Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1995 Nov 15;14(22):5457–5466. doi: 10.1002/j.1460-2075.1995.tb00232.x

Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus.

D Campbell 1, G Zhou 1, P Gustafsson 1, G Oquist 1, A K Clarke 1
PMCID: PMC394659  PMID: 8521802

Abstract

Synechococcus sp. PCC 7942 modulates photosynthetic function by transiently replacing the constitutive D1 photosystem II protein, D1:1, with an alternate form, D1:2, to help counteract photoinhibition under excess light. We show that a temperature drop from 37 to 25 degrees C also drives D1:1/D1:2 exchange under constant, moderate light. Chilling or light-induced D1 exchange results from rapid loss of psbAI message coding for D1:1 and accumulation of psbAII and psbAIII messages coding for D1:2. During chilling, a large pool of a novel form, D1:2*, transiently accumulates, distinguishable from normal D1 by an increase in apparent molecular mass. D1:2* is not phosphorylated and is probably a functionally inactive, incompletely processed precursor. After acclimation to 25 degrees C, D1:2* disappears and D1:1 again predominates, although substantial D1:2 remains. Partial inhibition of electron transport under constant, moderate light also triggers the D1 exchange process. These treatments all increase excitation pressure on photosystem II relative to electron transport. Therefore, information from photosynthetic electron transport regulates D1 exchange without any requirement for a change in light intensity or quality, possibly via a redox sensing mechanism proximal to photosystem II.

Full text

PDF
5461

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. F. Redox control of transcription: sensors, response regulators, activators and repressors. FEBS Lett. 1993 Oct 18;332(3):203–207. doi: 10.1016/0014-5793(93)80631-4. [DOI] [PubMed] [Google Scholar]
  2. Barber J., Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 1992 Feb;17(2):61–66. doi: 10.1016/0968-0004(92)90503-2. [DOI] [PubMed] [Google Scholar]
  3. Bustos S. A., Schaefer M. R., Golden S. S. Different and rapid responses of four cyanobacterial psbA transcripts to changes in light intensity. J Bacteriol. 1990 Apr;172(4):1998–2004. doi: 10.1128/jb.172.4.1998-2004.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell D., Houmard J., De Marsac N. T. Electron Transport Regulates Cellular Differentiation in the Filamentous Cyanobacterium Calothrix. Plant Cell. 1993 Apr;5(4):451–463. doi: 10.1105/tpc.5.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke A. K., Critchley C. The identification of a heat-shock protein complex in chloroplasts of barley leaves. Plant Physiol. 1992 Dec;100(4):2081–2089. doi: 10.1104/pp.100.4.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke A. K., Hurry V. M., Gustafsson P., Oquist G. Two functionally distinct forms of the photosystem II reaction-center protein D1 in the cyanobacterium Synechococcus sp. PCC 7942. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11985–11989. doi: 10.1073/pnas.90.24.11985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke A. K., Soitamo A., Gustafsson P., Oquist G. Rapid interchange between two distinct forms of cyanobacterial photosystem II reaction-center protein D1 in response to photoinhibition. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9973–9977. doi: 10.1073/pnas.90.21.9973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Danon A., Mayfield S. P. Light-regulated translation of chloroplast messenger RNAs through redox potential. Science. 1994 Dec 9;266(5191):1717–1719. doi: 10.1126/science.7992056. [DOI] [PubMed] [Google Scholar]
  9. Diner B. A., Ries D. F., Cohen B. N., Metz J. G. COOH-terminal processing of polypeptide D1 of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex. J Biol Chem. 1988 Jun 25;263(18):8972–8980. [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Glatron M. F., Rapoport G. Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie. 1972;54(10):1291–1301. doi: 10.1016/s0300-9084(72)80070-1. [DOI] [PubMed] [Google Scholar]
  12. Golden S. S., Brusslan J., Haselkorn R. Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J. 1986 Nov;5(11):2789–2798. doi: 10.1002/j.1460-2075.1986.tb04569.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Golden S. S. Light-responsive gene expression in cyanobacteria. J Bacteriol. 1995 Apr;177(7):1651–1654. doi: 10.1128/jb.177.7.1651-1654.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gombos Z., Wada H., Murata N. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8787–8791. doi: 10.1073/pnas.91.19.8787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kulkarni R. D., Golden S. S. Adaptation to high light intensity in Synechococcus sp. strain PCC 7942: regulation of three psbA genes and two forms of the D1 protein. J Bacteriol. 1994 Feb;176(4):959–965. doi: 10.1128/jb.176.4.959-965.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maxwell D. P., Falk S., Huner NPA. Photosystem II Excitation Pressure and Development of Resistance to Photoinhibition (I. Light-Harvesting Complex II Abundance and Zeaxanthin Content in Chlorella vulgaris). Plant Physiol. 1995 Mar;107(3):687–694. doi: 10.1104/pp.107.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maxwell D. P., Falk S., Trick C. G., Huner NPA. Growth at Low Temperature Mimics High-Light Acclimation in Chlorella vulgaris. Plant Physiol. 1994 Jun;105(2):535–543. doi: 10.1104/pp.105.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mohamed A., Jansson C. Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol. 1989 Dec;13(6):693–700. doi: 10.1007/BF00016024. [DOI] [PubMed] [Google Scholar]
  19. Murata N. Temperature dependence of chlorophyll a fluorescence in relation to the physical phase of membrane lipids algae and higher plants. Plant Physiol. 1975 Dec;56(6):791–796. doi: 10.1104/pp.56.6.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Myers J., Graham J. R., Wang R. T. Light Harvesting in Anacystis nidulans Studied in Pigment Mutants. Plant Physiol. 1980 Dec;66(6):1144–1149. doi: 10.1104/pp.66.6.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reyes J. C., Florencio F. J. Electron transport controls transcription of the glutamine synthetase gene (glnA) from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol. 1995 Feb;27(4):789–799. doi: 10.1007/BF00020231. [DOI] [PubMed] [Google Scholar]
  22. Samuelsson G., Lönneborg A., Gustafsson P., Oquist G. The Susceptibility of Photosynthesis to Photoinhibition and the Capacity of Recovery in High and Low Light Grown Cyanobacteria, Anacystis nidulans. Plant Physiol. 1987 Feb;83(2):438–441. doi: 10.1104/pp.83.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schaefer M. R., Golden S. S. Light availability influences the ratio of two forms of D1 in cyanobacterial thylakoids. J Biol Chem. 1989 May 5;264(13):7412–7417. [PubMed] [Google Scholar]
  24. Shipton C. A., Barber J. Photoinduced degradation of the D1 polypeptide in isolated reaction centers of photosystem II: evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6691–6695. doi: 10.1073/pnas.88.15.6691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsinoremas N. F., Schaefer M. R., Golden S. S. Blue and red light reversibly control psbA expression in the cyanobacterium Synechococcus sp. strain PCC 7942. J Biol Chem. 1994 Jun 10;269(23):16143–16147. [PubMed] [Google Scholar]
  26. Wada H., Gombos Z., Murata N. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4273–4277. doi: 10.1073/pnas.91.10.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES