Research

© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

Modeling Protein Assemblies in the Proteome*s
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Most (if not all) proteins function when associated in mul-
timolecular assemblies. Attaining the structures of protein
assemblies at the atomic scale is an important aim of
structural biology. Experimentally, structures are increas-
ingly available, and computations can help bridge the
resolution gap between high- and low-resolution scales.
Existing computational methods have made substantial
progress toward this aim; however, current approaches
are still limited. Some involve manual adjustment of ex-
perimental data; some are automated docking methods,
which are computationally expensive and not applicable
to large-scale proteome studies; and still others exploit
the symmetry of the complexes and thus are not applica-
ble to nonsymmetrical complexes. Our study aims to take
steps toward overcoming these limitations. We have de-
veloped a strategy for the construction of protein assem-
blies computationally based on binary interactions pre-
dicted by a motif-based protein interaction prediction
tool, PRISM (Protein Interactions by Structural Matching).
Previously, we have shown its power in predicting pair-
wise interactions. Here we take a step toward multimolecu-
lar assemblies, reflecting the more prevalent cellular sce-
narios. With this method we are able to construct homo-/
hetero-complexes and symmetric/asymmetric complexes
without a limitation on the number of components. The
method considers conformational changes and is applica-
ble to large-scale studies. We also exploit electron micros-
copy density maps to select a solution from among the
predictions. Here we present the method, illustrate its re-
sults, and highlight its current limitations. Molecular &
Cellular Proteomics 13: 10.1074/mcp.M113.031294, 887-
896, 2014.

Proteins function through interactions with other molecules.
In vivo, the overwhelming majority of proteins function when
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they are part of not only of binary interactions but multimo-
lecular assemblies. Protein assemblies are responsible for the
vast majority (or all) of the processes in a cell (1); the RNA
polymerase transcription machinery (2), the ribosome, the
translation engine (3), chaperonins (4), the proteasome, and
the protein degradation machine (5) are some examples. It is
essential to model protein assemblies in order to figure out
cellular mechanisms. Three-dimensional structural data are
crucial in order to correctly determine assemblies. Experimen-
tally, structures of protein complexes can be obtained via
several techniques, such as x-ray crystallography (6, 7), nu-
clear magnetic resonance (NMR) spectroscopy (8), electron
microscopy (EM) (9), FRET spectroscopy (10), and small angle
x-ray scattering (11), albeit at different resolutions.

The experimental determination of protein complexes can
be difficult. Despite the many experimental methods, short-
comings abound: x-ray crystallization is applicable only to
molecules that can be cloned, crystallized, and purified in
large quantities, and often crystals suitable for the structural
determination of protein assemblies cannot be obtained (7).
NMR is limited to relatively small molecular sizes (12). Cryo-
EM, cryo-electron tomography, FRET spectroscopy, and
small angle x-ray scattering are more suitable for the struc-
tural determination of large molecules and assemblies, but
their resolution is not at an atomic scale (9, 13).

Computational methods are essential for obtaining the
structures of protein assemblies. Even though they also are
associated with inherent shortcomings and hurdles, they can
be of use in experimental techniques. Integrative structural
determination methods combine experimental results from
different sources with computational constraints, models, and
theory. EM maps are combined with atomic structures of
single protein components (14-20) or atomic models (21), and
binary interaction data of the protein components of a com-
plex obtained by means of affinity purification and mass spec-
trometry (MS) are integrated with comparative modeling (22).
Structures of complexes are modeled based on NMR-derived
data (23, 24). Eventually, several structures of protein com-
plexes, such as the nuclear pore complex (15), the eukaryotic
ribosome (25), human RNA polymerase Il (26), the AAA-
ATPase/20S core particle subcomplex of the 26S proteasome
(27), and histone methyltransferase complex Set1C from
yeast (28), were predicted using integrative methods. Despite
their immense potential power, to date, these methods have
been limited to a small set of proteins, especially to the most
highly studied ones; this is because of the need for a broad
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range of different types of data, manual adjustment, and data
curation.

Ab initio docking approaches have been used for the pre-
diction of structures of protein complexes. These methods
utilize different types of experimental data to increase their
accuracy. MolFit (29, 30) and ATTRACT (31, 32) consider
experimentally determined interface residues. ZDOCK (33, 34)
blocks non-interface residues in docking and can use exper-
imental data to filter the solutions; M-ZDOCK (35) uses this
idea to construct cyclic symmetric multimers. PatchDock (36,
37) finds solutions based on shape complementarity and can
use experimental data to detect binding sites. SymmDock (36,
38) restricts the search to symmetric cyclic transformations
and constructs homocomplexes with cyclic symmetry.
PROXIMO (39) and MultiFit (18) use radical probe MS and EM
data in docking, respectively. Another useful docking tool is
HADDOCK (40). It utilizes a variety of experimental data,
mainly derived from NMR, to extract information about the
interface, contacts, and relative orientations. Six subunit com-
plexes can be constructed, and the method has been tested
on symmetrical cases. However, expensive computation of
the ab initio docking is a barrier for large-scale protein com-
plex predictions. Computationally, modeling of multimolecu-
lar assemblies from the structures of their monomeric com-
ponents is challenging because of the large number of
possible combinations of the components (41).

Some studies have focused on the symmetry of the com-
ponents of the complex. Eisenstein et al. (42) constructed the
symmetrical structure of the helical protein coat of tobacco
mosaic virus. Later, a similar approach was used to assemble
cyclic and dihedral symmetrical structures (43, 44). Comeau
and Camacho (45) also predicted cyclic and dihedral symmet-
rical structures. In addition, they assembled oligomers start-
ing from dimers. Schneidman-Duhovny et al. (38) developed a
protocol for the construction of cyclic symmetrical structures,
and Huang et al. (46) were able to dock C2 symmetrical
dimers. Andre et al. (47) developed a protocol for predicting
symmetrical assemblies starting from the structure or the
sequence of a single subunit. Imposing symmetry constraints
in the protocol limits the space of the predictions, making it
unsuitable for the prediction of nonsymmetrical protein com-
plexes. Nonsymmetrical complexes have not been studied as
much as symmetrical ones. Inbar et al. (41) developed a
protocol for the construction of hetero-multimolecular protein
assemblies. In this multimolecular assembly protocol, Comb-
Dock, subunits are considered as “puzzle pieces” and the
native complex as the “puzzle solution.” CombDock consid-
ers all pairwise dockings and combinatorially builds the final
assembly. Finding the right combination is computationally
hard (nondeterministic polynomial-time hard) (41); therefore,
CombDock uses a heuristic based on the greedy construction
of subassemblies. The protocol has been used successfully to
reconstruct a protein complex from its components. However,
computing all pairwise dockings (N units, N(N — 1)/2 pairwise

sets of docking configurations) still presents challenges in
terms of the computation time and, in particular, might miss
solutions where the complexes are less stable as dimers but
gain stability in the larger assembly.

Thus, the capabilities of current procedures are limited.
Integrative procedures mainly depend on the experimental
data, and manual adjustment and curation are necessary. Ab
initio docking procedures are computationally expensive; oth-
ers are limited by considerations of symmetry. There is a need
for a procedure that constructs homo-/hetero-complexes and
symmetric/asymmetric complexes without the computational
cost of ab initio docking, considers possible conformational
changes, and is applicable to large-scale studies. This study
aims to take steps toward addressing this need. Here, we
exploit a template-based protein interaction prediction tool,
PRISM (Protein Interactions by Structural Matching) (48-50),
to predict binary interactions through structural motif search-
ing and use these predictions to construct protein assemblies.
This is done based on the observation that proteins tend to
interact via recurring motifs, regardless of the global similarity
of the structures of the chains (51, 52). Previously, we tested
it on a docking benchmark dataset and on interactions of
different pathways. It was able to predict almost all the “easy”
cases (87 out of 88 cases) (53) and two-thirds of the “difficult”
cases (54) of a docking benchmark dataset, and it had high
accuracy in predictions of the interactions in the ubiquitination
(76% accuracy) (55) and apoptosis (78% accuracy) (56) path-
ways. In addition, we have shown that it can be used to model
structural networks (57, 58). The success of PRISM is encour-
aging with regard to the much-needed modeling of multimo-
lecular assemblies. One major difference between our ap-
proach and CombDock is that we do not consider all possible
pairwise interactions and instead use template-based pair-
wise interactions, expected to be much fewer than N(N — 1)/2.

MATERIALS AND METHODS

This section presents the input data; PRISM, the tool used to
predict binary protein—protein interactions; the method used to con-
struct protein assemblies based on the PRISM predictions; and the
identification of different conformations of the proteins.

Protein Assembly Benchmark and Evaluations of the Predic-
tions—We prepared a benchmark of the protein assembly structures
from the Protein Data Bank (PDB)." The benchmark included eight
structures (Table I): three three-chain and three four-chain assemblies
with different numbers of homologous chains, and one assembly of
five- and seven-chain assemblies. Assemblies were selected in dif-
ferent sizes, ranging between 290 and 1,452 residues in total, and
subunits ranged between 58 and 363 residues. Asymmetric/symmet-
ric and homo-/hetero-complexes were experimentally obtained in
different resolutions ranging between 1.50 and 2.90 A and covering
small proteins and four main Structural Classification of Proteins (59)
classes: all a proteins, all 8 proteins, « or 3 proteins (a/b), and « and
B proteins (a+b). The similarity of chain sequences to other chain

" The abbreviations used are: PDB, Protein Data Bank; PRISM,
Protein Interactions by Structural Matching; RMSD, root-mean-
square deviation.
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TABLE |

Structural features of the benchmark proteins

Number of

PDB Protein Number of Homologous "\ i e Total  Resolution Structural SCOP
1.D. name chains chains in chains residue type class
2e86 Copper-containing nitrite 3 3 3 X337 1011 1.50 Symmetric, homocomplex  All B proteins
reductase trimer
1eer Erythropoietin complexed 3 2 2 X 227 620 1.90 Asymmetric, heterocomplex All B proteins
with its receptor +1 +166 All « proteins
1gp2 G protein heterotrimer: 3 1 353 764 2.30 Asymmetric, heterocomplex « and
Gial1-B1-y2 +1 +340 Proteins (a/b)
+1 +71 All B proteins
All a proteins
1ado Aldolase tetramer 4 4 4 X 363 1452 1.90 Asymmetric, homocomplex « and 3
Proteins (a/b)
1z0k Rab GTPase complexed 4 2 2 X172 482 1.92 Asymmetric, heterocomplex « and B
with rabenosyn-5
+2 +2 X 69 Proteins (a/b)
All « proteins
1akj MHC class | glycoprotein 4 1 276 615 2.65 Asymmetric, heterocomplex All B proteins
HLA-A2 with T-cell +1 +99 aand B
coreceptor CD8 +2 +2 % 120 Proteins (a+b)
1b0c Pancreatic trypsin inhibitor 5 5 5 X 58 290 2.80 Symmetric, homocomplex  Small proteins
iwnr 10-kDa chaperonin 7 7 7 X 94 658 2.90 Symmetric, homocomplex  All B proteins

sequences was between 0.3% and 32.6% (the average was 11.1%,
and the median was 9.8%), and the identity was between 0.3% and
18.5% (the average was 6.7%, and the median was 5.7%). The
benchmark included symmetrical cyclic structures (PDB I.D.s: 2e86,
1b0c, and 1wnr), which are the most challenging structures for our
method, because it is difficult to add the last protein and complete the
cyclic structure based on binary interactions. Unbound forms of the
proteins and their structural difference relative to bound forms are
given in supplemental Table S1. Predictions are evaluated based on
structural similarity to the PDB structure and the energy score. Struc-
tural similarity was measured based on the root-mean-square devia-
tion (RMSD) values calculated for backbone atoms (N, Ca, C, O) of all
residues. The energy value of an assembly is the summation of energy
values calculated for the addition of each protein. Chimera (60) ver-
sion 1.6.2 was used to dock structures into an EM density map. The
EM density map data was taken from the EMDataBank (61), and the
“fit” command was used to obtain 30 results.

Pairwise Protein Interaction Prediction Using PRISM—PRISM (48—
50) is a knowledge-based method. It is a motif-based protein inter-
action modeling tool that can be used in proteome-scale studies (48).
PRISM structurally compares query proteins with the known interact-
ing protein pairs. If it is known that proteins A and B interact, that
query protein A" has a surface similar to the binding site of protein A,
and that query protein B’ has a surface similar to the binding site of
protein B, it is claimed that there may be an interaction between
proteins A’ and B’. PRISM considers interaction A-B as a template
and offers a potential interaction A'-B’ according to the structural
similarity of A’ to the interface site of A and of B’ to the interface site
of B. The template set is constructed from all known interactions in
the PDB (62, 63). Interfaces of known interacting pairs are extracted
and clustered according to their structural similarity. The template set
organization depends only on the structural similarity of the interfaces
(Fig. 1, step 0); this is because interface structures are conserved
independently of the proteins’ functions and global structures (64—
67). Homologous chains with similar structures (90% of residues are
matched within 2.0 A) are counted only once in the target set. The
surfaces of query proteins (or target proteins) are extracted (Fig. 1,
step 1) and aligned onto template interfaces to check whether there is

Template Set

- ———— -

Target Set

Step 1

Step 0

——— ——— — -

Surface
Extraction of
Target Proteins

Split Constituent
Chains of
Interfaces

Step 2

Structural Alignment of Target
Surfaces with Template Interfaces

Step 3 ¢

Elimination of
Clashing Structures

Step 4

Flexible
[ Refinement ] P R I

PROTEIN INTERACTIONS B)

MATCHING

P
| 7 S R ————

N ————————

RESULTS: 3D data and energies
of predicted interactions

Fic. 1. PRISM algorithm. Steps 1-4 constitute the PRISM flow-
chart. Inputs are template and target datasets, and outputs are three-
dimensional structures of predicted binary interactions and their en-
ergies. Step 0 is the template organization, step 1 is surface
extraction of target proteins, step 2 is the structural alignment pro-
cess, step 3 is elimination of clashing structures, and step 4 is the
flexible refinement process.

structural similarity among the structures (Fig. 1, step 2). PRISM uses
three conformations for each target protein-template alignment. To
guarantee that there is a proper match between the target surfaces
and the template interfaces in the alignment, PRISM checks whether
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the matched residues of both sides are against each other and at
least one residue of the target surface matches identically with a
hotspot of the template interface. Hotspots are residues that contrib-
ute more to the binding energy of the interaction than the other
interacting residues (68). There is also a high correlation between
hotspots and conserved residues (69-71). Thus, PRISM searches
both structural and evolutionary similarities in protein interaction pre-
dictions. After that, PRISM checks whether the candidate interaction
is physically and chemically meaningful. First, physical clashes be-
tween residues of two interacting proteins are found, and the inter-
action is discarded if there are many clashes (Fig. 1, step 3). The side
chains of residues undergo a reorientation process to eliminate
clashes, and the global energy score of the candidate protein com-
plex is calculated (Fig. 1, step 4). In this flexible refinement process,
backbones of proteins are also slightly reoriented. At the end, PRISM
predicts the three-dimensional structures of the interacting proteins.

Constructing Protein Assemblies Based on PRISM Predictions—
The construction of the protein assemblies based on PRISM predic-
tions is illustrated in Fig. 2. In the prediction of binary interactions,
query proteins are submitted as the target set, and the template set
can be chosen according to the types of interactions being searched.
It can include interface templates related to a certain pathway (such
as ubiquitination (55) or apoptosis (56)), a certain template interface
group (interfaces of obligate or non-obligate interactions (72)), or all
template interfaces (57). If there is no information about the assembly,
interactions of the query proteins can be searched using the whole
template set. Because we construct assemblies based on binary
interactions, we need to set a threshold energy value for binary
interactions. Supplemental Table S2 shows FiberDock energies of
the interfaces in the benchmark. One pair of homologous chains is
given in the table. The highest energy value is —13.74. In a previous
study (54), we considered results with at most —10 energy units as
biologically favorable. The user can set another threshold energy
value. We processed nonredundant biologically favorable results in
the assembly construction. Only one of the solutions for the same
proteins and with the same energy value was selected for further
processing to eliminate repetitious computation.

Assembly construction starts with an interacting protein pair, which
is a PRISM prediction. In the first iteration, another protein is bound to
one of these interacting proteins based on the corresponding pre-
dicted PRISM interaction between the protein to be added and the
one in the first interaction. First, the protein to be added is trans-
formed next to the subassembly structure (as in step 3 of PRISM in
Fig. 1) and flexible refinement is done for this candidate interaction (as
in step 4 of PRISM in Fig. 1). The candidate protein can be a new
protein or one of the proteins in the first pair. The assembly construc-
tion process is carried out starting with each nonredundant biologi-
cally favorable PRISM interaction, and each candidate protein is
assessed in terms of whether it can be added based on the interac-
tions predicted by PRISM. All possible combinations are considered.
The addition of a protein can give as many solutions as the number of
nonredundant biologically favorable predictions. To shorten the com-
putation time, some specific interactions (e.g. the ones with the
lowest energy values) can be processed. However, there is no guar-
antee that the assembly will be constructed based on the biologically
most favorable predictions.

For an N component assembly, the addition process is performed
N — 2 times (because it starts with a binary interaction). At each
iteration, nonredundant biologically favorable predictions are filtered.
The protein is added to the subassembly if the interaction has an
energy below the cutoff value of —10 energy units. The process is
aborted before the assembly reaches the specified number of com-
ponents if another protein cannot be added to the subassembly with
a sufficiently low energy value. The solution set can have similar

structures. We clustered assembly results based on their structural
similarity. Alignment and RMSD calculations are performed using
version 1.9.1 of the VMD (Visual Molecular Dynamics) tool (73). The
RMSD threshold was taken as 3.0 A, considering backbone heavy
atoms (N, Ca, C, O) of all residues. We chose the structure with the
lowest energy score as representative of the cluster.

Identification of Different Conformations of the Proteins— Different
conformations of query proteins were identified from the PDB as in
our previous study (54). Chains of PDB structures with the same
sequence as the query protein are detected using sequence homol-
ogy. 100% FASTA sequence homology between the molecules is
considered. Then, the different structures are detected by structural
alignment using MultiProt (74). If MultiProt matches the candidate
structure with less than 90% of the query structure or if the RMSD
value between the matched residues of the two structures is more
than 2.0 A, the candidate structure is considered as a different con-
formation of the query protein. The RMSD value is calculated for
backbone heavy atoms of all residues. Assemblies are constructed
considering each structure (query proteins and their alternative con-
formations) as individual structures.

RESULTS

Protein assembly construction was performed for three
scenarios: first, starting from the bound forms of the compo-
nents; second, starting from the unbound forms of the com-
ponents; and third, considering alternative conformations of
the unbound forms.

Reconstruction of Assemblies—In the first part, assemblies
were decomposed into their components and the compo-
nents were treated as individual structures. Fig. 2 explains
how the assembly was constructed based on PRISM predic-
tions. Components (or chains) of the assemblies were sub-
mitted as the target set. We reconstructed three-unit assem-
blies in the benchmark with PDB 1.D.s 2e86, 1eer, and 1gp2.
We calculated the RMSD of predictions compared with the
PDB structure and set the energy score of an assembly as the
summation of the energy scores calculated at each protein
addition. The RMSD versus energy score is plotted in Fig. 3.
The best energy prediction is the best RMSD prediction (e.g.
1eer) or has an RMSD value close to the best RMSD value
(e.g. in 2e86, the best energy and RMSD predictions have
0.53 and 0.51 A, respectively, and for 1gp2 the best energy
and RMSD predictions have 0.79 and 0.52 A, respectively).
We considered the energy as the indicator in subsequent
steps. We clustered the predictions based on structural sim-
ilarity. The RMSD values among the predictions were calcu-
lated using VMD. We selected the best energy prediction in
each cluster as the representative. The best representative
predictions (as judged by the similarity to the PDB structures)
are given in Table |l (details in supplemental Table S3, in which
the first binary interaction prediction is given as step 0 and the
nth iteration in the assembly construction is step n; all struc-
turally different predictions are listed in supplemental Table
S4). The reconstruction of the assemblies suggests that our
method works, but we need to construct assemblies starting
from the unbound forms of proteins to be more realistic.
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Construction of Assemblies from Unbound Protein Struc-
tures—In the second part, PDB structures were assembled
starting from the unbound forms of the components. The
same procedure was followed as in the first part (Fig. 2). We

constructed all assemblies in our benchmark starting from
their unbound forms, listed in supplemental Table S1. Homol-
ogous chains are given together in the table. Predictions were
structurally clustered, and the best energy prediction in each
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TABLE Il
Results for construction of protein assemblies starting from their components

PDB Number of Number of Structurally different Energy RMSD
structure chains residues predictions unit (A)
2e86 3 1011 9 —692.94 0.53
1eer 3 620 6 —203.02 1.09
1gp2 3 764 1 —360.33 0.79

Predicted PDB structures are given with their PDB I.D., number of chains, and number of residues. RMSD was calculated compared to the
PDB structures for all backbone atoms, and the energy value of an assembly is the summation of energy values calculated for the addition of
each protein. These are the best RMSD representatives of the structurally clustered predictions.

TasLE IlI
Results for the construction of protein assembly starting from the unbound forms of the components

PDB Number of Number of

Unbound

Structurally different

structure chains residues forms predictions Energy RMSD
2e86 3 1011 1etbA x3 1 —694.70 0.52
1eer 3 620 1buy, 1ernA x2 9 —75.58 5.56
1gp2 3 764 1giaA, 1tbgA, 1tbgE 1 —279.38 3.57
1ado 4 482 1aldA x4 15 —324.79 2.79
1akj 4 615 2clrA, 2clrB, 1cd8A x2 5 —272.70 2.57
1z0k 4 482 2bmeA x2, 1yzmA x2 13 —104.58 3.07
1b0c 5 290 9ptiA x5 23 —-109.12 5.15
Twnr 7 658 3nx6A x7 13 —426.80 4.60

Predicted PDB structures are given with their PDB I.D., number of chains, and number of residues. If an unbound structure is used twice,
it is denoted by “x2.” RMSD was calculated compared to the PDB structures for all backbone atoms, and the energy value of an assembly is
the summation of energy values calculated for the addition of each protein. These are the best RMSD representatives of the structurally

clustered predictions.

cluster was chosen as the representative. The best RMSD
representatives, their unbound form sets, and the results are
listed in Table Ill (details in supplemental Table S5, where the
first binary interaction prediction is given as step 0 and the nth
iteration in the assembly construction is given as step n; all
structurally different predictions are given in supplemental
Table S6). If a protein was used twice it is labeled “x2.”
Assembly construction of benchmark proteins resulted in
up to 23 different structures. The construction of 2e86 and
1gp2 has one representative structure; the construction of
1b0c has 23 representative structures. In each case, one of
these results matches the PDB structure; the RMSD values
of the best representative structures ranged between 0.52
and 5.56 A, which suggests that our method can construct
assemblies starting from their unbound forms. However, we
also had results that differed from the PDB structures. These
may be different conformations of the assemblies or false
positives. For example, one of the results for 1bOc had an
RMSD value of 23.29 A. In the construction of this assembly,
the template interface 1aalAB was used four times. 1aalAB is
a dimer interface of trypsin inhibitor, yet it is structurally dif-
ferent from interfaces in 1bOc. In 1b0c, trypsin inhibitors in-
teract head-to-head and form a star shape. However, in 1aal,
the interaction is head-to-tail with a wider angle. Besides
structurally different results, we could obtain results structur-
ally close to the PDB structures. However, we need methods
to construct assemblies whose structures are unknown. Ex-
perimental data on mutations or from different techniques

such as EM, small angle x-ray scattering, and FRET can help
in the selection of the most appropriate structure as the result,
which is covered below.

Exploiting EM Data in Assembly Construction—Here, we
used experimental data to point out a predicted structure as
the solution. 1wnr is a heptamer of 10-kDa chaperonin. In the
construction of 1wnr starting from its unbound form, we ob-
tained 13 different structures. We exploited the EM density
map to select the solution. The EM density map of co-chap-
eronin protein 10 complexed with GroEL and ADP, where
10-kDa chaperonin is at the top of the structure, is available in
the EMDataBank (EMD 1531). We docked 13 solutions into
the EM density map using Chimera. Only one result matched
with the top of the density map (Fig. 4). Chimera calculated
the correlation as 0.85, and that result had the lowest RMSD
(4.60 A) among those 13 structures. It did not fit perfectly into
the density map, because it does not have a perfectly sym-
metrical cyclic shape. However, an RMSD of 4.60 A is still
acceptable. The density map helped us to choose the struc-
ture with the best RMSD from among those 13, which sug-
gests that experimental data such as EM density maps can
help in choosing the solution.

Considering Alternative Conformations in the Construction
of an Assembly—Proteins are flexible and can change their
conformations upon binding. Therefore, constructing a pro-
tein assembly starting from unbound forms of the compo-
nents might lead to unsuccessful predictions. An assembly
can be constructed more successfully with the help of differ-
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Fic. 4. Predicted structure docked in the EM density map. The structure (green) is docked in the EM density map (blue, EMD 1.D.: 1531)
using Chimera. 30 solutions are created using the “fit” command. Top (A) and side (B) views are given.

TABLE IV
Results for the construction of protein assemblies starting from alternative conformations of the unbound forms

PDB Number of Number of Target set Energy RMSD
structure chains residues unit A
1eer 3 620 1gia, 1tbgA, 1tbgE —75.58 5.56
1eer 3 620 1gia, 1gg2A, 1tbgA, 1tbgE -122.19 3.23
1gp2 3 764 1buyA, 1ernA x2 —279.38 3.57
1gp2 3 764 1buyA, 1ernA x2, 1cn4C, 1ebaA x2 —376.18 2.50

Predicted PDB structures are given with their PDB |.D., number of chains, and number of residues. Target set includes unbound forms and
their alternative conformations found in the PDB. If an unbound structure is used twice, it is denoted by “x2.” Different target sets are used:
(i) a target set of unbound forms and (ii) a target set of unbound forms and their alternative structures. Their best energy predictions are
compared with respect to energy scores and RMSD values. RMSD was calculated for all backbone atoms, and the energy value of an assembly
is the summation of energy values calculated for the addition of each protein.

ent conformations of the query proteins (54). The PDB offers
different conformations of proteins, including their unbound,
bound, or any alternative forms such as mutants, those ob-
tained following post-translational modifications, or those of
different crystal forms. We identified PDB structures with
100% sequence homology to the query proteins and deter-
mined the structurally different ones using structural align-
ment as described in “Materials and Methods.” We obtained
better results in the construction of 1eer and 1gp2 using
alternative conformations (3.23 A RMSD rather than 5.56 A for
1eer, and 2.50 A RMSD rather than 3.57 A for 1gp2). In this
part, predictions with the lowest energy value were selected
for each binary interaction, and the assemblies were con-
structed based on only these binary interactions. Alternative
conformations of these proteins can be found in supplemental
Table S7, and the results of the assembly construction using
these alternative conformations are given in Table IV (details in
supplemental Tables S5 and S8; the first binary interaction
prediction is given as step 0 and nth iteration).

DISCUSSION

The availability of structures of multimolecular associations,
even if the interactions are short lived, is essential. This is our

aim here. Using our method, we first reconstructed three-unit
protein assemblies in the benchmark starting from the assem-
bly components, obtaining low RMSDs. We next tested the
modeling of protein assemblies starting from the unbound
forms and also obtained good results (0.52 to 5.56 A). Be-
cause we construct assemblies based on binary interactions,
the most challenging cases are the symmetric cyclic assem-
blies. To complete the cyclic structure, the last protein is
docked into limited space and interacts with more than one
chain, which affects the energy calculation and may cause
clashes. We obtained good results also in constructing such
symmetric cyclic structures in the cases that we tried. Knowl-
edge-based methods, including PRISM, do not consider the
protein flexibility, except in the last refinement step, where
backbones and side-chains of the structures can be slightly
reoriented. To partially address this handicap, here we ex-
ploited different conformations of the proteins, if these were
available in the PDB.

Modeling of multimolecular assemblies from monomeric
structures of their components is computationally challenging
with a broad solution space. To reduce this space, we select
the energetically more favorable predictions of binary interac-
tions. However, the possibility always exists that we will miss
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biological solutions that, although less favorable for binary
interactions, become more stable as the assembly grows.
Such a situation is also encountered in hierarchical folding
strategies (75, 76), as discussed for CombDock (41), which
also suffers from this handicap. Another problem is choosing
the right prediction. Although the energy value can be an
indicator, similar to protein folding, this is not always the case.
Experimental techniques such as Cryo-EM, FRET, and small
angle x-ray scattering, which provide low-resolution data on
assemblies, can be used to help select the solutions. Here, we
used EM data for 10-kDa chaperonin complexed with GroEL
and ADP. Only one structure fit at the top of the EM density
map, where 10-kDa chaperonin is present, and that is our
best result.

Other caveats relate to PDB structures that do not always
represent the entire protein or the functional state. In addition,
flexible fragments and disordered domains are missing. Al-
though it is often possible to model these when handled
individually, it is more difficult on a large scale. We are cur-
rently including high-quality modeled structures (57), which
may partially alleviate this problem. Further, the coverage of
the interface architectures by a template set based on the
PDB affects PRISM predictions and hence the assembly con-
struction. Nonetheless, we were able to successfully con-
struct protein assemblies thanks to the current PDB richness
and experimental data such as EM density maps.
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