
Can calcium hypothesis explain synaptic loss in Alzheimer’s
disease?

Elena Popugaeva1 and Ilya Bezprozvanny1,2,*

1Laboratory of Molecular Neurodegeneration, St Petersburg State Polytechnical University, St
Petersburg 195251, Russia
2Department of Physiology, UT Southwestern Medical Center at Dallas, TX75390, USA

Abstract
Alzheimer’s disease (AD) is the threat of modern humankind that is provoked by increased human
lifespan. Despite extensive studies on AD pathology for more than 100 years there are no disease
preventing therapies. Growing evidence suggests the role of calcium (Ca2+) in the pathogenesis of
AD. The main purpose of the article is to understand whether modern science is able to explain the
synapse loss observed in early AD and discuss the role of Ca2+ hypothesis in it. Based on results
obtained in our laboratory and others we propose that familial AD-associated mutations in
presenilins cause Ca2+ overload of endoplasmic reticulum stores which leads to compensatory
downregulation of neuronal store-operated Ca2+ (nSOC) entry pathway. We propose that synaptic
nSOC is necessary for stability of mature synaptic spines and that dysfunction of this pathway
may play an important role in synaptic and memory loss in AD.
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Alzheimer’s disease (AD) is a well known pathology destroying human brain and the
personality. The majority of known facts about AD pathogenesis come from discoveries in
mouse models mimicking genetically caused cases of familial AD (FAD). Although FAD
covers about 1–2% of all AD cases, the mouse models and clinical data agree that synapse
loss is the major hallmark of AD that results in memory loss.

What is the physiological substrate of memory? Expression of long-term potentiation (LTP)
in response to brief high frequency stimulation of synaptic ends in the hippocampus is
strongly correlated with learning and memory (Bliss and Collingridge, 1993; Trommald et
al., 1996). LTP takes place in small dendritic protrusions called dendritic spines. Based on
their size and shape spines are divided into three groups: stubby, thin and mushroom. It has
been proposed that the mushroom spines are stable “memory spines”, therefore, they store
memories and that thin spines are “learning spines” that serve as physical substrates for the
formation of new memories (Bourne and Harris, 2007; Kasai et al., 2003). Since loss of
memories is a hallmark of AD, we and others previously proposed that mushroom spines are
more likely to be eliminated during AD progression (Bezprozvanny and Hiesinger, 2013;
Popugaeva et al., 2012; Tackenberg et al., 2009).
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What mechanism is responsible for mushroom spine elimination? The dominant amyloid-
beta (Aβ)-based hypothesis of AD states that soluble Aβ42 peptides possess synaptotoxic
effects. Aβ could mediate the synapse loss through the potentiation of N-methyl-D-aspartate
receptor (NMDAR). Stimulation of NMDAR triggers excessive calcium (Ca2+) influx that
activates calcineurin (CaN), a Ca2+-activated phosphatase whose activation leads to synapse
weakening and AD associated spine loss (Wu et al., 2010). However, many facts speak for
early Ca2+ abnormalities that precede or even happen in the absence of Aβ pathology
(Bezprozvanny and Mattson, 2008; Stutzmann, 2007). The Ca2+ hypothesis of brain aging
and AD states for sustained changes in Ca2+ homeostasis could provide the common
pathway for aging and the neuropathological changes associated with AD (Khachaturian,
1989). In particular, multiple evidence points to disregulated endoplasmic reticulum (ER)
Ca2+ homeostatsis in aging and, AD neurons (Bezprozvanny and Mattson, 2008;
Stutzmann, 2007). There are two channels in the ER that mediate Ca2+ release: ryanodine
receptors (RyanR) and inositol triphosphate receptors (IP3R). Taking into account that IP3R
predominantly resides in the soma, whereas RyanR-mediated signals are more distinct in
dendritic spines and presynaptic terminals (Cheung et al., 2010; Smith et al., 2005), the input
of abnormal RyanR function on postsynaptic Ca2+ signaling could be stronger than IP3R-
mediated signaling. Thus, blocking RyanR (for example with dantrolene) appears to be a
potential way to stabilize Ca+ signals in AD brains. However, inconsistent results were
obtained when dantrolene was tested in AD mouse models (Chakroborty et al., 2012; Oules
et al., 2012; Peng et al., 2012; Zhang et al., 2010).

In addition to RyanR and IP3R our recent data show that presenilins (PS) (mutations in PS
are associated with FAD) could play a role of low conductance ER Ca2+ leak channel and
many FAD mutations disrupt this function (Tu et al., 2006). This idea remains controversial
(Shilling et al., 2012), but our hypothesis has found a confirmation in a recent breakthrough
study that demonstrates the crystal structure of a bacterial homologue of presenilin (PSH)
(Li et al., 2013). In agreement with our mutagenesis data (Nelson et al., 2011) the authors
found that PSH has a water-filled hole that is large enough to allow passage of small ions,
suggesting that PSH may function as an ion channel. Our hypothesis was also supported by
a recent unbiased screen for Ca+ homeostasis modulators (Bandara et al., 2013). These
authors demonstrated that knocking down presenilin-2 dramatically reduced ER Ca2+ leak
rate in HEK293 cells, consistent with the “leak channel” hypothesis (Bandara et al., 2013;
Bezprozvanny, 2013).

What is the connection between impaired ER Ca2+ leak function, ER Ca2+ overload and
synaptic loss in AD? We previously proposed that abnormalities in ER Ca2+ handling may
be linked to destabilisation of mushroom postsynaptic spines (Bezprozvanny and Hiesinger,
2013; Popugaeva et al., 2012). Consistent with this idea, in recent experiments we observed
a significant downregulation of the synaptic neuronal store-operated Ca2+ (nSOC) entry
pathway in presenilin mutant neurons (Sun and Bezprozvanny, unpublished data). In
agreement with our findings, impaired SOC was reported by several groups for presenilin
mutant cells (Akbari et al., 2004; Bojarski et al., 2009; Herms et al., 2003; Leissring et al.,
2000; Yoo et al., 2000; Zhang et al., 2010). Our results further indicate that reduced
postsynaptic SOC leads to destabilization and elimination of mushroom spines – sites of
memory storage (Sun and Bezprozvanny, unpublished data).

Based on obtained results we propose that synaptic ER Ca2+ overload and compensatory
downregulation of synaptic nSOC pathway play an important role in synaptic loss in AD
and aging brains. Our results suggest that upregulation of synaptic nSOC pathway may yield
therapeutic benefits for treatment of AD and age-related memory problems.
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