week 20 (or an earlier 150 GDD threshold week)
was associated with an earlier beginning of the Lyme disease
season (Figure 4). The Lyme disease season is predicted to
begin 1.4 weeks earlier for each additional 100 cumulative
GDD through Week 20. Alternatively, the beginning of the
Lyme disease season is 0.5 weeks earlier for each decrease in
the week that 150 cumulative GDD are reached (model 3 in
Table 4). An earlier start to the Lyme disease season was also
negatively associated with the mean saturation deficit before
the beginning of the season, the cumulative precipitation
since Week 8, and the distance to the Atlantic coastline
(Table 4).

Model validation was performed using climate and case
data from 2008 to 2010 from each of the 12 states (N = 35;
Rhode Island, 2008 was excluded from model validation
because 40% of cases had a reported onset date of 3/22).
Our best-fit model performed well for the 2008–2010 period
(adj-R2 = 0.70), with the cumulative GDD through Week 20
and mean saturation deficit variables remaining highly statis-
tically significant (P < 0.001), but the cumulative precipi-
tation since Week 8 and distance to the Atlantic coastline
variables were not significant at a P value of 0.05 (P = 0.08
and P = 0.12).
Seasonal peak and duration. The timing of the peak and

duration of the Lyme disease season were explained by simi-
lar variables as the beginning of the season. The strongest
univariate predictors of the peak and duration of the Lyme
disease season were the cumulative GDD through Week 22
and Week 21, respectively (R2 = 0.50 and 0.31). The best
model for the peak week included cumulative GDD through
Week 22, the saturation deficit 1 week before the beginning
of the season, the cumulative precipitation after Week 8, and
the distance to the Atlantic coastline (R2 = 0.59). The best
model of the duration of the Lyme disease season included
cumulative GDD through Week 20, the mean saturation def-
icit before the beginning of the season, the cumulative precip-
itation up to 1 week before the beginning of the season, and
the distance to the Atlantic coastline (R2 = 0.54). None of
the meteorological variables were strong predictors of the
end of the Lyme disease season. No single predictor explained
more than 5% of the variance in the end of the season, and
no multi-variable model had an adjusted R2 > 0.15.
Regional analysis. The majority of the variation in the

beginning of the Lyme disease season was determined by
factors at the regional scale (59.8%), with differences among
states within a region accounting for less of the variation
(11.2%). The remainder of the variation in the beginning
of the season was a result of differences among years
within each state (29.0%). The beginning of the Lyme disease
season started significantly earlier in the southern mid-
Atlantic (mean = 18.6 weeks) than in the other regions, and
earlier in the east (mean = 21.3 weeks) than in the north

Figure 3. The overall mean beginning of the Lyme disease season from 1992 to 2007, along with the annual beginning weeks for three states:
Minnesota, Connecticut, and Maryland.

Table 3

Results of k-means cluster analysis with the number of clusters set
to k = 4*
Region CT MA MD ME MN NH NJ NY PA RI VA WI

North 2 7 0 15 1 10 0 2 0 2 0 3
East 9 3 1 0 0 2 10 10 9 11 0 0
South 0 0 15 0 0 0 5 0 5 0 16 0
Midwest 5 6 0 1 15 4 1 4 2 3 0 13

*Each column represents the number of years from 1992 to 2007 for each state that were
clustered within a particular region based on the annual growing degree days (GDD), annual
precipitation, and mean weekly saturation deficit for that year. Bolded values indicate the
region into which each state was grouped.
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(mean = 22.1 weeks) or midwest (mean = 22.3 weeks). The
best-fit overall model (model 1 in Table 4) performed rela-
tively well in the southern mid-Atlantic (r2 = 0.784), east (r2 =
0.614), and midwest (r2 = 0.614) regions, but not in the north
(r2 = 0.375). All four variables were significant for the south-
ern mid-Atlantic region model, distance to coastline was the
only variable that was not statistically significant in the east
and midwest regions, and only cumulative precipitation after
Week 8 was significant in the north region model. The best-fit
model for the north region included cumulative precipitation
before the beginning of the Lyme disease season, precipita-
tion 4 weeks before the Lyme disease season, Week 5 satura-
tion deficit, and Week 3 precipitation (Table 5). All of the
other regional best-fit models included variables representing
cumulative GDD, saturation deficit before the beginning of

the Lyme disease season, and cumulative precipitation as
three of the four model parameters (Table 5).

DISCUSSION

Previous research has linked the development and seasonal
activity patterns of Ixodes ticks6,9,42–44 to meteorological vari-
ables, specifically temperature and humidity. However,
because non-entomologic factors can also influence the occur-
rence of tick-borne disease in humans,45 the degree of
coupling between meteorological factors and human Lyme
disease has been open to question. Here, we showed that
the geographical and annual variation in the timing of
human Lyme disease can also be largely explained by meteo-
rological factors. The beginning, peak, and duration of the

Figure 4. Beginning week of Lyme disease season across all states and years as a function of the cumulative growing degree days (GDD)
above 10 °C through Week 20 for that state and year (r2 = 0.54).

Table 4

Best fit models with the beginning week of the Lyme disease season as the response variable*
Model Number of parameters Adj. R2 AIC DAIC Model parameters Parameter estimates 95% Confidence interval

1 4 0.785 368.4 0 Week 20 cumul. GDD −0.014 −0.016 to −0.011
Mean SD before onset 0.945 0.696–1.194
Cumul. precip. after Week 8 0.009 0.007–0.011
Distance to coastline 0.093 0.055–0.131

2 4 0.784 369.4 1.0 Week 20 cumul. GDD −0.014 −0.016 to −0.012
Mean SD before onset 0.932 0.683–1.181
Cumul. precip. after Week 8 0.009 0.008–0.011
Longitude −0.052 −0.090 to −0.014

3 4 0.773 376.7 8.3 Weeks to 150 GDD 0.530 0.445–0.614
Mean SD before onset 1.062 0.801–1.322
Cumul. precip. after Week 8 0.010 0.008–0.012
Distance to coastline 0.098 0.059–0.137

4 4 0.772 377.3 8.9 Weeks to 150 GDD 0.568 0.487–0.648
Mean SD before onset 1.055 0.792–1.318
Cumul. precip. after Week 8 0.010 0.008–0.012
Longitude −0.056 −0.078 to −0.033

*Number of model parameters, model adjusted r2, AIC, and DAIC values and parameter estimates with 95% confidence intervals for all models with DAIC < 10. DAIC represents the difference
between a model’s AIC value and the AIC value of the best fit overall model. Italicized parameters are not statistically different from 0 at a = 0.05 confidence level.
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Lyme disease season were associated with several meteorolog-
ical variables, including cumulative GDD, cumulative precip-
itation, and saturation deficit at both the national and regional
levels. The strongest predictor at the national level was the
cumulative GDD above 10°C through the first 20 weeks of
the year, with higher cumulative GDD associated with an
earlier beginning to the Lyme disease season. An early begin-
ning to the Lyme disease season was also associated with less
cumulative precipitation and a lower mean saturation deficit
before the start of the season.
Tick population dynamics and phenology are highly sensi-

tive to temperature at multiple life stages.44 The host-seeking
behavior of the nymphal stage is most relevant for the trans-
mission of B. burgdorferi to humans because nymphs are
believed to be responsible for most human infections. Intersta-
dial development rates in ixodid ticks typically increase with
increasing temperature,6–8,46,47 and the timing of nymphal
host seeking is correlated with ambient temperatures.6,43,48–50

The negative relationship between cumulative GDD through
Week 20 and the week of the year when the Lyme disease
season begins, indicating that higher cumulative GDD at
Week 20 are associated with an earlier start to the season (or
the positive relationship between the number of weeks to reach
300 GDD and the week when the Lyme disease season begins),
is likely due in part to this positive effect of temperature on
the activity of newly emerged nymphs in the spring. Cumula-
tive GDD were a better predictor of seasonal timing than
weekly minimum, mean, or maximum temperatures. Nymphal
questing activity may track not just immediate environmental
conditions, but temperatures earlier in the year as well. Newly
emerged nymphs of some Ixodes species may undergo a behav-
ioral diapause between emergence and host-seeking activity
(questing) that is dependent on climatic conditions such as
temperature.9,51–54 In addition, larvae that feed later in the
summer or fall may undergo developmental (morphogenetic)
diapause and overwinter before molting.9,52,55–57 In this case

larval development and nymphal emergence would likely be
subject to cumulative spring temperatures.8,49 Tick develop-
ment, survival, and activity levels are all potentially sensitive
to moisture levels in addition to temperature. In the overall
best-fit model (and three of the four regional models) a higher
mean saturation deficit in the 5 weeks before the beginning of
the Lyme disease season was associated with a delayed start
to the season. Nymphal I. scapularis activity increases with
ambient relative humidity,10 and the activity and density of
other ixodid ticks is also negatively correlated with saturation
deficit.51,58 Ixodes scapularis nymphs also reach higher questing
heights at higher relative humidity levels,11 which may increase
their likelihood of encountering humans. Higher saturation
deficits may delay the beginning of the Lyme disease season
because it decreases questing activity and decreases the likeli-
hood of questing nymphs encountering humans. The cumula-
tive precipitation from Week 8 to the beginning of the Lyme
disease season also was associated with a later start to the
season. Although spring or summer rainfall is positively corre-
lated with ixodid tick densities in California,43 this association
is generally measured during the time of peak nymphal density
rather than earlier in the year when nymphal activity begins
and the first human Lyme disease cases are likely to occur.
Heavy rainfall events may impede nymphal questing activity,
which could delay the beginning of the Lyme disease season
in humans.
In addition to meteorological effects on pathogen and vector

biology, seasonal patterns in disease occurrence can also arise
because of human activities that lead to an increased exposure
to pathogens and their vectors.59 It is likely that people will
spend more time outdoors in areas where they may encounter
questing ticks in warmer and drier weather. Therefore, the
association between cumulative GDD, cumulative precipita-
tion, and the beginning of the Lyme disease season may be
partially driven by the influence of weather on human behav-
ior in a way that affects the exposure of the human population

Table 5

Best fit models for the beginning week of the Lyme disease (LD) season in each of the four regions of high Lyme disease occurrence*
Region Model Model parameters Adj. R2 AIC DAIC

North 1 (+) Cumulative precip. before LD season 0.832 34.9 0
(−) Precip. 4 weeks before LD season
(+) Week 5 saturation deficit
(−) Week 3 precip.

2 (+) Cumulative precip. before LD season 0.827 35.5 0.6
(−) Precip. 4 weeks before LD season
(−) Week 7 relative humidity
(−) Week 5 precip.

East 1 (−) Week 20 cumulative GDD 0.723 137.2 0
(+) Mean SD before onset
(+) Cumulative precip. after Week 8
(−) Week 9 precipitation

South 1 (−) Week 17 cumulative GDD 0.852 42.9 0
(+) Mean SD before onset
(+) Cumulative precip. before LD season
(+) Week 17 relative humidity

Midwest 1 (−) Cumulative GDD from Week 16–21 0.819 72.7 0
(+) Mean SD before onset
(+) Cumulative precip. after Week 8
(−) Week 8 saturation deficit

2 (−) Cumulative GDD from Week 16–21 0.809 74.4 1.7
(+) Mean SD before onset
(+) Cumulative precip. before LD season
(−) Week 8 saturation deficit

*Model adjusted r2, AIC, and DAIC values for all models with DAIC < 2. The (+/–) signs indicate whether parameter coefficients are positive or negative. DAIC represents the difference
between a model’s AIC value and the AIC value of the best fit overall model.
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to infected I. scapularis nymphs. However, the strength of
the relationship between cumulative GDD and human behav-
ior is likely to be weaker than the relationship between cumu-
lative GDD and tick development rates because human
activity levels are mostly associated with the current temper-
ature rather than cumulative temperatures since the begin-
ning of the year. Likewise, human activity is probably more
strongly associated with the amount of current precipitation
rather than cumulative precipitation from Week 8 through
the beginning of the Lyme disease season. However, in the
northern areas considered in our study where snowpack in
some years can last until springtime the cumulative GDD
and precipitation before the beginning of the Lyme disease
season may have a more lasting effect on the amount of time
people spend outdoors in areas where they are likely to
encounter questing nymphs. In addition, cumulative tempera-
tures and precipitation could influence other environmental
factors such as seasonal flooding and plant phenology that
may affect human activity levels.
The best-fit overall model performed relatively well in

three of the four climatically defined regions examined in
this study. All three meteorological parameters (cumulative
GDD, cumulative precipitation, and mean saturation deficit)
were statistically significant in the east, southern mid-Atlantic,
and midwest regions, but only cumulative precipitation was
statistically significant in the north region. The majority of the
overall variation in the beginning of the Lyme disease season
was caused by geographical differences between regions
rather than interannual differences within a state or region.
However, the continued significance of these meteorological
variables at the within-region level suggests that there is an
association between weather and the interannual variation in
seasonality as well. With the exception of the north, cumula-
tive GDD was consistently associated with an earlier start to
the Lyme disease season and higher cumulative precipitation
was consistently associated with a later beginning to the season.
In the northern region (MA, ME, and NH) cumulative pre-
cipitation was still positively associated with the start of the
Lyme disease season, but there was no relationship between
temperature and the timing of seasonality. This lack of a
relationship between temperature and the beginning of the
Lyme disease season is somewhat surprising because Maine
is the current northern limit of Lyme disease’s geographic
range in the United States, and the distribution of I. scapularis
is believed to be limited by temperature.60,61 Therefore, we
might expect I. scapularis activity to be sensitive to climate
variability in a region where mean temperatures are close to
their lower temperature limit for survival and development.
However, the interannual variation in cumulative GDD
through Week 20 was lower in the north region than it was in
the other three regions, therefore temperature might not have
varied enough from year to year to influence the timing of the
Lyme disease season in these northern states. The timing of
the Lyme disease season in the north might also be associated
with weather-independent human activity patterns.
The best-fit overall model, and all of the best-fit regional

models, included several parameters (cumulative precipitation
from Week 8 to the beginning of the Lyme disease season and
the mean saturation deficit before the Lyme disease season)
that can only be calculated once the Lyme disease season
begins. Because of this constraint these models cannot be
used to precisely forecast when the Lyme disease season will

begin in advance. Despite this limitation, the strong correla-
tion between cumulative GDD and the beginning of the
Lyme disease season suggests that GDD calculations could
be used to predict whether the Lyme disease season is likely
to start earlier or later than usual. The strongest correlation
was with the cumulative GDD through Week 20, which
does not provide much lead time for forecasting, particularly
because infection typically occurs a week or two before symp-
toms first appear, but the cumulative GDD as early as
Week 10 was still correlated with the beginning of the season
(R = 0.64) and could provide several weeks advance notice.
Such information could be used to better time prevention
efforts such as public awareness campaigns and acaricidal
treatments, particularly since the peak of the Lyme season
was also strongly associated with cumulative GDD. The cor-
relation between cumulative GDD and the beginning of
the season increased steadily from Week 10 (R = 0.64) to
Week 20 (R = 0.74), providing a tradeoff between lead time
and accuracy.
By analyzing the relationship between meteorological factors

and the seasonality of Lyme disease occurrence in humans we
have identified several variables associated with variations in
when the Lyme disease season begins and peaks, as well as
how long the season lasts, but not when the season ends. By
identifying inflection points in the annual case curves from
1992 to 2007 we found that the beginning of the Lyme disease
season varied by up to 10 weeks among the states where the
disease is highly endemic and by up to 6 weeks within a state
over this 16-year period. These methods could be used to
calculate statistics for other infectious diseases with clear sea-
sonal patterns. An analysis of the association between the
variation in seasonality and meteorological variables, and
other environmental and social factors, can be used to under-
stand what factors drive disease occurrence as we have done
here. Links between environmental factors and the timing of
seasonal transmission can also be used to develop forecasting
tools that inform disease prevention efforts. For infectious
diseases that can cause large seasonal epidemics, such as influ-
enza or dengue, these methods could also be used to identify
factors that influence the timing and severity of peak disease
occurrence, and the duration of the epidemic.
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