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Abstract
This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to
improve the performance of protein amino acid pKa predictions. Structure-based pKa calculations
play an important role in the mechanistic interpretation of protein structure and are also used to
determine a wide range of protein properties. A diverse set of methods currently exist for pKa
prediction, ranging from empirical statistical models to ab initio quantum mechanical approaches.
However, each of these methods are based on a set of conceptual assumptions that can effect a
model’s accuracy and generalizability for pKa prediction in complicated biomolecular systems.
We use BMA to combine eleven diverse prediction methods that each estimate pKa values of
amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa
Cooperative and the pKa measurements are based on experimental work conducted by the García-
Moreno lab. Our cross-validation study demonstrates that the aggregated estimate obtained from
BMA outperforms all individual prediction methods with improvements ranging from 45-73%
over other method classes. This study also compares BMA’s predictive performance to other
ensemble-based techniques and demonstrates that BMA can outperform these approaches with
improvements ranging from 27-60%. This work illustrates a new possible mechanism for
improving the accuracy of pKa prediction and lays the foundation for future work on aggregate
models that balance computational cost with prediction accuracy.
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1 Introduction
The calculation of pKa values and titration behavior plays an important role in the analysis
of biomolecular structure and function, including catalytic activity [19], ligand binding [59],
and protein stability [6,9,46,71]. Accurate pKa predictions, however, are challenging to
calculate due to a variety of computational factors including appropriate treatment of
electronic, solvation, and electrostatic effects [22,23,65] as well as adequate sampling of the
biomolecular ensemble and response to titration state change [12,25,31,36,57,63,69,74]. A
wide range of approaches have been developed for estimating the pKa and titration behavior
of proteins [1] and other biological molecules [60]. These approaches range from physics-
based methods and simulations [3,37,63,68], to data-driven methods that are primarily based
on statistical models [8, 44, 56]. To differentiate between these approaches, we will use the
term method throughout this paper to indicate what many computational chemists would call
a model for predicting pKas, and we reserve the word model to indicate a statistical model.
The topic of pKa prediction has been thoroughly addressed in other articles [42].
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Common across all pKa methods is the uncertainty associated with selecting, specifying, and
evaluating a set of processes, parameters, and mathematical systems in order to accurately
estimate pKa. This type of uncertainty, referred to as method selection uncertainty, is
arguably the greatest source of error and risk associated with model-based estimation and
can affect a wide range of scientific and mathematical disciplines [2, 15, 51]. One of the
most powerful ways to address selection uncertainty is through ensemble-based estimates [5,
28, 45, 52]. In ensemble approaches, estimates from a collection of methods are combined
(e.g., through a weighted average) to form a single aggregated estimate. The motivation
behind ensemble-based approaches is based on two principles: 1) all methods in the
ensemble possess some unique, useful information; and, 2) no single method is sufficient to
fully account for all uncertainties. Proponents of ensemble-based approaches assert that the
best method to use for estimation is a combination of all of the methods. The underlying
premise behind this tenet is that the information and strengths of individual methods can be
combined, and their corresponding weaknesses and biases can be overcome by the strength
of the group [28, 47, 49, 55]. Ensemble-based estimates are therefore expected to be more
reliable and potentially more accurate than individual methods, an expectation that has been
upheld in numerous examples [5,28,41,45,48,52,55,61,73].

Recently, an informal “pKa Cooperative” group has been established to explore the strengths
and weaknesses of titration state prediction methods in the context of well-characterized
experimental systems [42]. This paper uses the results of predictions from the Cooperative
to investigate the utility of an ensemble-based approach called Bayesian Model Averaging
(BMA) [28] to estimate pKa values measured by the García-Moreno lab in staphylococcal
nuclease [4, 6, 9, 10, 18, 26, 27, 31–35]. Although other statistical approaches have been
used to train [40, 53] and analyze [8, 70] pKa prediction algorithms, and BMA itself has
been applied successfully for prediction tasks across many domains [41,48,61,72], this is the
first application of the BMA approach to this problem domain.

2 Methods
2.1 Bayesian Model Averaging

For pKa prediction, a basic BMA approach is to consider a set of prediction methods as a
linear system [28, 47, 49]. Let yi for i = 1, … , N be a series of pKa observations, and let xij
denote the ith estimate obtained from the jth prediction method for these observations.For
example, given that yi is the experimentally measured pKa of Arg 313, each xij for j = 1, … ,
P would be a specific method’s estimate for this value. Given P prediction methods, the
combination of all xij forms the numerical ensemble estimate matrix that, along with yi,
defines a linear regression model

(1)

Here, the parameter vector βj defines the unknown relationship between the ensemble’s P
constituents and ∊i is the disturbance term that captures all factors (e.g., noise and
measurement error) that influence the dependent variable yi other than the regressors xij.

In evaluating Equation 1, the objective is to estimate the values βj that will both fit the
known pKa data in yi and facilitate the ability to make inferences on unknown pKa values.
Many different regression techniques can estimate βj [7,30,38,50]; however, these
techniques commonly generate estimates that vary in their ability to model and infer
[13,21,28,47,49]. The risk and uncertainty associated with using one of these estimates over
any other estimate (i.e., for statistical inference) is called statistical model uncertainty. Like
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method selection uncertainty, statistical model uncertainly is also a common source of error
in predictive modeling [28,47–49,62].

BMA addresses the challenge of statistical model uncertainty by first evaluating all possible
models that can be formed from the P prediction methods, and then combining each model’s
estimates for βj through a weighted average. This aggregation process generates an

aggregate-based parameter vector,  (Equation 2) that can provide more accurate and
reliable estimates than any ensemble method, and can also outperform other ensemble-based
strategies (e.g., stepwise regression) [13,21,28,64].

Formally, there are k = 1, … , 2P − 1 distinct combinations of the P methods, each with a

corresponding statistical model, M(k), and parameter vector, . BMA combines each ,

through a weighted average that weights each  by the probability that its statistical
model, M(k), is the “true” model.

(2)

In Equation 2,  is the expected value of the posterior distribution of  that
is weighted by the posterior probability Pr(M(k)∣y) (i.e., the probability that M(k) is the true

statistical model given yi). The expected posterior distribution of  is approximated
through the linear least squares solution of the given model M(k) and pKa response variable,
y = [y1, … , yN]. The posterior probability term is estimated from information criteria [47]

(3)

where B(k) is the Bayesian Information Criteria for model M(k), and the information criteria
itself is estimated [47]

(4)

Here R2(k) is the R2 correlation value for model M(k), p(k) is the number of methods used by
the model (not including the intercept), and N is the number of pKa values to be predicted.

BMA’s aggregation thus weights each model’s expected parameter vector  with the
probability value that is based on that model’s ability to balance trade-offs between model
complexity (i.e., the number of methods used) and goodness of fit. Models that use a larger
number of methods, or that do not fit the observations well, are penalized and can be
eliminated from the final aggregation process (i.e., their posterior probabilities are
effectively 0). In this context, BMA combines the best models to provide an accurate
estimate for the true parameter terms, βj.

The resulting parameter vector, , obtained from Equation 2 helps to address model
uncertainty by accounting for all systems of linear equations that can model the relationship
between the measured pKa values yi and values xij predicted by each method j. More

importantly,  can be used to estimate new pKa values for unmeasured residues by
combining new xij estimates.
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2.2 pKa data and prediction methods
We apply the BMA approach to a set of prediction methods that estimate 83 pKa values for
Lys, Asp, and Glu residues in staphylococcal nuclease mutants measured by the García-
Moreno lab in a series of studies [4, 6, 9, 10, 26, 27, 31–35]. As this data is the largest set of
systematic pKa values available for any protein system, it provides an extremely valuable
resource for the development of new computational methods for pKa prediction.

The set of prediction methods for this data comes from a large-scale, collaborative exercise
run by the pKa Cooperative to assess and compare contemporary strategies for estimating
pKa values [42]. In this study, we have used only a subset of the methods demonstrated in
the pKa Cooperative tests and a subset of the original 83 “ground truth” experimental pKa
measurements. This restriction is due to the fact that most methods used in the pKa
Cooperative tests provided predictions for only a subset of the 83 residues and mutants
characterized by the García-Moreno lab; most methods only provide estimates for half of the
data. In order to include the maximum number of methods in the aggregation process, we
only consider locations on the nuclease protein where all ensemble members provide a
predicted estimate. As a result, our study is based on 36 measurements listed in Table I.

The subset of pKa Cooperative methods used in the BMA approach were chosen based on
two criteria. First, we select those methods that predict the greatest number of common
residues/mutants. Second, in the event that multiple method variants exist, we chose only a
single variant to eliminate the number of highly correlated methods in the aggregate. We
perform this second step to ensure that multicollinearity does not inflate the significance that
certain methods have during model selection and averaging; such bias can create unstable

estimates for  that can reduce BMA’s predictive accuracy [11]. Table II summarizes
the 11 methods that constitute our ensemble; each method predicts the 36 measurments in
Table I. This table also lists each method’s approach for conformational sampling and its
solvation model.

Four types of sampling strategies were used by the methods considered in this study:
molecular dynamics (MD) simulations [63,69], Monte Carlo (MC) sampling [57,69],
Rosetta model refinement [57], and static structures [39, 40, 43, 53, 66, 70]. Three basic
types of implicit solvation models were used: generalized Born [17,58], Poisson-Boltzmann
and related methods [14,20,29], and empirical approaches [40,53]. Finally, a “null” model
consisting of model compound pKa values (ASP = 3.8, GLU = 4.3, LYS = 10.5) is also
included in the analysis. The results of these methods are shown in Figure 1.

2.3 Training and estimating with BMA
To train the BMA model, we began by randomly sampling (without replacement) 18 of the
original 36 experimental pKa measurements. Collectively, these sampled values form the
observation vector yi. The estimates from each of the 11 pKa prediction methods in Table II
for these measurements define the ensemble estimate matrix, xij. The observation vector and
the ensemble estimate matrix form the linear system in Equation 1. Next, we estimated the

 parameter from Equation 2 by assembling all k = 1, … , 211 − 1 = 2047 possible
statistical models M(k) and estimating each model’s posterior probability (Equation 3) based
on its associated R2(k) value and its number of independent parameters (Equation 4). The

calculated parameters  are the weighted average of each statistical model’s ordinary

least squares solution based on that model’s posterior probability. Finally, we use  to
estimate the remaining 18 pKa measurements that were not used to train the BMA model.

Gosink et al. Page 4

Proteins. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This task is accomplished by combining the estimates of all methods in Table II for the

validation data with  to produce an aggregate prediction.

3 Results and discussion
We exercised the training and estimation process in Section 2.3 repeatedly in a 100-fold
cross-validation study to assess the performance of several prediction approaches. In each of
the study’s 100 tests, we randomly selected (without replacement) 18 of the 36 experimental
measurements as training data and used the remaining 18 measurements as validation
data.Thus for a given test in our cross-validation study, we determined the root mean
squared error (RMSE) of each prediction approach based on the validation data. The
distribution of the RMSE for all 100 tests are reported for each predictive approach in our
results (see Figures 1-3).

Based on these RMSE distributions, we assessed the performance of BMA to a given
prediction approach X through a Wilcoxon rank sum paired comparison test [67]. This non-
parametric approach tests the hypothesis that the RMSE distributions of BMA and X are
equal: H0 : μBMA = μX. To control the familywise error rate of our tests (there were 56 paired
tests in total), we applied a Bonferroni correction to determine a p-value threshold of

. Thus when comparing BMA to X, a Wilcoxon-generated p-value that is
greater than 9.0E – 4 indicates we fail to reject H0: the distributions are thus equal and we
conclude that BMA and X are equivalent in their predictive accuracy. On the other hand,
Wilcoxon-generated p-values that are less than 9.0E – 4 indicate we should reject H0. In this
latter case, we then compared the mean RMSE for BMA (Tables III, IV, and V) and the
given technique to assess performance.

We report the results of our study in three stages. Stage 1 compares the predictive results of
BMA to predictions of different methods in Table II. Stage 2 assesses the robustness of
BMA by evaluating BMA predictions that are based on different ensembles of methods from
Table II. Stage 3 compares BMA’s performance to the performance of other aggregation
approaches (e.g., Stepwise regression) to examine the benefits of addressing statistical
model uncertainty.

3.1 Stage 1: Comparing BMA to the ensemble of pKa methods
We have chosen to analyze the results by overlapping classes of methods (see Table II),
rather than by individual method, for multiple reasons. First, we intend to confound the
analysis of individual model performance out of respect for the authors of the methods who
freely contributed their results to the pKa Cooperative. The goal of the Cooperative is to
encourage open conversation and exchange of ideas on improving biomolecular solvation
models – not to rank or select “winners” from the pool of prediction methods. Second, the
goal of this paper is to illustrate the potential benefits of model aggregation via BMA rather
than analyze the performance of any single prediction method.

Table III and Figure 1 both provide an overview of the cross-validation pKa prediction
errors for BMA, the null model, and the various sampling and solvation methods. There are
specific models in each of the categories (empirical, physics-based, static, and sampled) that
will typically perform with errors < 2 pKa units. For example, in Figure 1 we can see that for
GLU the expected performance for all empirical models is < 2.

However, from these results, we see that the BMA-based approach substantially outperforms
all other classes of methods for all amino acids: BMA-based estimates reduce error by
approximately 65% in comparison to methods that use conformational sampling, and by
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about 73% in comparison to the static-conformation and physics-based solvation methods.
In comparison to BMA, empirical solvation methods provide the next-best estimates; these
estimates are approximately 45% higher in error than BMA estimates. The statistical
significance of BMA’s performance is based on p-values shown in Table VI. Based on an α
value of 9.0E – 4, this table indicates that we reject H0 for all paired comparison tests. By
comparing μBMA to other mean RMSE scores (see Table III), we concluded that BMA
provides better performance than any method class in Figure 1.

3.2 Stage 2: Comparing different ensembles of methods for BMA
We applied BMA to five distinct ensembles, where each ensemble was based on a unique
set of methods listed in Table II. We then compared the performance of each of these BMA
instances to assess how changes in ensemble constituents affect BMA’s predictive accuracy.
The first instance, labeled “BMA”, is based on an ensemble that includes all methods in
Table II. This instance is the same BMA instance used in Section 3.1 and Section 3.3. The
next four instances were based on a subset of the methods in Table II. Specifically, the
instance labeled “BMA-Static” is based on an ensemble that only used methods that relied
on static-conformations (see Table II, second column). Similarly, the instance labeled
“BMA-Sample” utilized an ensemble that was defined by methods that only use
conformational sampling. The last two instances, BMA-Physics and BMA-Empirical, were
defined exclusively by methods that used physics-based or empirical solvation approaches
respectively (see Table II, third column).

Figure 2 and Table IV summarize the cross-validation pKa prediction errors for the various
BMA instances. From the RMSE distributions in Figure 2, it is clear that all instances
provide excellent predictive capability. The significance of the results in Figure 2 and Table
IV are base on the p-values in Table VII. Based on an α value of 9.0E – 4, these p-values
indicate that we accept H0 for all comparison tests save two: the BMA-Physics ensemble
when predicting LYS residues and the BMA-Static ensemble when predicting ASP residues.
Thus for almost all cases, the performance of the BMA instances are equivalent. In the two
exceptions where H0 was rejected, the BMA instance based on the entire ensemble of
methods reduced error by approximately 8% compared to the other instances. The results of
these comparisons indicate that the BMA approach is robust and that BMA can overcome
deficiencies observed in certain classes of methods (see Figure 1) to provide consistent
predictive performance.

3.3 Stage 3: Comparing BMA to other ensemble techniques
There are other approaches besides BMA that can combine an ensemble of methods to make
an aggregate prediction. In our cross-validation study, we evaluated five common
approaches for aggregating an ensemble and evaluated their predictive benefits in
comparison to BMA. These methods included: forward regression, backward regression,
step-wise regression, ordinary least squares (based on all methods in Table II), and Mallow’s
Cp statistic. These techniques were chosen as they have all been used successfully for a
variety of inference tasks [24, 54]. As all of these approaches constructed an estimate for βi,
training and predicting with these approaches was performed identically to how we trained
and predicted with BMA (Section 2.3). As a result, we also followed the same procedure for
comparing BMA’s predictive capability to these alternate ensemble-based prediction
techniques.

Figure 3 and Table V provide an overview of the cross-validation pKa prediction errors for
the various ensemble-based prediction approaches and BMA (BMA used an ensemble that
included all methods in Table II). The statistical significance of BMA’s performance in
Figure 3 is based on p-values shown in Table VIII. Based on an α value of 9.0E–4, Table
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VIII indicates that we reject H0 for all paired comparison tests. BMA’s RMSE distribution
is therefore not equivalent to the RMSE distribution of any other ensemble-based technique

As the distributions are not equal, we compared mean RMSE distributions of BMA to the
other ensemble-based approaches in Figure 3 and Table V. From these mean RMSE, it is
clear that the BMA-based approach outperforms all other ensemble-based prediction
approaches: BMA-based estimates reduced error by approximately 27% in comparison to
Backward and Stepwise regression techniques and by 35% in comparison to Forward
regression. In comparison to an ordinary least squares approach that uses all the methods in
Table II, BMA reduces error by approximately 46%. Finally, in comparison to Mallow’s Cp
technique, BMA reduces error by approximately 60%.

4 Conclusions
This study demonstrates a proof-of-principle application of BMA to pKa prediction using a
single protein (staphylococcus nuclease) as a test case. While the performance of BMA is
expected to generalize to a much broader set of pKa prediction problems, the specific BMA
model trained in this study is likely to be dependent on the staph nuclease system. In
particular, the staph nuclease system has been engineered for stability and tolerates many
internal titratable residues by shifting their pKa values towards neutral titration states when
covered with solvent. We note that this work is complementary to the hybrid methods
developed by Witham et al. [69] which suggest the use of multiple or hybrid pKa prediction
methods based on the nature of the residue under consideration. For example, Witham et al.
use structural features and the molecular environment to help select the best sampling and
prediction method for a specific titratable residue. While our BMA approach is purely
statistical in nature, the BMA method described here could also be trained to modify the
aggregation process based on structural and environmental features (e.g., only look at
ensembles of empirical methods for certain structural features and consider all methods for
other structures). In future work we will look at penalizing computationally expensive
methods that provide minimal accuracy benefits. Finally, we will explore larger datasets
with a diverse set of bimolecular systems to provide a trained BMA pKa prediction model
using a variety of calculation methods.
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Figure 1.
This figure depicts a summary of root-mean-squared error for various conformational
sampling and solvation methods (see Table II). The label “BMA” reflects performance for a
BMA instance that uses all methods in Table II to construct βBMA; we examine the
performance effects of constraining the ensemble to specific methods (e.g., BMA based only
on Static methods) in Figure 2 and Table VII. The “Sampled” set contains results from
methods that use MD, MC, and Rosetta sampling methods; the “Static” set contains results
from methods that did not use conformational sampling. The “Physics” set contains results
from methods that use GB and PB solvation models; the “Empirical” set includes methods
with empirical solvation models. From these results, we see that the BMA-based approach
substantially outperforms all other classes of methods: BMA-based estimates reduce error
by approximately 65% in comparison to methods that use conformational sampling, and by
about 73% in comparison to the static-conformation and physics-based solvation methods.
In comparison to BMA, empirical solvation methods provide the next-best estimates; these
estimates are approximately 45% higher in error than BMA estimates. The mean RMSE
values shown in this figure are listed in Table III. The statistical significance of BMA’s
performance is based on p-values shown in Table VI.
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Figure 2.
This figure depicts a summary of root-mean-squared error for different BMA ensemble
instances. The label “BMA” indicates that the BMA aggregate uses all methods from Table
II to construct βBMA. The “BMA-Empirical” and “BMA-Physics” labels indicate
performance for BMA instances that are based on ensembles that only consider a subset of
the total methods; e.g., the “BMA-Empirical” aggregation process only uses empirical
methods to construct βBMA. “BMA-Static” and “BMA-Sampling” labels indicate
performance for ensembles that are restricted by sampling strategies. The mean RMSE
values shown in this figure are listed in Table IV. The statistical significance of BMA’s
performance is based on p-values shown in Table VII. Based on Table IV and Table VII, we
conclude that the performance of all instances are equivalent with the exception of two cases
(BMA-Physics predicting LYS and BMA-Static predicting ASP). In these two cases, BMA
based on a full ensemble outperforms these instances by approximately 8%.
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Figure 3.
This figure depicts a summary of root-mean-squared error for different ensemble
approaches. The label “BMA” indicates that the BMA aggregate uses all methods from
Table II to construct βBMA. The other approaches are alternative ensemble techniques that
are based on different strategies for model specification (see Section 3.3). The mean RMSE
values shown in this figure are listed in Table V and the statistical significance of BMA’s
performance is based on p-values shown in Table VIII. Based on data in Table VIII and
Table V, BMA-based approach outperform all other ensemble techniques: BMA-based
estimates reduce error by approximately 27% in comparison to Backward and Stepwise
regression techniques and by 35% in comparison to Forward regression. In comparison to an
ordinary least squares approach that uses all methods in II, BMA reduces error by
approximately 46%. Finally, in comparison to Cp methods, BMA reduces error by
approximately 60%.
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Table I

This table lists the locations and experimental values for pKa measurements on a series of mutant
staphylococcus nuclease proteins used in our cross-validation study. References for each measurement are
provided in the table:

Residue D20d E23c E25c K25b K34b K36b E38c E39c E41c

pKa 4.0 7.1 7.5 6.3 7.1 7.2 6.8 8.2 6.5

Residue D41d D58d K62b D62d E62c D66d E66a;c E72c K72b

pKa 4.0 6.8 8.1 8.7 7.7 8.1 8.5 7.3 8.6

Residue D74d E74c D90d E91c K91b E92c E99c D99d D100d

pKa 8.3 7.8 7.5 7.1 9.0 9.0 8.4 8.5 6.9

Residue E100c K103b K104b D109d D118d E125c D125d D132d E132c

pKa 7.6 8.2 7.7 7.5 7.0 9.1 7.6 7.0 7.0

a
Dwyer et al., 2000 [18]

b
Isom et al., 2011 [31]

c
Isom et al., 2010 [32]

d
Bertrand García-Moreno, personal communication, 2009.
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Table II

This table lists the pKa prediction methods used in our BMA approach. Sampling strategies include molecular
dynamics (MD), Monte Carlo (MC), Rosetta structure refine ment (Rosetta), and static structure (Static).
Solvation models include generalized Born (GB), Poisson-Boltzmann (PB), and empirical methods
(Empirical).

Reference Sampling
strategy

Solvation
model

Number of predictions made
(out of 89 total)

“Null” model — — 89

Wallace J, et al, 2011 [63] MD GB 68

Warwicker J, 2011 [66] Static PB 83

Rostkowski M, et al, 2011
[53]

Static Empirical 89

Milletti F, et al, 2009 [40] Static Empirical 74

Nielsen JE, et al, 2001 [43] Static PB 87

Witham S, et al, 2011 [69] MD and MC GB and PB 65

Word JM, et al, 2011 [70] Static PB 61

PDB2PKA [16, 43] Static PB 87

Song Y, 2011 [57] MC and
Rosetta

PB 69

Meyer T, et al, 2011 [39] Static PB 87
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Table III

This table lists the average root-mean-squared-error performance results from our 100-fold cross-validation
study, ordered by the overall error obtained by the model or method. The table shows performance for BMA,
the Null model, as well as performance of categories of pKa prediction methods. The “Sampled” set contains
results from methods which used MD, MC, and Rosetta sampling methods; the “Static” set contains results
from methods which did not use conformational sampling. The “Physics” set contains results from meth ods
which used GB and PB solvation models; the “Empirical” set includes methods with empirical solvation
models. The ensemble of prediction methods is broken into two comparative groups based on conformational
sampling strategy (e.g., MD, MC, and Rosetta sampling vs. static) and solvation model (GB and PB solvation
methods vs. empirical methods). Additionally, cross-validation results are shown for all amino acids as well as
for the individual amino acid types ASP, GLU, and LYS. The statistical significance of BMA’s performance
is based on p-values shown in Table VI. Table VI indicates that BMA’s mean RMSE is statistically significant
to all other methods. Based on this table’s mean RMSE scores, we see that the BMA-based approach
outperforms all other ensemble techniques: BMA-based estimates reduce error by approximately 65% in
comparison to methods that use conformational sampling, and by about 73% in comparison to the static-
conformation and physics-based solvation methods. In comparison to BMA, empirical solvation methods
provide the next-best estimates; these estimates are approximately 45% higher in error than BMA estimates.

Method class All ASP GLU LYS

BMA 1.155 1.376 0.924 1.023

Empirical solvation 2.031 2.264 1.609 2.280

Physics-based solvation 4.167 4.129 4.051 4.414

Sampled conformations 3.257 3.209 3.034 3.628

Static conformations 4.057 4.061 3.936 4.246

Null 3.420 3.598 3.516 2.861
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Table IV

This table lists the average root-mean-squared-error (RMSE) performance results from our 100-fold cross-
validation study based on the distributions in Figure 2. The label “BMA” indicates that the BMA aggregate
uses all methods from Table II to construct BMA. The “BMA-Empirical” and “BMA-Physics” labels indicate
performance for BMA instances that are based on ensembles that only consider a subset of the total methods;
e.g., the “BMA-Empirical” aggregation process only uses methods from the Empirical class to construct
BMA. Likewise, “BMA-Static” and “BMA-Sampling” labels indicate performance for ensembles that are
restricted by sampling strategies. The statistical significance of these mean RMSE values is based on p-values
shown in Table VII. Table VII indicates the performance for all BMA instances is equivalent with the
exception of two cases: the BMA-Physics ensemble when predicting LYS residues; and, BMA-Static when
predicting ASP residues.

Aggregate All ASP GLU LYS

BMA 1.155 1.376 0.924 1.023

BMA-Empirical 1.127 1.443 0.867 0.845

BMA-Physics 1.164 1.318 0.959 1.111

BMA-Sampled 1.017 1.260 0.809 0.828

BMA-Static 1.175 1.496 0.944 0.830
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Table V

This table lists the average root-mean-squared-error performance results from our 100 X cross-validation
study based on the distributions in Figure 3. The label “BMA” indicates that the BMA aggregate uses all
methods from Table II to construct βBMA. The other approaches are alternative ensemble techniques that are
based on different strategies for model specification (see Section 3.3). The statistical significance of these
mean RMSE is based on p-values shown in Table VIII. Table VIII indicates that BMA’s mean RMSE is
statistically significant to all other methods. Based on this table’s mean RMSE scores, we see that the BMA-
based approach outperforms all other ensemble techniques: BMA-based estimates reduce error by
approximately 27% in comparison to Backward and Stepwise regression techniques and by 35% in
comparison to Forward regression. In comparison to an ordinary least squares approach that uses all methods
in II, BMA reduces error by approximately 46%. Finally, in comparison to Cp methods, BMA reduces error by
approximately 60%.

Ensemble technique All ASP GLU LYS

BMA 1.155 1.376 0.924 1.023

Stepwise regression 1.564 1.541 1.298 1.766

Forward regression 1.740 1.680 1.436 2.044

Backward regression 1.565 1.543 1.295 1.768

Cp 2.839 2.756 2.851 2.858

Ordinary Least Squares (OLS) 2.089 2.219 1.865 1.983

Proteins. Author manuscript; available in PMC 2015 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gosink et al. Page 20

Table VI

This table contains p-values that indicate the statistical significance of BMA’s RMSE distribution compared to
other methods in Figure 1. P-values are based on a Wilcoxon rank sum paired comparison test that detects if
data populations for BMA and method X (e.g., Sampled or Static) are identical: Based on the 56 paired tests
(Figures 1- 3) we determine a p-value threshold of α = 0.05/56 = 9.0×10−4; p-values less than 9.0×10−4 thus
indicate that we reject the null hypothesis that the two distributions are identical. This table indicates that we
reject this null hypothesis for all paired comparison tests and by comparing the mean BMA RMSE to other
mean RMSE scores listed in Table III, As such, we conclude that BMA provides better performance than any
method class in Figure 1. Repeated values in this table reflect floating point precision limits in the p-value
calculation.

Method All ASP GLU LYS

Empirical 3.95×10−18 4.73×10−18 9.38×10−18 6.28×10−17

Physics 1.98×10−18 1.98×10−18 1.98×10−18 1.98×10−18

Sampled 1.98×10−18 1.98×10−18 1.98×10−18 2.17×10−18

Static 1.98×10−18 1.98×10−18 1.98×10−18 2.04×10−18

Null 1.98×10−18 2.04×10−18 1.98×10−18 8.09×10−18
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Table VII

This table contains p-values that indicate the statistical significance of performance for BMA based on the
different ensembles shown in Figure 2. P-values are based on a Wilcoxon rank sum paired comparison test as
described in Table VI. This table indicates that we accept the null hypothesis that the methods using different
ensemble subsets behave identically for all comparison tests save two (italicized for contrast): the BMA-
Physics ensemble when predicting LYS residues; and, BMA-Static ensemble when predicting ASP residues.
The predictive performance of BMA based on different ensembles is therefore equivalent in almost all cases.
For these two cases where we reject the null hypothesis, we compare the mean RMSE of BMA to the mean
RMSE of BMA-Physics and BMA-Static (Table IV) to identify that BMA reduces error by approximately 8%
compared to these instances.

Aggregate All ASP GLU LYS

BMA-Empirical 1.19×10−1 1.00×10−3 4.92×10−1 9.58×10−1

BMA-Physics 5.83×10−2 9.90×10−1 9.38×10−3 1.19×10−4

BMA-Sampled 1.00 1.00 9.99×10−1 9.98×10−1

BMA-Static 2.20×10−3 7.32×10−6 8.08×10−3 9.90×10−1
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Table VIII

This table contains p-values that indicate the statistical significance of BMA’s RMSE distribution compared to
the other ensemble-based methods in Figure 3. P-values are based on Wilcoxon rank sum paired comparison
test as described in Table VI. This table indicates that we reject the null hypothesis for all paired comparison
tests and by comparing and conclude that BMA provides better performance than any ensemble approach in
Figure 3.

Ensemble
technique All ASP GLU LYS

Stepwise 3.85×10−15 1.29×10−4 7.25×10−17 5.78×10−14

Forward 9.94×10−17 4.10×10−9 6.57×10−18 2.41×10−16

Backward 3.85×10−15 1.12×10−4 8.37×10−17 6.76×10−14

Cp 1.96×10−17 2.41×10−16 1.50×10−17 1.86×10−16

Ordinary Least
Squares (OLS) 1.19×10−17 1.19×10−13 3.32×10−17 4.12×10−14
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