THE
% PROTEIN
SOCIETY

FOR THE RECORD

The HBM domain: Introducing
bimodularity to bacterial sensing

Alvaro Ortega* and Tino Krell

Department of Environmental Protection, Estacién Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas,
18008 Granada, Spain

Received 17 October 2013; Accepted 11 December 2013
DOI: 10.1002/pro.2410
Published online 17 December 2013 proteinscience.org

Abstract: We have recently reported the three dimensional structure of the McpS chemoreceptor
sensor domain in complex with its cognate ligands. The domain was characterized by a bimodular
architecture, where ligand binding to each module caused a chemotactic response. This is a novel
small molecule binding domain, which, however, is un-annotated in relevant databases. We report
here the domain signature of the family of McpS-like sensor domains, which was termed helical
bimodular (HBM) domain. The HBM domain was identified in Bacteria and Archaea and forms part

of chemoreceptors and histidine kinases. The conservation of amino acids in the ligand binding
sites of both modules suggests that HBM family members recognize similar ligands.
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Introduction

Bacteria respond to changing environmental condi-
tions through various signal transduction mecha-
nisms. Genome analyses suggest that responses are
primarily mediated by one-component systems, two-
component systems, and chemoreceptor-based sig-
naling pathways.! These different systems share
sensor domains for signal recognition. Chemorecep-
tors are typically transmembrane proteins and the
molecular stimulus caused by ligand binding to the
sensor domain is transmitted across the membrane
causing a modulation of the Chemotaxis protein A
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(CheA) autophosphorylation activity and conse-
quently transphosphorylation activity to the Chemo-
taxis protein Y (CheY).2 Chemosensory systems
mediate flagellum-mediated chemotaxis, but are also
involved in Type IV pili mediated taxis or in the reg-
ulation of alternative cellular processes.®*

The study of chemosensory pathways from differ-
ent organisms has revealed a high degree of diver-
sity.*® This diversity is also reflected in the
architecture of chemoreceptors, which were found to
differ in their topologies and in the type of sensor
domains.® Chemoreceptor sensor domains can be clas-
sified according to their size: cluster I sensor domains
are of approximately 150 amino acids whereas cluster
II domains harbor approximately 250 amino acids.®
Cluster I domains were identified as PAS, GAF,
CHASE, or TarH domains.® In contrast, around 40%
of chemoreceptors possess larger cluster II domains
which are mostly un-annotated and in cases an anno-
tation is available it was found to be unreliable.®

The methyl-accepting chemotaxis protein S
(McpS) of Pseudomonas putida binds and mediates
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chemotaxis toward six Krebs cycle intermediates,
butyrate, and acetate.”® McpS has a cluster II sen-
sor domain and its secondary structure prediction
(two long and four short helices) was incompatible
with structures of known sensor domains.” We have
recently reported the 3D structure of the McpS sen-
sor domain which is composed of two structural
modules each composed of a 4-helix bundle.® Inter-
estingly, malate and succinate were bound to the
membrane proximal module whereas acetate was
present on the membrane distal module. In a super-
imposition of both modules the ligand binding sites
were found to overlap. Interestingly, ligand binding
to each module causes a chemotactic response and
we have proposed a molecular mechanism that is
based on a piston-like movement of the final, long
helix H6 that forms part of both ligand binding
sites. Although the 3D structure of McpS is com-
posed of two 4-helical bundles, its sequence is not
recognized by the corresponding domain signature
4HB_MCP® We report here the generation of the
domain signature of the family McpS-like sensor
domains, which we have termed Helical Bi-Modular
(HBM) domain.

Results and Discussion

An alignment of a subset of HBM domain sequences
representing the major phylogenetic categories is
shown in Figure 1(A) and the corresponding second-
ary structure prediction is provided in Figure 1(B).
The HBM domains are predicted to form two short
helices followed by a long helix, another pair of
small helices, and a final extended helix [Fig. 1(B)],
which is in full agreement with the 3D structure of
the McpS sensor domain [Fig. 2(A)].® The profile
Hidden Markov Model (HMM) generated as
explained in the Materials and Methods section was
then used to perform a search in the UniprotKB
database, which resulted in the retrieval of the
approximately 1200 sequences. The majority of pro-
teins were chemoreceptors, but some proteins con-
tained a Histidine kinase phosphoacceptor domain
(HisKA, PF00512) and Histidine kinase like ATPase
domain (HATPase_c, PF02518), indicating that
HBM domains are also found in histidine kinases.
The secondary structure prediction and domain size
of HBM domains of histidine kinases was entirely
comparable to those of chemoreceptors. The sensor
domain of the TorS histidine kinase has a similar
structure as compared to McpS,'® but has not been
retrieved by the UniprotKB search. TorS binds the
protein TorT in complex with the signal molecule.
We show below that the conserved residues of the
HBM domain are primarily in the two small ligand
binding sites. The fact that TorS does not bind small
signal molecules is responsible for the lacking
sequence conservation which explains why it is not
recognized by the HBM domain signature. Using
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BLAST we have retrieved homologues of the TorS
sensor domain and constructed a domain signature,
which, however, was incompatible with the HBM
signature described here. This is consistent with the
notion that there are two protein families, the HBM;
domain and the TorS-like sensor domains, which do
not share significant sequence similarities but pos-
sess similar structures. The family of TorS-like
domains was found to be significantly less populated
than the HBM family. A sequence alignment of the
McpS and TorS sensor domain gave rise to an iden-
tity of less than 12%, which is a value very close to
the random identity of two unrelated proteins.

HBM domains are found in bacteria and arch-
aea but are absent from eukaryotes. HBM domain
containing chemoreceptors are primarily found in
Proteobacteria (98%) and in particular in Alpha-
(16%) and Gammaproteobacteria (76%) [Fig. 2(B)].
This may not be surprising since approximately 75%
of all chemoreceptor sequences are found in this
phylum. Although most of the remaining chemo-
receptors are found in Firmicutes, HBM domains
were not detected in this phylum. Apart from Proteo-
bacteria HBM domain containing chemoreceptors
were also detected in species like Methanosarcina or
Methanolobus that belong to the phylum of Eur-
yarchaeota of the Archaea superkingdom. In addi-
tion, receptors with the HBM domain are found in
species that belong to the phyla Deferribacterae,
Bacteroidia, Thermotogae, or Planctomycetia (<1%).

Significant differences were identified in the rel-
ative abundance of HBM containing chemoreceptors
which is illustrated by the color coding in Figure
2(B). HBM containing receptors were found to repre-
sent more than 10% of total receptors in a number
of families including Desulfomonadaceae, Bacterio-
voracaceae, and Pseudoalteromonadaceae and 5-
10% of total chemoreceptors in orders like Rhodo-
spirillales, Thiotrichales, and Pseudomonadales.

A major challenge in signal transduction reside
in the identification of the signal molecules that are
recognized by a given sensor domain. However, the
sequence alignments derived from the selected subset
of sequences (Fig. 1) as well as from the complete set
of 1200 sequences provide interesting clues. We have
noted the conservation of residues R41, Y47, and Y99
in the proximal bundle of the McpS sensor domain as
well as R176 and Y235 of its membrane distal bundle
(numbering according to Fig. 1). These residues are
located close to the bound chemo-attractants in the
structure of the McpS sensor domain [Fig. 2(A)] and
establish in the case of Y235, R176, and R41 direct
interactions with bound ligand. The involvement of
some of these residues in ligand binding to McpS has
been determined experimentally since the mutation
of R41 (corresponding to R60 in McpS) abolished
malate binding whereas mutation of R176 (R183 in
McpS) reduced significantly acetate binding.® The
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Figure 1. Alignment of a representative subset of HBM domain sequences from chemoreceptors and a sensor kinase. The asterisk
marks the sensor kinase, the remaining sequences are from chemoreceptors. Sequences were selected to cover the phylogenetic
distribution of species with HBM domains. The Gl numbers from the NCBI database are indicated. Alis_agr: Alishewanella agri;
Azos_lip: Azospirillum lipoferum; Brad_jap; Bradyrhizobium japonicum; Cron_sak: Cronobacter sakazakii; Deni_ace: Denitrovibrio
acetiphilus; Desu_afr: Desulfovibrio africanus; Dick_dad: Dickeya dadantii; Magn_mag: Magnetospirillum magneticum; Mari_adh:
Mearinobacter adhaerens; Meth_bar: Methanosarcina barkeri; Pan_ana: Pantoea ananas; Pect_was: Pectobacterium wasabiae; Pseu_aer:
Pseudomonas aeruginosa; Pseu_flu: Pseudomonas fluorescens; Pseu_stu: Pseudomonas stutzeri; Pseu_syr: Pseudomonas syringae;
Serr_odo: Serratia odorifera; Shew_put: Shewanella putrefasciens;Thio_vio: Thiocystis violascens; Vibr_cho: Vibrio cholerae; Vibr_mim:
Vibrio mimicus;Yers_ent: Yersinia enterocolitica; Yers_pes: Yersinia pestis (A). ClustalX alignment highlighting conserved residues: blue
for hydrophobic residues (ACFILMPVW), red for acidic residues (DE), green-yellow for basic amino acids (HKR) and orange for the
remaining residues (GNQSTY). The consensus sequence is shown on top of the alignment. (B). Secondary structure prediction for the
same set of sequences, red color indicates alpha-helical regions in ascending intensity according to confidence. Green arrows
represent the position of the « helices in the 3D structure of the McpS sensor domain.
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Figure 2. (A). Three dimensional structure of the McpS sensor domain. Bound malate and acetate are shown in yellow and
blue, respectively. Conserved amino acids (numbering according to Fig. 1) are depicted in green. (B). Phylogenetic distribution
of species with HBM domain containing chemoreceptors. Data were derived from the analysis of the complete set of chemore-
ceptor sequences that were used as seed for the generation of the HMM. Phyla shown in black contain chemoreceptors
(protein that are detected by PS50111), but not those containing HBM domains. The color coding corresponds to the relative
abundance of chemoreceptors with an HBM domain over the total number of chemoreceptors.

novelty of McpS sensor domain resides in its bimodu-
lar architecture and the fact that ligand binding at
each module causes a response. The conservation of
residues in both ligand binding sites suggests that
the capacity to recognize ligands at the different mod-
ules is a characteristic common to the HBM family.
McpS recognizes different carboxylic acids and the
conservation of binding site residues, in particular
the arginine residues, may also indicate that family
members recognize similar type of ligands.

Materials and Methods

The sequence of the McpS sensor domain comprising
residues 32-291 was used for PSI-BLAST!! searches
in the database of non-redundant sequences (as of
August 26, 2013). Several iterations were carried
out until no further sequence was included into the
subset with E-values lower than 0.005 (BLAST
default value). After each iteration, the sequences
were analyzed and only those with the expected sen-
sor domain size (220-299 amino acids as defined for
cluster IT domains) were retained.

The sensor domain was defined as the protein
fragment flanked by two transmembrane helices as
predicted by the DAS algorithm.!? Sequences were
selected according to the prediction of their secondary
structure (predicted by PSIPRED)'® and only sequen-
ces were retained that were predicted to be exclusively
composed of helix and turn. Each curated subset was
employed for the subsequent iteration. Additional PSI-
BLAST searches were done with sequences of low E-
values and belonging to phylogenetically distant organ-

Ortega and Krell

isms and the resulting sequences found were included
into the set. The final set of sequences was then man-
ually inspected and curated to discard incomplete
sequences. Finally, CD-Hit'* was used to eliminate
redundancy (100% identical sequences).

The final set of more than 1200 sequences from
a wide variety of Bacteria and Archaea was used to
generate the domain signature. These sequences
were aligned using the multiple sequence alignment
(MSA) tool ClustalX'® and their secondary structure
was predicted by PSIPRED through the Quick2D
tool included in the MPI Bioinformatics Toolkit.'®

A profile hidden Markov (profile HMM) model was
generated using the HMMBUILD tool from HMMERS3
software package!” implemented in the Mobyle portal.'®
To test the specificity of this profile HMM, a search with
the HMMSearch tool of HMMER was performed in the
UniprotKB database'® that produced more than 1200
protein sequences that harbor the HBM domain. To
determine the total number of chemoreceptors per bacte-
rial species the UniProtKB knowledgebase was searched
for sequences that match Prosite code PS50111. This
information was then used to calculate the relative
abundance of chemoreceptors with an HBM domain
over the total number of receptors.
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