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Abstract

We give a new explanation for why some biological systems can stay quantum coherent for a long time at room
temperature, one of the fundamental puzzles of quantum biology. We show that systems with the right level of complexity
between chaos and regularity can increase their coherence time by orders of magnitude. Systems near Critical Quantum
Chaos or Metal-Insulator Transition (MIT) can have long coherence times and coherent transport at the same time. The new
theory tested in a realistic light harvesting system model can reproduce the scaling of critical fluctuations reported in recent
experiments. Scaling of return probability in the FMO light harvesting complex shows the signs of universal return
probability decay observed at critical MIT. The results may open up new possibilities to design low loss energy and
information transport systems in this Poised Realm hovering reversibly between quantum coherence and classicality.
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Introduction

Discovery of room temperature quantum coherence in the

avian compass [1] of birds, in the olfactory receptors [2] and in

light harvesting complexes [3–6] in the last few years indicate that

quantum effects might be ubiquitous in biological systems. While

the quantum chemical understanding of the details of light

harvesting systems is almost complete, no organizing principle has

been found which could explain why quantum coherence is

maintained in these systems for much longer than the character-

istic decoherence time imposed by their room temperature

environment. Here we propose that at the critical edge of

quantum chaos coherence and transport can coexist for several

orders of magnitudes longer than in simple quantum systems.

Quantum systems changing from integrable to quantum chaotic

pass through critical quantum chaos [7–10] which is also a metal-

insulator transition from Anderson localization to extended wave

functions. By extending the semiclassical theory of decoherence

from chaotic [11–17] and integrable systems [18] to the transition

region we show that coherence decay changes from exponential to

power law behavior and coherence time is amplified exponentially

from its environmentally determined value. We demonstrate on a

ring of chromophores that coherence in the critical point decays

with the same non-trivial power law as in the FMO complex

experiment [5].

Results

Quantum biology is dealing with open quantum systems closely

coupled to their many degrees of freedom environment. The

environment exerts time dependent forces on the system through

the coupling. Some of these forces change very rapidly compared

to the excitation frequencies of the system and look random from

its point of view. This ‘‘heat bath’’ destroys quantum coherence

and moves the system into a mixed state rapidly. The average

effect of the random forces can be described as a non-unitary time

evolution of the system’s density matrix.

The speed of environmental decoherence can be characterized

by the decay rate of the off diagonal (n=m) elements of the

reduced density matrix of the system %nm*e{t=tc , where tc is the

coherence time. Purity P~Tr½%2�~
P

mn D%nmD2 has been shown to

be a good overall measure. It is P~1 when the system is in a pure

state and decreases monotonically as the system decoheres into a

mixed state. P(t)*1=Nzconst:e{t=tc , where N is the number of

quantum states of the system. The logarithm of the purity is the

Renyi entropy S2~log Tr½%2� of the system. The long time

entropy production rate of the system [12] and the rate of

decoherence are then closely related dS2=dt*1=tc for t??.

Entropy production on the other hand is determined by the

dynamical properties of the system. It has been derived via

semiclassical approximation and then proven by direct simulations

that the entropy production rate becomes environment indepen-

dent and is determined by the classical dynamical Kolmogorov-

Sinai entropy of the system [11–17]. It is in turn the sum of the

positive Lyapunov exponents lz
i characterizing the exponential

divergence of chaotic trajectories in the system

dS2=dt*hKS~
P

i lz
i : This relation between coherence decay

and generalized Lyapunov exponents has been confirmed in

strongly chaotic systems. Another implication of this result is that

the rate of decoherence vanishes in systems where the Lyapunov

exponent is zero. This has also been confirmed in integrable

systems. These are completely solvable systems with fully

predictable regular dynamics and zero Lyapunov exponents.

Purity shows power law decay typically like P(t)*1=t2 and

asymptotic decoherence rate is zero dS2=dt*1=t?0.
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Zero Lyapunov exponent and entropy production can also

emerge in systems at the border of the onset of global chaos in the

classical counterpart of the system. Suppose, we have a parameter

E of the mechanical system which characterizes its transition from

regular dynamics to chaos [20,21] H~HRzEHC , where HR is

the Hamiltonian of a fully integrable system and HC is fully

chaotic. Classically HR is a solvable system and it can be described

by action-angle variables. It does only simple oscillations in the

angle variables while the action variables do not change and

remain conserved restricting the dynamics for the surface of a

torus in the phase-space. When E=0 but small the system is not

integrable classically and the Kolmogorov-Arnold-Moser (KAM)

theory describes the system [20,21]. The chaotic perturbation

breaks up some of the regular tori in the phase-space and chaotic

diffusion emerges localized between unbroken, so called KAM

tori. Chaotic regions are localized in small patches in the phase-

space surrounded by regular boundaries represented by the KAM

tori. At a given critical Ec even the last KAM tori separating the

system gets broken and the chaotic patches merge into a single

extended chaotic sea. In the transition region E&Ec the Lyapunov

exponent shows a second order phase transition [22] with power

law scaling l0(E)*(E{Ec)b slightly above EwEc with some

exponent bw0. Above the transition EwEc the system is chaotic

characterized by a positive largest Lyapunov exponent l0w0.

On the quantum mechanical level we can follow the transition

in the statistical distribution of the energy levels. The Hamilton

operator of the regular system HR is a separable with diagonal

matrix elements. The consecutive energy levels of the regular

system look random and follow a Poisson process. The nearest

neighbor level spacing distribution is then exponential

p(s)~exp({s), where sn~(Enz1{En)=D(En) is the level spacing

measured in the units of local mean level spacing D(E) at energy

E. The Hamiltonian operator HC corresponding to the fully

chaotic system is best approximated by a random matrix. The

energy level statistics of HC can be described by Random Matrix

Theory (RMT) and the level spacings follow the Wigner level

spacing distribution [23] p(s)~(ps=2)exp({ps2=4) in systems

with time reversal symmetry. As the parameter E is increased from

zero the level spacing statistics changes from a Poissonian to a

Wigner distribution. Critical quantum chaos [10] sets up at the

critical value Ec in between. Below the critical point p(0) is finite, at

the critical point and above the spacing distribution starts linearly

p(s)~As for s?0, a characteristic feature of chaotic systems with

strongly overlapping eigenfunctions. The tail of the distribution

remains exponential below the critical point exp({Bs) for s??
which is a characteristics of regular systems whose eigenfunctions

do not overlap for larger energy separations. It turns to gaussian

exp({Cs2) then above the critical point. At the critical point the

level statistics is semi-Poisson [10] p(s)~4s exp({2s) which starts

linearly and decays exponentially combining the two main aspects

of the level statistics of regular and chaotic systems.

The transition described here is more general than just the

transition from regular to quantum chaotic behavior. It is also a

transition from the localized states of the regular system to the

extended states of the chaotic system. The two are separated by

the metal-insulator transition (MIT) point [7,9] between quantum

mechanical Anderson localization and globally delocalized metal-

lic phase. The transition point can be identified with the

emergence of the semi-Poissonian [9] level statistics. In the

transition point the wave functions are neither fully localized nor

extended and have an intriguing multi-fractal spatial character.

The fractal structure allows them to develop a hairy localized

Figure 1. Purity decay of the chromophore ring with 1D Harper hamiltonian. Below the metal-insulator transition WvWc~2 curves can
be fitted with exponentials P(t)~exp({t=tc). In the parameter range W~0:1{1:9 the fitted coherence time changes in the range tc~182{248. In
and above the transition W§Wc the curves can be fitted with P(t)~(ta=(tazt))a . In the parameter range W~2:0{4:0 the exponent changes in
the range a~2:01{0:479 and ta~451{1651. The estimate for the decoherence time P(tc)~1=e~37% above the transition is

tc~ta(e1=a{1)~266{16051.
doi:10.1371/journal.pone.0089017.g001
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structure but also an extended structure with long range overlap

correlations.

Merging the pieces of classical, semiclassical and quantum

aspects a new picture emerges. Systems well below the critical

point have non-chaotic dynamics with zero generalized Lyapunov

exponents and quantum localization lengths extending only for

few states. Decoherence in these systems is slow and purity follows

a power law decay P(t)&1=ta with some exponent a making

possible the presence of anomalously long living coherent

dynamics in the system. But coherently evolving states remain

localized and long distance quantum coherent transport is not

possible. Systems well above the critical point have chaotic

dynamics with positive Lyapunov exponents and delocalized states

extending for the entire system. Coherence dies out exponentially

fast. Near the critical point exponential decay of coherence crosses

over to long living power law behavior and localized states become

delocalized. In finite systems there is always a narrow region

around criticality, where long living coherence and sufficiently

extended states can exist at the same time.

We demonstrate this on a simplified model of chromophores in

light harvesting complexes and argue that it is very likely that

biological systems use this mechanism to tune their parameters [24]

near the critical point to maintain rich quantum transport properties.

The excitonic states are described in the single excitation approx-

imation by the Hamiltonian Hij~
P

i Ei DiTSiDz
P

ij Vij DiTSjD,
where DiT indexes the excitonic states with site energies Ei and

dipole interaction strengths Vij . For simplicity we take a simple ring

of L chromophores coupled by constant Vnm~1 for neighboring

sites n and m and zero otherwise and take quasi random on site

energies given by En~W cos(2psn), where the irrational number

s~(
ffiffiffi
5
p

{1)=2 is the golden mean. This hamiltonian is known as

the one dimensional Harper model. At Wc~2 the infinite system

L?? goes through a MIT with delocalized states below and

localized states above criticality. At the critical point it has been

shown to have semi-Poisson level statistics [27]. The system is

coupled to the phononic environment via the HamiltonianP
i F (xi,t)DiTSiD, where F(x,t) is the randomly fluctuating phonon

field including the chromophore site energy coupling constant. The

reduced density matrix of the chromophore system can be described

in Markovian approximation by the Lindblad equation [26]

Lt%nm~
1

i
½H,%�nm{

1
2

(CnnzCmm{2Cnm)%nm, ð1Þ

where Cnm~SF(xn,t)F (xm,t)T is the correlation function of the

environmental coupling. We assume that the correlation function

depends only on the periodic distance of the chromophores in a

simple way Cnm~D(L=p)2 cos2 (p(n{m)=L) and is quadratic for

small distances.

Next we show results for L~25 (in dimensionless units ~1),

which is a realistic number of chromophores in experimentally

investigated systems [25]. In Fig. 1 we show purity of the system.

Below the critical point purity decays exponentially. At and above

the critical point the curves can be fitted with power law exponents

changing from a&2 at criticality towards zero as W increases and

the curves flatten out. In Fig. 2 we show the probability %1,1 to find

the exciton on the chromophore in which the exciton was

initialized. Below criticality the probability reaches its asymptotic

value of 1=L~0:04 quickly after decaying coherent oscillations.

Above criticality the probability stays above the asymptotic value

for a long time indicating the presence of localization. Quantum

beats can be observed which also relax in a very slow fashion.

Figure 2. Probability that the exciton stays on the chromophore it started in represented by the density matrix element %1,1. Below
the transition (W~0:1) coherence dies out quickly and the probability reaches its asymptotic value 1=25. The peak at time&13 is the result of the
interference of waves going clock and anti-clockwise along the the circle and meeting again after turning around the structure. The rest of the
structure comes from interference of waves scattering back from other chromophores. In the transition point and above coherent beats occur and
the probability stays elevated for a very long time (not shown here). These are beats due to genuine quantum coherent superposition states.
doi:10.1371/journal.pone.0089017.g002
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Based on the simulations we can establish the rule of localization

assisted amplification of coherence time. In the delocalized regime

purity decays exponentially determined by the timescale dictated

by the environment. In the localized regime we can define an

effective coherence time by looking at the point where purity

decays to 1=e of its original value P(tc)~1=e. Above the critical

point purity can be well approximated by function

P(t)~(ta=(tazt))a (see Fig. 1). The effective length of coherence

then can be approximated as tc~ta
:(e1=a{1). This function

grows very fast when a?0 in the strongly localized limit. In our

example this is a 60-fold increase between criticality and W~4. In

Fig. 3 we show the probability r13,13 of finding the excitation at the

opposite end of the ring. For subcritical values the excitation

arrives very quickly due to delocalization and shows beats due to

the interference of excitons traveling clock and anti-clockwise.

Coherent beats die out quickly and we reach the asymptotic

probability. For supra-critical values far from the critical point the

probability to reach site 13 remains astonishingly low due to the

localization of the system. For values near at and below criticality

we get the most optimal results for quantum coherent transport of

excitations, when excitations can still reach the opposite end of the

circle but can preserve a degree of coherence as well.

At criticality not only purity changes from exponential to power

law decay but so does the population of the chromophores. In Fig. 4

we show the population %1,1(t) in a version of our model where three

neighboring chromophores along the circle are always fully

correlated Cnm~C while they become totally uncorrelated

otherwise Cmm~C??. This model can describe the real situation

where neighboring chromophores are shielded from the environ-

ment by their protein scaffolds and approximately three chromo-

phores can be placed within the protected thermal wavelength of

10–13A
0
. We can see that the trend of the population follows a

shallow power law decay. We show also the experimental data of

Ref. 5 on the FMO light harvesting complex kindly provided by the

authors. Both curves follow a similar scale free trend with

approximately the same exponent {0:23. This exponent is very

close to {0:25 which is the power law decay exponent of the

average return probability p(t)~Spn(t)Tn*t{1=4 at the critical

point of MIT as it was shown in Ref. [28]. The return probability

pn(t)~SDyn(t)D2T is the probability of return assuming that the wave

function was localized on the site initially yn(0)~1. In the

decoherence free case it coincides with the density matrix element

%nn(t) assuming %nn(0)~1, which is shown in our model and for the

FMO complex. It seems likely that the FMO complex follows the

universal scaling of critical MIT indicating that the hamiltonian of

the FMO complex is tuned to critical quantum chaos in order to

realize optimal coherent transport, what we show elsewhere.

Discussion

The findings support a new approach to quantum biological

systems. They are not just under the influence of environmental

decoherence due to random noise but also driven by waves of the

incoming photons. The photons are absorbed by the chromo-

phores which initiates an exciton on one of the chromophores in

an initial state which is concentrated on the selected chromophore.

The purity of the system becomes P~1. Then the partially

decoherent evolution starts again decreasing the purity in time and

the system can hover in the ‘‘Poised Realm’’ [19] between clean

quantum and incoherent classical worlds. By tuning the timings of

Figure 3. Probability that the exciton started on chromophore 1 is on chromophore 13 %1,13. Below the transition (W~0:1) coherence
dies out quickly and the probability reaches its asymptotic value 1=25. The beats at times 6:5 and at 19:5 reflect interference from clock and anti-
clockwise traveling waves interfering after taking half and 1.5 rounds. In the transition point and above we can see that due to the localization it takes
much longer time for the excitation to arrive at the opposite end. If we are just slightly above the transition coherent beats smear out by the time
they arrive. The reason is that propagation becomes mostly classical as localization stops quantum diffusion. In the critical point however quantum
propagation and coherence is possible at the same time.
doi:10.1371/journal.pone.0089017.g003
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re-coherence events and the coherence time during decoherence

via tuning the system on the chaos-regularity axis can be kept in

high level of purity. This makes it possible to create new quantum

devices working at room temperature capable of nearly frictionless

quantum transport of energy and information.
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